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with
P„=mv„

for the electromagnetic 6eld, and

dP„/ds = —gBU/8x",
with

P„=(m —gU) v„

(3)

(4)

Here s=r~ —r„,go(s) is the deuteron space wave function and
Ahk the momentum transfer. S(hk) is then the deuteron form
factor. It has the value unity for zero degree scattering but de-
presses the large angle scattering. For example, using the usual
Hulthen wave function,

xo(s) =Nfe '—e &'j//s, where P/a=7, (2)

dQ d 8X„—+——"dxodx'dr'dx'= 0,
ds d$8$p (6)

where
Q= P„x"—ms, (7)

and P„is given by (3) and (5) respectively; N„is the vector de-
fined by (I.6) and (I.10) respectively. A similar law exists for
point charges which possess an intrinsic angular momentum, but
no dipole moment. No law corresponding to the conservation law
(5) of I exists.

Thus, the system of particle and field does not obey all the
conservation laws obeyed by the field alone, for the equations
considered. Conversely, if we require the system to possess all the
conservation properties of the field, we will not obtain the above
equations of motion, which are well verified for the electromag-
netic case. Therefore, it appears that instead of basing the de-
duction of the equations of motion on the ambiguous information
provided by the conservation laws for the field alone, it may be
preferable to base it on other requirements. One possibility is
provided by requiring the equations of the special theory of rela-
tivity to fit within the framework of general relativity. '

It is planned to publish a detailed account of this work shortly.
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EVIATIONS from Rutherford scattering may be expected
in the elastic scattering of deuterons by nuclei because (1)

the deuteron is a loose structure with non-coincident centers of
mass and charge and it may disintegrate on scattering, and (2)
deuterons which penetrate through the barrier will encounter
the nucleus and may initiate nuclear processes. We consider in
this note the effects due to (1).

For scattering by a point Coulomb field, a simple Born approxi-
mation calculation gives for the ratio of the scattering to Ruther-
ford scattering:

der
de ~(s)exp(-', id' s) =S(hk). (1)

for the scalar 6eld. Here m and v„are the mass and the four-
velocity of the particle, e and g its coupling constants with the
two fields, G„„is the electromagnetic field tensor and U the scalar
6eld. G„,and U are to be taken as the total (external plus par-
ticle) field minus the particle's symmetric field. ' ' If it is assumed
that the 6eld of the particle is wholly retarded, this equals the
external 6eld plus the radiation field; if it is assumed to be half-
retarded, half-advanced, it is just the external field„and there is
no radiation damping. 6 The following results are valid in either
case.

It was found that the above equations of motion allow an
additional conservation law, corresponding to the conservation
law (4) of I,

we have S(180')=0.30, for 4-Mev deuterons.
The use of the Born approximation is satisfactory only for

e=Ze'/kv((1. We make, therefore, a more accurate calculation
and demonstrate thereby that the deuteron structure plays no
part in the Coulomb scattering when e))1.

With hi=incident deuteron wave-vector, R=-', (r +r„),V(s)
=e—p potential, and &=deuteron binding energy, we have

2ke
V&~+k2 ——+V'2+V(s) —.e(R, s)R

1=2koo, ,
——%(R, s). (3)

We expand 0' on the left-hand side by 4 =Ex„(s)O(R), where
the x„(s)are two-particle eigenfunctions, multiply through Eq.
(3) by xo(s) and integrate over s. Then, treating the right-hand
side as a perturbation, we replace + by po(s)P&(R), where P& is the
Coulomb scattering wave function for the initial vector ti. We
then have

2k'
V&2+k2 ——n, (R)

R
1 1=2korJxo*(s), ——xo(s)dsA(R)i (4)

[R——,'s
f

and now Qo(R) is the wave function describing the elastic scatter-
ing. We note immediately that the inhomogeneous term becomes
very small for high n. For, because of the spherical symmetry of
the deuteron distribution, f1/( R—

—o,s
~

—1/R j=—0 except for
R~&-,'s; i.e., it contributes only when the scattering center is
inside the deuteron. For high Z such deep penetration is im-
probable [Pq(R) is small for small R]. Thus in this case the cor-
rection to Rutherford scattering is negligible. (This is precisely
analogous to the situation in zero-zero electromagnetic transitions
without parity change, where one 6nds an oscillating electro-
magnetic 6eld only inside the nucleus. )

The solution of (3) is found as in reference 1, proper attention
being paid to the Coulomb phase factors. For the asymptotic
Green's function we have

Q(R r) + ei(lcm' —n 1n2kIc)p, +(r)
1

R~~

where f~+(r) is the Coulomb scattering wave function for incident
wave vector —h2= —kR/R. Using this we 6nd the amplitude for
elastic deuteron scattering to be

ek 1 1
f(e)=f (&) -—tko+(r), -- P, (r) ~xo(s) ~odrds, (6)2'

/

r——,'s/ r

where f'(0) is the usual Coulomb scattering amplitude. Using (2)
we write the integral appearing in (6) as

8orlP J +J ——2J Jdry (r)—Pop(r)

where 2p=n+P. The r integration can now be done by a straight-
forward generalization of a method given by SommerfelcP for the
case y= 0. Collecting the results, we have then

da-/do g = 1—32~N2k'(2xe) (&~en 1)
—i sin2 —p' exp(zz ln siii 2 p)

co co co d'y—(ym —2jyk) 2&(y2+4k2 sin2 —g)4' ~ 4P 4p

4k' .—ie, —ie, 1; ——,sin'-,'9 . (7)
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For small n this reduces to the Born approximation result (1),
but for large n it has the value unity for all angles. We have had
occasion to evaluate this numerically for the case appropriate to
14-Mev deuterons on Al, for which n=0.8. We find, for example,
at 140', do./dog=0. 67 while the Born approximation result would
be 0.11.

To summarize we would predict that, for deuteron energies
belovr the barrier, the ratio do/do. g would show for the cases
where n is small a steady decrease as we move towards large
angles. As n increases this decrease would become less marked,
and finally for n»1 we would have simply Rutherford scattering.
Not much data on Coulomb scattering seem to be available,
though there is evidence that when n»1 the Coulomb scattering
is simply Rutherford. 3
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UTLER' has given a theory for (d,p) and {d,n) reactions
which has had remarkable success in explaining experimental

results. The purpose of this note is to demonstrate that in all its
essential features Butler's theory is equivalent to a Born approxi-
mation calculation. It is indeed clear that it should be, for Butler' s
theory everywhere ignores the reaction of the elastically and in-
elastically scattered particles as well as the scattering of the
particle that is not captured; also his results are given in terms of
the obvious momentum transfers of the problem. The Born
approximation theory has already been given by Bhatia et al. g2

but in their paper the connection with Butler's theory has not
been made quite clear.

We write the case for (d,p) reactions. To avoid unessential
coraplications we assume at first that the initial nucleus has spin
0 and that the neutron is captured under the inQuence of a po-
tential V(r ) (assumed central) into the one-particle state with
space dependence gf (r) =Et(r}I"t with binding energy e=t2/2M.
Let the incident deuteron have wave vector K and the final
proton have wave vector k. Then (It=1)

where (V) is the matrix element between the initial and final
states and md, m„,and m are the spin magnetic quantum numbers
for the deuteron, proton, and neutron; m is the orbital magnetic
quantum number for the captured neutron, and j is the final nu-
clear spin. The summation over spin quantum numbers gives
simply a factor 3. The probability amplitude for finding a proton
momentum k in the initial deuteron is

P(k—$K) fqe(s) ex=p[i(k ,'K) ~ sgds——

1 1
~2+ {Q +K)2 p2+ (Q 1K)2

where the last step follows on using for pd the usual Hulthdn wave
function with constants N, a, P.

The momentum carried by the captured neutron is q= I—k.
The probability amplitude for capturing this neutron into the

state tt (r) is

J1'P(r)V {r)e's'dr= 6 Ogkr(21+1)]ti' It&{r)V(r}j &{qr}r~dr
0

q2+t2 eco

=—s el 4s (21+1)jt J R({r)jr(qr)r'dr (3.)2M

The second form follows by expanding exp(2q r), and we get a
nonvanishing result only for m =0 by taking the axis of quantiza-
tion along q. The third form follows by eliminating V(r) by using
the Schrodinger equation for Et(r). The matrix element is now
given by the product of factors (2) and (3}.

Bhatia et al.2 approximate the radial integral by

JRt(r) V(r}j~(qr)r'dr= j&(gR)fEt(r) V(r)r'dr,

and now the proton angular distribution is given by l P(k —tsK)
Xj t(gR) le. The difhculty here is that there is no reason why It
defined by (4) should be independent of q and therefore of angle.

To proceed differently, we use the third form of (3}.If we
assume, as Butler implicitly does, that we may neglect the con-
tribution to the overlap integral from r~&ro (where ro is greater
than the nuclear radius) we can, by using the equations for Et(r)
and jt(qr) along with Green's theorem, write

{q'+t'}f1t~{r)1~(qr)r'«

where

1 Mt(r) 1 Bht 0)(itr)
Et(r) 8r ht(')(itr) Br (6)

is a number defined by the l value, binding energy and ro. Using
this, we have precisely Butler's form for the proton angular dis-
tribution. The magnitude is given here in terms of the value of
the captured neutron wave function on the surface ro.

If we do not care to omit the contribution to the overlap in-
tegral for r ~&ro, we can define the quantity

t'p

V(ro) =— jt(qr)Rt(r) V(r)r'dr j t (qr)Rt(r)r2dr, (7)

In this case, the proton cross section contains also the angularly
dependent factor t 1—(q2+t')/2' Vj '. It should be emphasized
that the cross section is invariant to the choice of ro provided only
that ra~&r,„,,~„„butdoes of course depend on the value of the
neutron potential.

Finally, we emphasize that application of the Born approxima-
tion in the low energy region is a very crude procedure. For ex-
ample, the effects of scattering of the proton and deuteron are
not at all small. We hope to report later some calculations of these
effects.

If we take ro to be the nuclear radius and make the reasonable
assumption that the neutron potential inside the nucleus is con-
stant, then V is simply the potential depth. The extra factor will
not disturb the most striking feature of Butler's angular distribu-
tion, namely, the angular position of the first maximum. It has a
singularity at q= (2%V—t )&, but this simply removes one of the
zeros of Butler's distribution. These zeros, in fact, occur when the
neutron momentum transfer q equals an average wave number
which a neutron could have when bound with binding energy
~=t'/2M and orbital angular momentum / in a well of radius ro.
The extra factor above removes that zero which corresponds to
the actual inside wave number of the captured neutron. Thus,
for example, the formal Born approximation theory for a 2p
state would not have the first zero of Butler's theory.

and then it is trivial to show that
co 2+t2 J oof Rt{r)j&(qr)r'dr= 1— f 1q~(r)j~(qr)r'dr (g).


