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The Inhuence of Multiple Scattering on the Angular Width of Cerenkov Radiation
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One may measure the angle at which visible Cerenkov radiation appears from fast charged particles as
they pass through a thin transparent plate. This angle is related to the velocity of the particle in a simple
manner, and therefore offers a method of measuring the velocity. The angular width of the radiation is im-
portant in that it determines the resolution of the velocity measurement, This width contains contributions
due to diffraction, energy loss of the charged particle, and multiple scattering. In this paper, the effects of
multiple scattering and diffraction are considered in the following manner. The path of the particle through
the transparent plate is considered to be a series of connected short straight-line segments. The radiation is
calculated classically from this path, and with the aid of the results of multiple scattering theory, an en-
semble average is taken over all possible paths. Two different methods are used in evaluating the radiation
average. One is valid at viewing angles near the radiation maximum, and. the other at viewing angles differing
appreciably from the maximum. Curves are presented that give the radiation intensity as a function of the
viewing angle for a variety of cases.

I. INTRODUCTION

HE Cerenkov radiation from a fast charged par-
ticle of speed v that passes through a thin trans-

parent plate of refractive index n, appears mainly at
an angle from the path of the particle given by 90
=cos '[(1/n) (c/v) j. If v/c is not too close to unity,

easurement of 8 oAers a convenient method for the
determination of v/c, and hence, for a given rest mass,
the momentum and energy of the particle. Recent ex-
periments at Berkeley' with 340-Mev protons, indicate
that this method is capable of high precision. It is then
in order to calculate the effect of various factors on the
resolution. An estimate of these factors is included in
reference i.

The natural difII'raction width of the radiation is very
small, being of the order of X/L radians, where l. is the
thickness of the plate and X is the wavelength of radia-
tion viewed. One should also take into account the
energy loss of the particle and the multiple scattering
that occurs as the particle passes through the plate.
The energy loss affects v/c in a direct and simple way.
The multiple scattering changes the average direction
of the particle and partially destroys the coherence of
the radiation along the path. Only the e6'ects of multiple
scattering and diRraction will be considered here.

The problem then is to calculate the radiation from a
charged particle moving with constant speed and under-
going multiple scattering in a thin transparent plate.

This problem may be attacked by classical radiation
theory rather than by quantum radiation theory. A
criterion for the validity of classical theory is that the
dimension of the wave packet describing the charged
particle be small compared with the reduced wave-
length of the radiation emitted and remain small during
the time t during which the radiation is emitted co-
herently. If the size of the wave packet at time t is
Ax, then we have

where bx is the size of the packet at I,=O. The time t
may be taken as 2/v, where Z is some length less than
the thickness of the plate but substantially greater
than the mean free path Xo of the charged particle
between scattering events in the plate. A relation be-
tween 8x and 8v (the uncertainty in velocity of the
charged particle) may be obtained as follows:

bp =mobv/(1 —v'/c') & 5/8x.

Therefore,

The minimum size of this packet is:

L(h/mov) (1—v'/c') '*Zj&.

For an electron traversing a plate 1 mm thick and for
e~~c, we see that this is less than 10—' cm, at least a
factor of ten smaller than the reduced wavelength of
visible radiation; it is even smaller for a proton.

II. THE RADIATION PROBLEM

(A) General

The power radiated from a classical system of cur-
rents can be calculated by evaluating the familiar re-
tarded solution of the inhomogeneous electromagnetic
wave equation. This retarded solution can be subjected
to a Fourier analysis and the Fourier components of
the power calculated. Such a development yields'

Pg, „(r)= (nk'/2v. r'c)

&( "Jz~, „(r')exp( ink r')dr' . —(1)

The propagation vector k is directed along the line of
observation and has a magnitude 2s./X=~/c. J~~, (r')
is the Fourier component of that part of the current

' R. L. Mather, Phys. Rev. 84, 181 (1951).
~L I. Schi8, QNuetem Mechcmks (McGraw-Hill Book Corn-

pany, Inc. , New York, j.949), p. 264.
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where, for convenience, we take &=0, so that the
direction of observation is in the x, s plane. Also, since
the energy loss is neglected, we take v„=v. The particle
starts from the origin at time 1=0; therefore,

fp=v (le+it+12+ ' ' '+ip —1)=v sp.

With these approximations, (4) becomes

e(sin8 —cr„cos8)
I.=

FIG. i. The Cerenkov cone and the diGraction
pattern given by Eq. (2).

that is perpendicular to h. e is the index of refraction
of the medium in which the currents are located.

The simple case of a particle passing straight through
a plate with an index of refraction n has been evaluated
by many authors it yields a conical shell of light
which has the path of the particle as an axis and a
thickness given by a diffraction pattern (see Fig. 1).
For )t/L, «1, the pattern is given very nearly by

L'[sin(-', ekL, z sin8e)/(-,'nkLa sin8e)]', (2)

where ~=—0—00.
In the calculation of the radiation from a particle

undergoing multiple scattering, the path is assumed to
consits of many short straight segments. The integral
in (1) is then seen to be a sum of integrals over all the
segments of the path. Therefore, one must calculate

(3)

where I„is the contribution due to segment v. The seg-
ment v is of length 1„, goes from x„y„,s„, to x„+&, y,+&,

s~~, and has polar angles 8„,p„; the particle is at the
point v at the time 3, khas polar .angles 8, g (see Fig.
2). It is convenient to introduce 0„, the angle between
the path segment and k. From the geometry, it is seen
that 0, is related to 8, P, etc. , through cos8„=cos8 cos8„
+sin8 sin8„cos(P —P„).From (1) we have

I„=(e/2x)sinO~, exp[icot„ink(x„si—n8 cosP

+y„sin8 sinP+s„cos8) j
exp[i&el, (1/v. —e cosO~,/c) j—1

X
ice(1/v, —e cosO„/c)

The angles e„are the deviations of the path segments
from the direction of the incident particle and are
considered to be small. Consequently, we may take

cos8„=cos8+cr, sin8,
sin8„—sin8 —cr„cos8, (n„—=8„cosg„),

3 I. Frank and I. Tamm, Compt. rend. acad. sci. U.R.S.S. 14,
109 (1937).See also reference 2, p. 262.

t'1 m cos8i
)&exp iris„~ ——

~

ie—kx„sin8
Ev c

exp[i'&l„(1/n nc—os%) ink—l~„sin8j —1
X (5)

i'(1/n e c—os%) ink—rr„ sin8

There are two diferent approaches to the evaluation
of (3) by means of (5). One is an expansion valid near
the radiation maximum. The other is an asymptotic
expansion valid at viewing angles whose difference
from the angle of the radiation maximum is much
greater than the rms multiple scattering angle. The
former will be treated first.

(B) The Solution Near the Radiation Maximum

It is convenient here to introduce ~—=0—00 where 80

is the angle of the radiation maximum (see Fig. 1).
Under the small angle approximation for a, (5) becomes

e sin00I„(1+~—cot8&)exp[irk sin8e(as„—x.)j2'
exp[ink sin8e(a —n„)i„]—1

X
ink sin8e(~ —n„)

Here it is asked that
~
(a —u„)(l„/) ) ~

be very much less
than unity. This further limits the range of validity of
this solution to small ~. Equation (6) can now be
written approximately

8 Si1100I„/„exp[ilk—sin8e(~s„—x„)j.

x'

FIG. 2. The geometry involved in the development of the for-
mula describing the radiation from a single path segment.
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Equation (3) may be written

Q I„I„*.
v=o Is—0

Experimentally, one observes the radiation from a
great number of particles. Therefore, one must calcu-
late an ensemble average of (8) over all quantities
which may be dBerent for the paths of individual
particles. This ensemble average may be computed by
taking the averages of the individual terms I,I„*of (8)
and then performing the summations indicated. YVith

the aid of (7) we have

(e s1118o)

2or

—g„l„exp—iB$(x„—x„)+x(s„—s„)])A„, (9)

where 8=—ek sin00. A change of variables will put this
in a form that will allow the results of multiple scatter-
ing theory to be applied. From Fig. 3 it is clear that
x,—x„=y„„+a„(s,—s„). With the aid of this, (9)
becomes

(&~,&~) ~

I )
I '|I' ~
I

~e+(z. -2
I

I

z

FIG. 3. Relations between variables characteristic of a give path.

P1(l„) and Po(l„) are Xo ' exp( —l./Xo) and &o ' exp( —f„/
) o), respectively.

Therefore, evaluation of (10) yields

Zoo exp[ —iBXo(1'—p) x—B9o'A '(1 —y)'{11+1o (1 —p) }].
It is clear from this that

(I„I„*),= (I„I„*)„„*.

Therefore,

(l„l, exp iB[y„„+—(x+a,) (s, s„)5)A„. —

The average is computed by multiplying by the n
malized distribution functions of all the variables repre-
sented in (10) and then integrating over the allowed
ranges of the variables. %e therefore multiply by
p (f )po(f.)po( ., s.)p4(s.)po(v. „s. s.)p-o(s. s,—) The-
combination pop4 is the probability that after under-

going p, collisions, the particle makes an angle cx„with
the original path. The factor p, is the distribution func-
tion for n„given that the particle has traveled a dis-
tance s„;p4 is the probability that the particle has in-
deed traveled a distance s„up to the IM'" collision. The
combination popo is to be interpreted in the same
manner. At this point it is assumed that negligible
error will occur if the result of averaging over s„, and
also s„—s„, is to replace them by their mean values
directly; i.e., replace s„by 11Xo and s,—s„by (1 P)no, '—
where ) 0 is the mean free path of a particle in the trans-
parent plate. po(n„, p'Ao) is taken from the simplest
multiple scattering theory and is'

With the help of (11),a little consideration shows that
the ensemble average of (8) may be written

(e sin8o) '&—1 )BXoq ' P
2Xo'( ) P cos(BXolx)expE2~)1o

N-l —1 (Bgop o

XP ep —
~

A )

where we have written: /=—v —LM.

It will now be shown that the summations over l and
p, may be approximated by integrals. The factor in
(12) following the cosine, falls to e ' for i= (%3A/BXo)i.
For this value of /, the exponent of the last factor in
(12) is: —(3BXo/A):p. Here, the coei5cient of p can be
seen to be small compared to unity in practical cases,
so that the replacement of the sum over p by an integral
is justified. By a similar argument, one can show that
the sum over 1 can also be replaced by an integral; the
criteria in this case are that, BXox and (BXo/vBA)' both
be small compared to unity. Equation (12) becomes:

Aor l11 i exp[—(A'n„'/4p)]

Examination of Fig. 3 shows that we may also use this
multiple scattering theory in developing po(y„„,
(1 —11)Xo). ThiS yieldS'

vow 3A'Yv —p' f'esin8o)' I
~ ' f'Buoy ' P

cos(B&o«)exp —
(

2~ ) &1=o &A) 3
exp

2or'*ho(1 —p) & 4Xo'(1 —p)'.

(10) (I„I„*+I„I„*)~„(esin8o/2or——)'2Xo' cosLBXo(1 —11)x]

or- &«xpL —B'l1o'A '(~—1)'{~+l(~—~)}] (11)

4 In support of this assumption, it can be shown that although
p4 and p6 are rather wide functions, their widths divided by their
mean values become very small as the number of segments repre-
sented by them is taken larger. Therefore, it is felt justi6able to
replace p4 and p6 by delta-functions centered about the mean
values involved.' See Appendix, Eq. (A2).

6 See Appendix, Eq. (A3}.

X—1 1 — tBg q2
exp -

I ~
Pp di1dl (13).

&, o - (A)
The integration over p is elementary. It is convenient
to express (13) in terms of some new variables. Let us
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Fxo. 4. Curves, normalized to unity at 8 =0, showing the angu-
lar shape of the radiation pattern. The abscissa is the difference
between the viewing angle and the angle at which the radiation
maximum appears, and it is measured in units of the rms multiple
scattering which occurs in the plate. The dashed curve is a plot
of the exponential of Eq. (A2) in the appendix, and shows the pro-
jected angular distribution of particles emerging from the plate.
The curve for E= 00 is the projected angular multiple scattering
averaged over the thickness of the plate.

take:
I—=BXoXil/A,
X—= (3BXocVI/A)l= L(3BI/2l) ((2E)'/A)]f,
8—=A ~/X'.

The rms value of the angular multiple scattering in the
plate is A '(2Ã)*'. Therefore, it is seen that 8 measures
the viewing angle f( in terms of the rms multiple scatter-
ing. E is a constant characteristic of l./X and the rms
multiple scattering. In terms of these variables, (13)
becomes

(8 sln8op S
Q«'l

l

—' cos(Bu)
i 2. i Z ~,

1—expl —u'+3 (II/E) oj
&expL —(I/&)'j dl. (14)

The integral in (14) has been evaluated numerically
for several values of E. The results, normalized~ to
unity are shown in Fig. 4. These curves are convenient
for. E~1, but for smaller K, it is best to express the
results in terms of the variable BÃXoa as is done in the
elementary theory. t'See Eq. (2).]

The case of very large E can be interpreted as the
result of there being coherence only over a few adjoining
segments. It is possible to arrive at the large E ease
in another manner. The power radiated by a few co-
herent adjoining segments can be found Lby the simple
theory Eq. (2)] to be proportional to As, the length of
the group of segments. The radiation maximum due to
this group of segments will appear at an angle diGering
from 80 by the projection of the average angle of the
group of segments from the mean path, onto the plane
determined by the line of observation and the mean

' In normalizing, we have divided by the value of the integral
for b=o. These values are tabulated in Sec. (3) of the Appendix.

Q ( )As by ( .)d».

t
ÃXo

J,
~~o~ ( &'&oII')

4. )
= P oS'A/21r'*)-,'8)I o

—
&e

—'di, (15)
(&/2) '

where b is defined as before and s=—4s/(g')„g'). This
integral is related to the incomplete gamma-function
in a simple manner and may be expressed as a special
case of the conQuent hypergeometric series. ' This series,
multlpllcd by (8/2), caI1 bc sllowI1 to bc cqllal to tile
series expansion of

2 I"" 1—exp( —II')
cos(8N) —dQ,

Q

i.e., proportional to (14) for E= ~. This serves as a
check on (14). Another check on (14) is the case of no
scattering, In this limit, the simple theory result, Eq.
(2), is obtained.

(C) Tile Asyinptotlc Porlll

The radiation maximum occurs at a viewing angle
8o sllcli fllat cos8o=o/(II v). SIIicc'111 fllis scctloil wc scck
a solution away from this maximum, we may extract
(v ' nc ' cos—8) from the denominator of (5) and ex-
pand the remaining factor in a power series, retaining
only the erst two terms. The limitation on the 6nal re-
sult imposed by this approximation may be seen to re-
strict the result to values of x much greater than any
n; that occurs, hence much greater than the angular
rms scattering that occurs in the plate. As in the case
of the solution near the radiation maximum, we note
that the lateral deviation of a particle from its path
between two colllslons ls smaH compared to a wave"
length of the light observed. This allows us to replace
exp( —iIIkl, oI. sin8) by the first two terms of a power
series expansion. With these two approximations, (5)
becomes

I,=(e sin8/2oroII) expi(IIs, +I—bx„)
X t (1—e '"")(1+a.g) —ibm, l.j, (16)

SE. T. Whittaker and G. N. Katson, A Course of Mockers
Analysis (The Macmillan Company, ¹wYork, 1946), p. 341.

path. Thus, to calculate the angular distribution of
radiation from the entire plate, we multiply the power
radiated from a group of segments, proportional to As,
by the angular multiple scattering probability and sum
over the thickness of the plate.

ri~* AXp'*
t

A9«II'q
— exp' — l(AS),.=o 2~ (r As)** ( eras )

where x—=8—80, In the limit of small As, we can replace
(rAs) by s and



where, for simplicity, we have introduced

a=~[(—1/v) (n c—os8/c)], 5:%IISIn8/C)

I—c cos%

ct (1/v) —(Ii cos8/c)]sin8

One may now use (16) to form

p I,:(e si—n8/2Iria) {—(1+~og)cxpLi(«o —»o)]

—
g Q Lq, exp{i(as„—»„))]

X—1

(I » I')"= (e»n8/2~a)'{(I (I+~ —)

XexpLi(asiv —»iv)] —1
~

')«+g' P (g„2)«)

=2(e sin8/2Ira)'{1 —((1+go~ 1)cos(aL—»Iv))A,

+g (aN—1 )A ) (18)

In obtaining (18), use has been made of (a~ I)«——0,
sp, —=I., and

The number of segments iV is large, and hence, one may
substitute niv for nii I in (18).The averaging indicated
in (18) is performed by utilizing the distribution func-
'tlo11 (A) Rnd llltcgl'R'tlIlg ovcI' cI~ Rnd xN. Tile Icslll't Is

(e sin8) ' ( gb$9, 0

2) I
1—

(
cosaI.+ sinaL [

E 2~a ) )
b9 PS' ) 2g'X

&exp~ — I+ (19)
3A' ) A'

+(1+uii Ig)exp{i(asg »v)—)) (17).

In forming this expression, it is necessary to interchange
exp( —ibu„l„) with 1—ibn„l„occasionally, and also to
neglect other terms of order n„' as compared with n„.
Use has also be made of s,+I—s,+l„and x„+I x,+—n„i„
The angle g„ is dehned as the projection of the angle of
scattering of the charged particle at collision v. This is
clearly gv=uv 0,'v

We are interested in the average of the absolute
square of (17). In examining the square, we find many
terms that are linear in any one particular g;. The
average of such terms will be zero, since the probability
of any rl; (i.e., the projected cross section for a single
collision) is an even function of q; We ma. y take no
=so=so=o, since the particle is taken to be incident
on the plate at the origin and directed along the s
axis. The average of the square of (17) is then

KqllRtloll (19) 111Ry bc wllttcll 111 tclIns of E Rlld 8.
The limitation on this form being that x should be small
so that one may replace sin~ by g, etc. This yields

(e sin8, ) ' 9I.' — (E'8) E' (E'&)
1—cosj /+ —sin/ —

/

2Ir ) 8'E' E 3 ) 38

E') 2
gexp] ——I+ — .

27) 8'

The exponential factor destroys the diffraction wiggles
for large E.

The asymptotic solution was developed under the
assumption that the viewing angle I{: is large compared
with the angular rms multiple scattering. In the limit
of no scattering, the solution should be valid very near
the radiation maximum. Sy allowing the scattering to
go to zero in Kq. (19), i.e., by allowing EA ' to go to
zero, it can be seen that the result of the simple theory
is obtained.

III. DISCUSSION OF RESULTS

The curves of Fig. 4 are the results of the calculation
of the radiation near the usual maximum (see Sec.
11-3). The asymptotic solution (Sec. II-C) is valid
only for b&&1 and, therefore, does not appear in Fig. 4.
AH the curves of Fig. 4 are symmetrical about the
vertical axis. The abscissa 8 is proportional to f(:=—8—00,
where 0 is the viewing angle with respect to the direc-
tion of the path of the charged particle, and 80 is the
viewing angle of the usual maximum. 8 is related to f(:

through 8—= IiV2/((8')) &, where ((8'))& is the rms multiple
scattering angle that corresponds to the thickness of
the plate. The dashed curve of Fig. 4 shows the pro-
jected angular distribution of particles emerging from
the plate. This is the Gaussian from Kq. (A2) of the
appen(4x.

The parameter E may be readily determined for a
particular case in the following manner. First cakulate
'the 1111S Illllltlple SCR'ttel'111g RIlglC ((8 ))' E IS then Ob-

tained from

E=—L(6Ir/v2) m sin80(L/X) ((8')) ']',
where I. is the thickness of the plate, X is the wave-
length of the light observed, e is the refractive index of
the plate, and 00 is the viewing angle at which the usual
maximum occurs. As mentioned in the last paragraph
of Sec. II-B, the angular distribution of radiation in
the case of large K may be obtained by averaging the
projected angular multiple scattering distribution func-
tion over the length of the path I.. The results for large
K will therefore fall within the dashed curve of Fig. 4.
From the above de6nition of E, we may look on the
curves for progressively smaller E as the radiation dis-
tribution if longer wavelength radiation is observed.
The broadening is due to the effects of partial inco-
herence and, for su%ciently small E, due to the diffrac-
tion over the entire path length.
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(A) Multiple Scattering Theory

The author is indebted to Professor L. I. SchiG for acteristic of the single scattering pI'ocess and takes on

suggesting this problem and for his very helpful aid slightly diGerent values when one makes diGerent
and interest throughout the entire calculation. assumptions regarding the screening of the Coulomb

potential and uses diGerent methods in calculating the
APPENDIX single scattering cross section. "Equation (A1) may be

integrated over y to form the distribution in 8 alone.
tA'e then have

Multiple scattering theories give the probability that
a particle that has suGered a great number of collisions
in a slab of material has a projected angle of emergence
between i7 and 0+de, and has been deviated from its
original path by a distance between y and y+dy. The
simplest of these theories make use of the fact that fast
particles being scattered by the electric field of the
nucleus are scattered predominantely forward. This
allows approximations to be made that yield the dis-
tribution function originally due to Fermi'

&3A9.p
J(s, y, ii)=

27rz2

AXO&

G(s, 0) = exp—
2~'s& 4s

(A2)

&3AXO&
I

3A'Roy
H(s, y) = — exp

2~-'s& ~ 4s'
(A3)

(B) Normalizing Factors

The factors noted in reference 7 are the values of

Alternatively, (A1) may be integrated over 0 to yield
the distribution in y.

Xexp—
A9o ( 3y~ ' 3 (y&

'
I

~—I+-I-I
2.)

(u ) ' 1—expL —u'+3(u jE)'j
exp dl.

~ o — CZ& Q

where s is de6ned as the thickness of the slab and is
expressed in the same units as Xo, the mean free path
of a particle in the material. A90 is a constant char-

' B. Rossi and K. Griesen, Revs. Modern Phys. 13, 267 (1941).

The values of these integrals are

E 5 3 2 3/2

Value of the integral: ~& 1.49 1.28 0.933 0.519.

' See reference 5 in W. T. Scott, Phys. Rev. 76, 213 (1949).


