PHYSICAL REVIEW VOLUME 87,

NUMBER 5 SEPTEMBER 1, 1952

Electrodynamic Displacement of Atomic Energy Levels. III. The Hyperfine
Structure of Positronium

RoBERT KARPLUS AND ABRAHAM KLEIN
Harvard University, Cambridge, Massachusetts

(Received May 13, 1952)

A functional integro-differential equation for the electron-
positron Green’s function is derived from a consideration of the
effect of sources of the Dirac field. This equation contains an
electron-positron interaction operator from which functional de-
rivatives may be eliminated by an iteration procedure. The
operator is evaluated so as to include the effects of one and two
virtual quanta. It contains an interaction resulting from quantum
exchange as well as one resulting from virtual annihilation of the
pair. The wave functions of the electron-positron system are the
solutions of the homogeneous equation related to the Green’s
function equation. The eigenvalues of the total energy of the

system may be found by a four-dimensional perturbation tech-
nique. The system bound by the Coulomb interaction is here
treated as the unperturbed situation. Numerical values for the
spin-dependent change of the energy from the Coulomb value in
the ground state are finally obtained accurate to order a relative
to the hyperfine structure o? Ry. The result for the singlet-triplet
energy difference is

AW o= 102 Ryo[7/3—(32/9+2 In2)ar/w]=2.0337X 105 Mc/sec.

Theory and experiment are in agreement. .

I. INTRODUCTION

HE investigation to be described in this paper

was suggested by the current theoretical interest
in the quantum-mechanical two-body problem!=® and
the recent accurate measurement of the ground state
hyperfine structure of positronium.*5 The system com-
posed of one electron and one positron in interaction is
the simplest accessible to calculation because it is
purely electrodynamic in nature. Moreover, the success
of quantum electrodynamics in predicting with great
accuracy the properties of a single particle in an external
field indicates the absence of fundamental difficulties
from the theory in the range of energies that are sig-
nificant in positronium.

The discussion of the bound states of the electron-
positron system is based upon a rigorous functional
differential equation for the Green’s function of that
system, derived in Sec. II by the method described by
Schwinger.! In order to obtain a useful approximate
form of this equation (and of the associated homogene-
ous equation) we have iterated the implicitly defined
interaction operator, in this way automatically generat-
ing to any required order the interaction kernel obtained
from scattering considerations by Bethe and Salpeter.?
In the present case we have included all interaction
terms involving the emission and absorption of one or
two quanta. The latter include self-energy and vacuum
polarization corrections to one-photon exchange proc-
esses as well as two-photon exchange terms. The
particle-antiparticle relationship of electron and posi-
tron is represented by terms describing one- and two-
photon virtual annihilation of the pair.®=% In contrast

! J. Schwinger, Proc. Nat. Acad. Sci. US 37, 452, 455 (1951).

2 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

3H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).

4 M. Deutsch and S. C. Brown, Phys. Rev. 85, 1047 (1952).

5 M. Deutsch, latest result reported at the Washington Meeting
of the American Physical Society, May, 1952. Phys. Rev. 87,
212(T) (1952).

% J. Pirenne, Arch. sci. phys. et nat. 28, 233 (1946); 29, 121,
207, and 265 (1947).

to the case of scattering, only the irreducible?® interac-
tions appear explicitly.

Our subsequent concern is with the solution of the
associated homogeneous equation. It should be empha-
sized at the outset that we shall be silent (out of
ignorance) on the question of the fundamental interpre-
tation of a wave function which refers to individual
times for each of the particles. The possibility, neverthe-
less, of obtaining a solution to our problem entirely
within the framework of the present formalism de-
pends on two conditions. The first of these is that most
of the binding is accounted for by the instantaneous
Coulomb interaction. Salpeter® has shown that when the
interaction is instantaneous, the wave equation can be
rigorously reduced to one involving only equal times for
the two particles. Moreover, the wave function for
arbitrary individual time coordinates can be expressed
in terms of that for equal times. This last circumstance
can also be exploited in the development of a perturba-
tion theory which yields the contribution to the energy
levels of a small non-instantaneous interaction.® The
relevant results of this treatment are given in Sec. III.

The second condition is that the free particle approxi-
mation for all intermediate states shall be an adequate
one. The essential point here is that whether one de-
rives an explicit interaction operator by the iteration
procedure adopted in the present paper (tantamount to
an expansion of the intrinsic nonlinearity in terms of
free particle properties) or by a partial summation of a
scattering kernel, the propagation which naturally
enters in intermediate states is that of free particles.
In the treatment of fine-structure effects, the contribu-

7V. B. Berestetski and L. D. Landau, J. Exptl. Theoret. Phys.
(U.S.S.R.) 19, 673 (1949). See also V. B. Berestetski, J. Exptl.
Theoret. Phys. (U.S.S.R.) 19, 1130 (1949).

8R. A. Ferrell, Phys. Rev. 84, 858 (1951) and Ph.D. thesis
(Princeton, 1951). Dr. Ferrell kindly sent us a copy of his thesis.

9E. E. Salpeter, Phys. Rev. 87, 328 (1952). We are indebted
to Dr. Salpeter for making available to us a copy of his paper
prior to publication. We have found his ideas very helpful in our
work.
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tion of nonrelativistic intermediate states, where the
Coulomb binding cannot be ignored, must then be
obtained in a manner reminiscent of the first treatments
of the Lamb shift.® This will not be necessary in the
present paper since we shall be concerned with the
hyperfine (spin-spin) type of interaction to which only
relativistic intermediate states contribute to the re-
quired precision.!

The practical goal of this work is to obtain the split-
ting of the singlet-triplet ground-state doublet of posi-
tronium correct to order o® Ry. Previous calculations,®#
accurate to order o?Ry, have included the lowest
order contributions of the ordinary spin-spin coupling
arising from the Breit! interaction (the analog of which
in hydrogen is responsible for its hyperfine structure)
and of the one-photon virtual annihilation force, char-
acteristic of the system of particle-antiparticle. The ex-
pression for the energy shift given in Sec. III, Eq. (3.6)
yields these again in lowest approximation and contains
as well the matrix elements of all interactions which
can contribute to the required accuracy.

Section IV is devoted to the detailed evaluation of all
the matrix elements that may be looked upon as general-
ized Breit interactions because they depend purely on
the exchange of photons between the two particles.
In Sec. V we consider the annihilation interaction
peculiar to the electron-positron system. Finally, the
comparison with experiment is given in Sec. VI.

II. THE WAVE EQUATION

A discussion of the one-particle electron and positron
Green’s function associated with the vacuum state will
serve as an introduction to this section. If the notation
of reference 1 is extended to include the positron field

variables ¥'(x), ¥'(«x), and their sources that are related |

to the electron variables ¥(x), ¥(x), and their sources
by the usual charge conjugating matrix C,

CiC=1, c=-C, CHCl=—n,
lp/: C'SZ: 1];/: C*L‘l/, 7_7,’_" C_ln;

the Green’s functions are defined by the vacuum ex-
pectation values

8P (*))o] ymo= f d'G—(x, #")on(x’)  (2.2a)

(2.1)
7),=C'Fb

and
W/ (2ol o= f PGH, )on(s), (2.2b)

where dn and 87’ are arbitrary variations of the electron
and positron sources, respectively. The Green’s func-
tions can be expressed in terms of expectation values by

G~ (%, &)= (P (®)P(x"))1)oe(®, &) (2.3a)
GH(, o) =" @) (")) )oe(w, &) (2.3b)
10 R, Karplus and A. Klein, Phys. Rev. 85, 972 (1952).

(1;3 G3 Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616
2).

and
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and satisfy the differential equations

[vu(—10,u—ed . u(%)+1ed/8T u(x))+m]

XG (x, ¥')=8(x—2") (2.4a)
and

[vu(—i0,+ed u(x)—ied/8] u(x))+m]

XGH(x, " )=08(x—2'), (2.4b)

with the outgoing wave boundary condition. They are,
of course, related by the matrix C:

Gaﬂ+(x, x’)= --Ca.,:C—‘gg:Gp:aF(x', x). (25)

We shall now introduce matrix notation for the
combined particle coordinates and spinor indices, and
the combined photon coordinates and vector indices.
Because the formulas will get quite involved, the matrix
indices will be expressed as arguments, by numbers for
the particles and by £, £, - -+ for the photons, and the
summation convention will be understood. Functions
of one coordinate are to be diagonal matrices; quanti-
ties affixed with only one matrix index are to be vectors
with respect to that index. The arguments of the Dirac
matrices will refer only to the vector and spinor indices
of these quantities; they will be unit matrices in the
coordinates. Similarly, functions of the coordinates
alone must be understood as multiples of the Dirac
unit matrix. ’

As an example, Egs. (2.4) and (2.5) will be tran-
scribed with the symbols §~ and {t standing for the
functional differential operators in Eq. (2.4):

F-(12)G-(23)=5(13); (2.4')
FH(12)GH(23)=5(13); (2.4'b)
G+H(12)=—C(11)C1(22)G-(2'1"). (2.5

If the mass operator M (12) is defined in the usual way,

ME(12)G=(23) =IM=(12)G=(23), (2.6)
where I is the functional differential operator
M=(12) =md(12)Fiey (g, 12)8/6J(8),  (2.7)

then the Green’s function equations (2.4) can be written
in terms of integro-differential operators F that are
obtained from the § by the replacement of It by M.

A vertex operator I'(£, 12) must now be defined for
each Green’s function,

IH(§,12)= (8/6e4 () (GH(12))

= (8/8eA+(£§))FH(12) (2.8a)
and

I(§,12)=— (8/6ed +(H))(G~(12))!
= — (8/0eA+(£))F—(12). (2.8b)

In the absence of an external field these two quantities
become equal because then the charge occurs always
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to an even power only, and the two differ just in the
sign of the charge.

We now proceed to the two-particle system. The
electron-positron Green’s function for the vacuum
state is defined by the relation

BB (W (XY (%2))1Y0 | pmr—m0€ (1, %2)

o1 o1
=f d4.’X,‘1’ f d4x2’G—+(xlx2y xl’x2l)
o2 o2
X 8n(x1") 67’ (x2”).

Evaluation of the variations with the help of Eq. (9),
reference 1, leads to the explicit expression

G (2120, 21'%2")
= (@ e)y’ @) (@)W (22') )+ )oe
=W @)Y (%2))+)oe(1, 22)
X)W (x2))1 Do, 22).

As might be expected, this Green’s function is related
to a charge conjugate of the two-electron Green’s
function with arguments interchanged properly, by
Eqgs. (13, 20), reference 1:

Gapys (21, 21'%2)

(2.9

(2.10)

= —CparC55:Gasrys ™ (%1202, %1'%5)

—ng:C"as'Gap»“(xlxg)Gsf.,—(xg’xl’). (2.11)

The antisymmetry of the two-electron Green’s function
assures that both direct and exchange processes are
contained. in the electron-positron Green’s function;
the second term merely corrects for the fact that the
uncoupled electron-positron system cannot undergo an
exchange process. In this case,

Gasryp (1%, 21/ %9) G oy~ (2101 ) Gor g™ (202" %2)

whence = Gap™(x1%2) Gy~ (0'%r'),  (2.12)
Gapys ™ (2012, %1%5")
——CperCY5:Gay (2151 )Gorp (22" %2)
=Gy (2121)Gst(22%2"), (2.13)

the proper description for noninteracting particles.

The differential equation for G+ may be obtained
with the help of that for G—, Eq. (21); reference 1,
and of Eq. (2.4"). They yield

F-(11)G—+(12, 34) = 6(13)G+(24)
+iey(§ 11)C(12")C-1(44)

. XGH22')(8/87 (£))G-(43)  (2.14)
an
FHQ2)F-(11)G—H(1'2, 34) = 5(13)5(24)

+iey(£, 11)C(172)C-1(44') (8/8T (£)G~(4'3).  (2.15)
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Finally, the equation may be written in the form
[F-(11")F+(22")—I(12, 1'2")]G—+(1'2', 34)

=5(13)8(24), (2.16)

where the interaction operator 1(1234) is defined by
112,12 G—+(1'2', 34)
= —F+Q2)[I-(11")-M—-(11")]JG—+(12', 34)
+iev (¢, 13")C(3'2)C1(44') (8/87 (£))G~(43),
= —F~(11)[I+(22")— M*+(22")]G—+(12', 34)
—iey(§, 22')C(2'1)C1(33")(3/07 (£))GF(3'4). (2.17)
The second expression arises when {* and then F~ are
applied to the Green’s function. These expressions must
now be rearranged so as to yield the interaction operator
explicitly as an integral operator up to the desired
order of accuracy. In other words, the functional deriva-
tives may occur only in terms that contribute negligibly
to the effect that is being investigated. The subsequent
operations will be directed at finding an expression that
is suitable for the purposes of this paper. (For other
effects, such as the Lamb shift in positronium, a differ-
ent form of the interaction operator is necessary.)
With the help of the definition of the vertex operator,

Eq. (2.8), the lowest order interaction may be separated
as follows:

1(12,1'2))G—+(1'2/, 34)
=iey(§, 11)G. (&, £)TH(E, 22/)G~H(1'2', 34)
—[D-(11")— M-(11") JF+(22)G—+(1'2, 34)
+iety (£, 13")C(3'2)G+ (&, £)C1(2'4)
XT—(¢, 41)G-(1'3)G+(2'4). (2.18)

The second term in Eq. (2.18) can be simplified by the
use of Egs. (2.16) and (2.6), whence it becomes

—ie?y(§,11)G-(1'1")[8/8eJ (£)]
XI(172, 34)G—+(3'4, 34). (2.19)

The last term, finally, is brought into more useful form

with the help of the identity

Gi(§, )CTH(24)T(¢, 41)G-(1'3)G*(2'4)
=D,(§ £)CT24)v(E, 41)6+(1'2, 34), (2.20)

which may be verified by iteration of both sides. The
interaction operator therefore is given by

1(12, 34) =de*y(£, 13)G4 (& £)TH(E, 24)
+iety (& 11)C(12) D (£, £)C(44)v (¢, 4'3)
—iety(£, 11)G(1'1")[(8/0e] (£))I (12, 3'4)

XGH(34, 34 G—+(3"4", 34) . (2.21)



ELECTRODYNAMIC DISPLACEMENT

This, and a corresponding expression obtained from the
alternative form of Eq. (2.17) correspond to Eq. (47),
reference 1; the only difference lies in the second term
above, which represents the interaction due to the
virtual annihilation of the electron-positron pair. The
last term contains the effects of higher order electro-
dynamic processes involving more than one virtual
photon, such as multiple photon exchanges and the
corrections that symmetrize the first term in the inter-
action so that it depends on the vertex operator of both
the electron and the positron.

We are interested in the effects of one and two
virtual quanta, terms of order ¢! in the interaction. For
this reason, the functional derivative in Eq. (2.21)
needs be evaluated only to the lowest order,

[(5/8eJ (£))I(172, 3'4)G—+(3'4, 3"4"")]
X[G—+(3"4", 34) ' —1(1""2, 3'4")
XG—H3'4/, 34"\ [8/6e (£)]
X[F-(3"3)F+(4"4) J2—ie’[v(E, 13)

Xy (&, 24)+~(E172))C(2"2)C1(4"2")

Xy (¥,2"3")ID,(§ E)G=(3'3")GH(4'4")

XDy(& &) —Fr@"4)y(¢,3"3)
+E-("3)(E, 44)],

When this expression is multiplied out, the first of the
four terms is conveniently included in a symmetrical
lowest order interaction, and the (=) superscripts can
be dropped in the limit of vanishing external field.
This form of the approximate interaction operator,

1(12, 34)=ZieT (£, 13)G4(§, E)T (¢, 24)
Fiety(§, 11)CQA2)D4 (¢ £)CT (44 (€, 43)
+ (ie*)*y (&, 11)G(1'1")v (& 173)v(¥, 24))
XGEY ) v(E,4"8) D (& E)D(E, )
+ (ie?)*y(§, 11)G(1'1")v (8, 12")C(2"2) D1 (£E)
XDy(& E)C(33)y(F, 3G 4 )v (¢, 479
+C1(44)y(F, 4'3)GE'3")v(F, 3"3)],
can be easily understood in terms of the equivalent
Feynman diagram.

The wave functions ¥(12) of the electron-positron
system are solutions of the homogeneous equation,

[F-(11")F+(22)—I(12, 1'2) W (1'2)=0, (2.24)

related to Eq. (2.16). It is important to realize that the
operators F(12) also contain electrodynamic corrections.
These may be obtained from the corrections to the one-
particle Green’s function G(12), of which F(12) is the
inverse.”? For the nonrelativistic states in which we are

12 R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).

(2.22)

(2.23)
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interested, the operator F(12) is a multiple of the Dirac
operator F(12) that depends on the experimental mass
m of the electron,

F£(12)= (1—aB/27)"1F£(12), (2.25)
with
FE(x, o) = 6(x— o) [y ,(— 10,/ ed . (x"))+m]. (2.26)
We may now introduce the interaction
I(12,34)= (1—aB/7)I(12, 34), (2.27)

which enters the equation of the usual form for the wave
function,

[F-(11)F+(22)—1(12, 172) p(1'2")=0. (2.28)

To find the energy levels of the system, we seek
solutions of the form

Y(wrwe) =e XX pp(x); X=3(x1}x2), x=x1—2%, (2.29)

that are eigenfunctions of the total momentum operator
with eigenvalue K. This eigenvalue is the goal of the
calculation. In the absence of an external field, the inter-
action operator conserves the total momentum, so that
it is possible to write an equation for the function ¢x(x)
of the relative coordinate x,

[Fr(xa')—Ix(x, 2') Jox(x)=0, (2.30)
where
eiKX[FK(:":x/)]‘m%s
B f Foo (X432, X'+ 30 F (X —$, X' —3a")
X KX gix’, (2.31)

and Ik (x, #') is similarly related to 7(1234). The Dirac
indices in Eq. (2.30) are summed in the same way as
those in Eq. (2.24) ; ¢k still has two sets of Dirac indices
even through it has but one four-vector argument. To
avoid complications in the notation, this matrix nota-
tion will be continued; where necessary, superscripts
1 and 2 will distinguish Dirac matrices that operate,
respectively, on the first and second particle index of
the wave function ¢x(x).

Before we proceed to solve Eq. (2.30), we shall de-
compose the first two contributions to [(1234), Egs.
(2.23) and (2.27). With the help of the expressions'

Tu(§, 13)=".(¢, 13)(1+aB/27)

+A2(1—§ §-3) (2.32)
and!2.18 :

g—Htv(E) E’)= (1+aA/27r)D+(£7 El)auv
+D+(2)(E: fl)alwr (2~33)

13 Note that
g+=%Dr', D;=%iD, D+(” = %iDF(” .
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they become

dmiary (£, 13)Dy(§, £)vu(E, 24)
Fietvu(§, 11)C(1'2) D4 (88)C1(43') v, (#, 3'3)
X (1—aB/m)+4miay,(§ 13)D,(¢, &)
XAPQ—¢, ¥ —4)+4riak,D(1—£ £-3)
XDy (&, &)vu(¥, 24)+4mioy,(£, 13)
D O (£g)y, (¢, 24),

up to terms involving two virtual photons. The experi-
mental value of the fine structure constant « has been
written to absorb the charge renormalization factor in
Eq. (2.33),2

dra=e(14+ad/27)=47/137.03- - -

(2.34)

(2.35)

III. PERTURBATION THEORY

Salpeter® has discussed a method for finding the
eigenvalues of the total energy of a two-particle system
described by an equation like Eq. (2.30) if the inter-
action function does not differ greatly from a local

instantaneous interaction of the form
dx—2)o()f(xr) (x,=1,t; 1=1,2,3). (3.1)

Such a term can indeed be separated from the center-
of-mass transform of the first two contributions of
Eq. (2.34), which may be written

Iz, &)+ Igy(x, &) =T%(x, «')

+Ixip(®, &)+ Ixialx, 2), (3.2)

where

IC(x, ") = —iad(x—x")volve28(8) /7, 3.3
the Coulomb interaction, and
IK!B= 21:0[(271”)—35(96—96/)
vyt vtk
X f d“ke””[ P ] (3.4)
k2 kik,?

Ix1a=1€*(v,C)8(x)8(x")(C 'y, )(1—aB/w)/K,2

3.5)

These include the Breit!! interaction, retardation effects,
and the virtual annihilation exchange interaction. All
the contributions derivable from Eqgs. (2.23) and (2.34)
that are not included in Eqgs. (3.2-5) depend on the
appearance of two virtual quanta. The two-quantum
terms that are included in Eq. (2.34) will be denoted by
ITg:5®, while those that are explicit in Eq. (2.23) will
be denoted by Igaa(x, &) or Ix25® (%, ") depending on
whether they are exchange or direct interactions.

The change in energy levels produced by the per-
turbations Ik, and Ik, acting on the electron-positron
system bound by the Coulomb interaction Eq. (3.3) is

R. KARPLUS AND A. KLEIN

then given to a sufficient approximation by?®

AE=—i f dxd*x’ (x)
X ‘[Kl(x; &)+ Iroa(®, )+ k™ (%, x7)
+ k2@ (x, x')+fd4x”d4x”’11<1(x, )

X[Fge@”, ™) I Ixi(x", ) l ec(x’), (3.6)

measured in the reference frame in which the total
spatial momentum vanishes,

Ku=(0, Ko). (3.7)

The function ¢c¢(x) is the relativistic Coulomb wave
function that is a good approximation to the actual
wave function of the state whose energy level is sought.
It is a solution of

[Fxe(x, ) =1, o) Jec(a) =0,

AE=K,—K,". (3.9)

The expression Eq. (3.6) is accurate to order « relative
to the fine structure contribution Ix; and further pre-
supposes that the intermediate states in the second-
order perturbation term, the last in Eq. (3.6), can be
replaced by free particle states. This is the case for the
spin-spin interaction under investigation.

Before closing this section, we must briefly discuss
the wave function ¢c¢(x) that enters into Eq. (3.6).
As is the case with the electrodynamic corrections to
the magnetic interactions in hydrogen, the contributions
to AE come mostly from the vicinity of the.relative
coordinate origin. The two-photon contributions, there-
fore, will be at most of the order o?|¢o(0)|2, where
@o(r) is the Pauli wave function for the ground state
of positronium. Since this is the smallest magnitude
that is being considered, contributions to these terms
that are proportional to the relative momentum
can be neglected. It therefore suffices to approximate
#o(@)[ Jec(x) by the product of | o(0)[*= (am)?/=
and the appropriate spin matrix element, which will be
denoted by ( ). In calculating the effect of Ixy, which
contains contributions of order a|¢o(0)|% due to the
exchange of one virtual photon, the relative momentum
can no longer be neglected. Indeed, corrections of
relative order a that arise from the large momentum
components of the wave function must not be omitted.
As Salpeter® has pointed out, an improvement over the
Pauli wave functions is obtained when the integral
equation,

po(®)=—ia f [Frox, #) oot 0)dr'/r, (3.10)

(3.8
whence
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is used for an iteration procedure based on the Pauli
wave function,

polt)ez—ia f [Fre(w, ) oolt)dr /s, (3.11)

IV. THE DIRECT INTERACTION

We turn now to the evaluation of the matrix elements
for the energy shift that was obtained in the previous
section. We shall consider first the contributions AEg
of those terms which arise from direct interaction,
namely, those in which an electron-positron pair is
present in each intermediate state. According to Eq.
(3.6) and the definition preceding this equation,

AEg=—i f dad's’ o) k1, ) 0ol
—i| ¢o(0)]2 f d4xd4x'_<z,m,<2> (=, %)
+ f d%"d*% ' Tx1p(x, &)
X [Fxc(x;’, 2" T U gis(x", xl)>

il O[St ). @)

The one-photon part of the interaction,

AEg; = —ifd“xd“x’ pc(@) g18(x, ') polx’)

o
d*xd*k pc(x)et=
(Wf “

4.2)

‘Yl' 72 Yo'vo?ko?
‘PC(x))

k2 B2k,

presents the greatest complication because it contains
the lowest order hyperfine structure as leading term.
When the approximate Coulomb wave function evalu-
ated in the appendix is inserted here, one obtains a
spin matrix element and multiple momentum integral
which is multiplied by the explicit factor @3] ¢4(0)|2:

8a?| ¢o(0) ]2
AEm:—‘—o—(——l— f d*kdk'dK" dte—*ot
(27)4m?
m? m?

X d(k—k'+Kk")
(- Fam)? (k"2 Jatm)?

iyt v lyolk
x(Fit —-t)[ Lo °]Fk~<t>> (4.3)
k,* kik 2
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The following observations can now be made about that
part of the energy change which depends on the spin
of both particles. Only large contributions of magnitude
a~? and o ! will be important in the integral. It can be
seen that only small values of the momenta %/, &/ <Sam
make such large contributions. The important region
of integration, therefore, extends over small values of
either or of both these momenta. When both momenta
are large, k' and k"’ Zm, the integral becomes negligible
for the purposes of the present calculation. A term
proportional to 22 and k"2 in the spin matrix element,
for instance, is negligible because in its evaluation one
may neglect (am)? compared to &2 and £'%, so that the
integral in Eq. (4.3) becomes effectively independent
of a.* One may now see that the spin-dependent con-
tribution of the retarded Coulomb interaction involves
one of the ! k’e?-k’ terms of both F(f) operators and
is therefore a negligible large momentum effect. The
Breit interaction, of course, is important and contributes
in conjunction with only one factor o!'-k’e?-k’. Since
corrections that involve an additional factor &'? are too
small, one may use an approximate expression

Fi()223 (14 ot k/2m)(1— - k/2m)
X [(m/E) (e~ iE-m1tl | giE+m)]¢l)
+ (emitE=mltl — g=iB+mIt)]  (4.4)
to evaluate AEp;.

The spin matrix element has now become quite
simple,
{Q+ea'-K/2m)(1— - K'/2m)
X al-a?(14 a!-k”/2m)(1— o2-k''/2m))
— (ol 0%2— ol -ka?-k)—¥ o' o2)k2,

4.5)

since the é-function implies that k’—k” =k, and the
integrand has the necessary spherical symmetry. The
ko integration with the usual treatment of the poles
yields

f e=otdko(k2— ko —i€)'=mik e (e>0). (4.6)

The function of time in Eq. (4.3) is therefore even, so
that the time integration may be carried out only over
positive values if a factor of two is supplied. The in-
tegrals encountered are of the form

f dte—i(E':i;m) te—-ikte—i(E";l:m)t
0
=—i(k+E~+E"+mtm)t, (4.7)

since the denominator never vanishes. The energy

14 Detailed examination shows that the integral actually is pro-
portional to loge in this case. This dependence, however, is still
negligible for our purposes.
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change has now been reduced to

4
AEz=—a"0)a(2m)] ()]

x f dkdk'dk’ 5 (k—K'+ k) (K43 atm?) 2

(E'+m)(E"+m)
AE'E"
B m—E'E"  k
X I
k+E+E'—2m  2E'E" k+E4E"
—m)(E"—m)
4_EIEH

X (k//2+ %azmz)—2‘

}. (+8)
k+E'+E"+2m

As it stands, the integral in Eq. (4.8) is quite difficult
to carry out. We must remember, however, that at
least one of the two variables &', ¥’ must be small com-
pared to m, a fact which permits replacement of the
corresponding kinetic energy by the rest energy.
Furthermore, the occurrence of a factor (E'—m) im-
plies that the particular term contributes only for
large %'~m, whence &’/ must be small, and vice versa.
In such a case, the small momentum may also be
neglected in the argument of the é-function. The
remaining integration can then be carried out:

4
ABp=e"-0)a*(2m)7] wo0)]

X f dkdk'dk"{ (m?/ E'E")o(k-+k'" ')

X (k’2+%a2m2)—2 (k”2+%a2m2)—~2
+ (k= E))/2mE'kE )5 (k—K') (B"*-+ }am?) 2
+((k—E")/2mE"kE"?)5(k+k"") (B+Lam?)~?}

2w a da 2a m
=—(o1 02— 0o(0)|?{ 1————In—1. (4.9)
3 m?

T 7 m

In the first term both %’ and &/ are of the order am, in
the second &’~m, and in the third #/~m. A cutoff %,
has here been introduced as a lower limit on the final
momentum integration. Its presence shows that some
contributions of order o?| ¢y(0)|2 to AEp; do arise from
small values of momentum, contrary to expectation.
It will be seen, however, that the direct interaction
Ix25® and the second-order effect of Ix;p also contain
contributions from small values of the momentum as
represented by the appearance of In(m/2k.). Just as
here, these are being treated incorrectly because of
the assumption of free intermediate states that is
implicit in the derivation of the interaction operator.
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The justification of this treatment lies in the fact that
the sum of the direct interactions is independent of the
cutoff; that a cutoff need not have been introduced at
all if the terms had been grouped properly according to
the photon momentum that makes the contribution
rather than according to the physical process that is
represented.

The evaluation of the remainder of Eq. (4.1) is rela-
tively simple. The second line contributes

AEgy® = -—i] #0(0) | 2(4micr)?
X f dixdiy e~ KO X=X gax!

XL (v GH(X+3%, X +32")v,Y)
X (v, GHX — 3%, X' —52')v,7))

XD (X = X'+5(x—4))D (X' = X+-5(x+4))

+(27r>-8fd4kd4k’eikxeik’x’/k”2k“/2

Xyt P —vo'vo* (ke"/ 2%)GH X+, X'+34')

XGHX =32, X'— 32 ) (" ¥*— vo'vo* (Ro*/ ki),
(4.10)

an expression derived from Egs. (2.23), (2.31), and
(3.4). When Fourier transforms are introduced for the
Green’s functions, the energy may be written

4
AEBz(z) =

SOl [atkie,z

(D

Y2 EKC—k)—m
(A,

-_ (m— k0)2
+ (v y2—volvotko?/ k?)

V(EKC—E)—m 1)

— (m—ko)?
‘)

v GKC—k)—m
— (m—ko)?
VGK+Ek)—m

Ly — gl b2 >, 4.11
B )’ (v* v*—vo'vo%ko*/k2) ), (4.11)

where, as before,

E=R4mi—ie (e>0), iKC~m (4.12a)

and

klA=k—ki—1ie (4.12b)
define the treatment of the poles.
Explicit display of the spin matrix element and

spherical averaging wisely precede the momentum
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integration,
AEp:® = (8a%/m)| o(0) | ¥o- 0?)

X f k2dk f dho(k )2
0 —c0

X{(ke*— 3% E*— (m— ko) ]
+ ¥kt B (m— ko)1~
it depends on the identities
Yivi=—8—ioy; (0i'oi’)=2e'-0%). (4.14)

The evaluation of the integrals is straightforward,
except that the same cutoff %, for small momentum
values must be introduced. The result is

(m+ko)* 17} ; (4.13)

2r « Sa 2a m
AEB2(2) =— —<01 . 02” gDo(O) I 2{“ —+_ ln— l, (415)
3 m? 27w 2kn
and gives the total effect independent of &., of processes
where all quanta are exchanged between the two
particles,

27 « 3a
AEp1+AEpy®=——(o!- 0% ¢o(0)| 2{ 1—- -}. (4.16)
3 m? 2
The perturbation AEg,® includes effects of vacuum
fluctuations on the exchange of a single quantum. The
spin-dependent corrections to the vertex operator
are contained in the anomalous-magnetic moment
(a/27)(e/2m) . of each particle while the vacuum
polarization has no effect on the singlet-triplet separa-
tion. The added contribution is therefore
o*)| ¢0(0) | *{e/}.

2 o
AEBg(l) = —~<0‘1 . (417)
3 m? ’

V. EXCHANGE INTERACTION

In this section we shall evaluate the matrix elements
of the exchange energy, embracing all processes in
which there is an intermediate state with no pairs
present. The energy change, according to Eq. (3.6), is

AE = — ifd4xd4x' pe®) k14, &) pc(®’)(1—aB/™)
il go(0)]? f dadis! (T o (x, o))

—i] po(0)] 2 f dixdta’ dix dx"

X<IKlA (x’ x”)[FKC(x”’ xm>]—IIK1A (xn/’ x/)
+IK1B(x, x”)[FKc(x", x///)]..IIKlA(x//I’ x/)
FIg1a(, &) [ Fre(®”, 2" ) T Uxs(x', ). (5.1)

Consideration of the virtual two-quantum annihilation
Ik24 and of the second-order single-quantum annihila-
tion will be postponed to the end of this section. We
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only anticipate the result [see Appendix, Eq. (A.3)]
that the latter will contribute a term that renormalizes
the charge occurring in the first-order virtual annihila-
tion from its uncorrected value ¢ to the measured
value 47a [see Eq. (2.35)]; to the order considered in
this paper, therefore, all quantities depend on « from
here on.

The first one and last two terms in Eq. (5.1) present
some complications since the quantity B is actually a
divergent integral.’? We expect that other divergent
integrals will make the complete result finite, but we
must exercise great care to obtain the correct finite
result. For purposes of orientation it is instructive to
consider briefly the matrix element in Eq. (5.1) for
noninteracting, nonrelativistic initial and final states,
because the high energy divergences may be expected
to be the same in this simpler case as in the positronium
atom. The wave function ¢c¢(x) then represents the
initial state plus a correction due to one Coulomb
scattering, while S [ F(x, ) ' k15(%, ") 0o(0)d*x'd*x"’
represents the correction to the initial state due to the
Breit interaction and retardation effects. The three
terms we are now considering, therefore, comprise the
matrix element of the virtual annihilation in the initial

Y >

1 1 1 S

A

a b c

F16. 1. Feynman diagrams for virtual annihilation
electron-positron scattering.

state plus a correction due to the four-dimensional
interaction represented by one quantum exchange. The
Feynman diagrams for these processes, Fig. 1, show that
the electrodynamic corrections, Fig. 1b, 1c, are just
the correction to the vertex operator, and therefore
contain each a contribution (a/27)B multiplying the
basic interaction Fig. 1a.}%1% To our order of accuracy,
the divergent integrals disappear.

With this understanding we can attempt to evaluate
the actual matrix element in Eq. (5.1). In order to
keep track of the infinite quantities, it is very con-
venient to regulate the interaction brought about by
photon I7 in Fig. 1 with a heavy photon of mass A.1¢
The integral B can be evaluated to B,,?

1
By= (ir?)1 f udu f dk
0

X { (k2 m2u)y—2— (B2 mPu+ A2(1—u) )~
—4m*(1— u—.i,uz) (B*4-m2u?)—3)
=1In(A/m)+5—1In(m/2k,),

16 7. C. Ward, Phys. Rev. 78, 182 (1950).
BR.P. Feynman Phys. Rev. 74, 1430 (1948); W Pauli and F.
Villars, Revs. Modern Phys. 21, 434 (1949).

(5.2)
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where quantities depending inversely on A have been
omitted and the low energy cutoff k., has been intro-
duced [see text following Eq. (4.9)].

The structure of the exchange interaction Ixi4 im-
plies that the energy change corresponding to Fig. 1
can be written

AE g1=—7wam 2 p4(0)ap(v;C) ap

X(C)prar 0a(0)arpr, (5.3)

where

(C)prar@4(0)argr = Tr[C1v;04(0) ]

—[1—(a/27)Br]2a(2r) Tr[ f dk(m?/E)
X8+ oty (1= -/ 2m)
><c~w,-(1+Y-k/zm>+c~w,-k2/4m2]¢o<o>

+(i/2m) f BT m— 7K+ B))
XClyj(m—y(GKC—R))vi— (ko*/k?)
X¥o(m—FGKC+k))C 1y i(m—y(GKC—Ek))vo}

X [T L2 (o k) 12— (= k)T 0(0)
~i/2m) [ @443 —3GKO+1)

X Oy (m—y (K= B))y ) [k, AT

XLE— () T LB = Or= k)T o0 | (59

In writing the contribution of the regulating term,
the last in Eq. (5.4), we have taken advantage of the
fact that a very short range potential has no bound
state so that the scattering picture described by Fig. 1
is applicable. The total energy has been approximated
by 2m everywhere except in the correction to the
Coulomb wave function, which comes from Eq. (A.9)
evaluated at the origin. Only a space-like pair-producing
Dirac matrix need be taken in Eq. (5.3). The trace is
evaluated with the help of the facts that the Pauli wave
function has only large components and that the charge-
conjugating matrix C is an odd Dirac matrix. After
integrating over ko, with the usual treatment of the
poles and after spherical averaging of the momentum

KARPLUS AND A.
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integral, Eq. (5.4) becomes
Tr{C'v;¢4(0)]
=[1—(a/2m)Bs] Tt[Cv;¢0(0) J(— a/7m?)

X f k2dk{ —m2E~1(4k%/3+2m?)
0

X (k2-+ Yatmt) 24 4B = )+ ok

__k2(k2_{,_A2_A4/4m2)—1[_ (m2__._i_A2)
X E-1 4R/ 3+ 2mD) e+ 3(E1— E'1)
+(m*—3ANE2E]}). (S8.5)
Here
E'= (k4 A%}, (5.6)

in the second set of terms, which came from the regu-
lating expression. One can observe that these reduce
to the first set when A=0 if am there is neglected with
respect to k. The integrations are similar to the ones
encountered in connection with Eq. (4.9) but made
more complicated by the regulator. If one expands the
result in powers of (m/A)? and keeps only the leading
term, one obtains

Tr[C1y;04(0)]
=[1—(a/2r)Ba] Tt[C'v;¢0(0)]
X {1+4(a/2m)[In(A/m)]—4+1—In(m/2k.)}
=(1—2a/7) Tr[C'y;¢0(0)], (5.7)
with B, given by Eq. (5.2), whence
AE41= — (ma/m)(1—4a/7)
X Tr[ #6(0)v,C] Tr[C1y;0(0) ],

because v;C is a symmetrical matrix. When the usual
representation of the charge conjugating matrix

(5.8)

(5.9

is inserted, the direct product of the Dirac matrices in
Eq. (5.8) can be relabeled so that the operators refer
to the spins of the individual particles:%-8

70(0)ap(71C)8a(C Y1) pra 90(0) arpr—— 0¥ (0) s
X[38aardpp+ 3000 055 Jp0(0)arsr
| == ®]%57, (5.10)
where S is the total spin of the system,
S=1(c'+0?. (5.11)

We then obtain the known effect of the virtual annihila-
tion®8 plus a large correction of relative order «,

AE s1= (ma/m?){SH| 0o(0) | 2{1—4a/7}.

C=C1=7v¢v:

(5.12)
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We now turn to the contribution of the second-order
single quantum annihilation,

AE 450 =imom* TrL 0o(0)7:CI(C1y2)
X[Fxc(0, 0) T (v;,C) Tr[C1v;¢0(0)],

with the spin sums as inferred from the derivation of
this expression. In the appendix this effect is inter-
preted in terms of the polarization of the vacuum by
the photon produced in the virtual annihilation. The
evaluation given there together with Eq. (5.10) shows
that the effect on the singlet-triplet splitting is®

AE 40 = (ma/m*)(S*)| ¢o(0)| *{ —8a/9},

(5.13)

(5.14)

since the renormalization constant 4, Eq. (A.3) has
been incorporated already.

The final item to be discussed in this section is the

energy shift associated with two-quantum virtual
annihilation given by

AE1O="—] o)
X [kpﬂ(KC_._ k)¢2[(%KO'— k))\2+m2]2 ]—1
X{(vulyGKC—k)—m]y.C)
X(=C 7y [yGKC—k)m ]y,
O (YK —R)—m]y,), (5.15)

when Fourier representations are introduced for the
Green’s functions. The spin matrix elements of the two
parentheses is to be taken as trace with the final and
initial state wave functions, as in Egs. (5.3) and (5.4).
The momentum integration is simplified by the usual
procedure of combining the three distinct denominators
according to the formula

[antke-prare-DE+mT

1 1
=6f x%xf ydyfd“k
0 0

X [[e—3K(xy+2(1—x)) ]
+am?(xy* —4(1—2)(1—y)) —de] ™.

The displacement ko—ko+m(y+2(1—x)) brings the
denominator into the form

B+ amx(2—y)—4(1~y)]
and leaves the numerator proportional to

i‘k)‘2<(7“7p7yc) (—C ey -Chyy,vy))  (5.18)

after hyperspherical averaging and the discarding of
some terms whose dependence on the Dirac matrices

(5.16)

(5.17)
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prevents them from contributing. Since the wave func-
tions in which the spin matrix elements are evaluated
have only large components, Eq. (5.18) can be simpli-
fied to

- 3k,‘2<(7075C) (CYyovs))= 3ku2<(72’)’5) (72'Y5)>a (5.19)

where

Ys=Y1Y2YsYo, Ysi=—1. (5.20)

Rearrangement of indices according to Eq. (5.10)
finally produces the ordinary spin matrix element of a
function of the total spin, Eq. (5.11),

3k,%2—5%). (5.21)
The momentum integration,
f d*kk kA2 A =1x2/3A2, (5.22)

brings the energy perturbation into the form

AE 45® = — 62’2~ 5%)| 00(0) |2
1 1
xf ydy f wdx[x(2—y)*—4(1—y)—de]™
0 0

= —(a?/m*)(2—5%)] ¢o(0)|*(2—2 In2+m3). (5.23)

The real part of this expression corresponds to the
energy change of the level while the imaginary part
corresponds to the well-known!? decay rate of the singlet
state by two-photon annihilation,

771= a3 Ry=0.804X 1010 sec™. (5.24)

The total contribution of the virtual annihilation
interaction may be collected from Egs. (5.12), (5.13),
and (5.23),

AE = (ra/m?)| ¢o(0)| *{(SH)(1—4a/m—8a/97)
+2(S?—2)(1—~1n2)}. (5.25)

VI. SUMMARY

The dependence of the 115 and 135 states in posi-
tronium on the spin of the system is obtained by the
addition of Egs. (4.16), (4.17), and (5.25):

AE= (2ma/m*)| ¢o(0)|*{¥(o"- 0*)[1—Fa/7]
+HSH[1—(26/9+2 In2)a/xJ}.

By taking the difference of the value of these operators
in the singlet and triplet states, one arrives at the
hyperfine splitting

AW o= 2ra/m?)| ¢o(0)|2{7/3— (32/9+2 In2)o/ 7}
=1a? Ryn{7/3—(32/9+2 In2)a/r}
=2.0337X10% Mc/sec.

177, A. Wheller, Ann. N. V. Acad. Sci. 48, 219 (1946).
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The singlet state is the lower one. It can be seen that
most of the rather large negative electrodynamic cor-
rection comes from the virtual annihilation interaction.

When the experiment of Deutsch and Brown* is
interpreted on the basis of a Zeeman effect that depends
on the total magnetic moment (e#/2mc)(1+a/27) of
each particle, the value of the separation obtained by
them is®

AW 1= (2.035-:0.003)10° Mc/sec.

Theory and experiment are thus in satisfactory agree-
ment.

We are grateful to V. F. Weisskopf for calling this
problem to our attention. The authors are also indebted
to the members of the Institute for Advanced Study,
Princeton, for an informative discussion.

APPENDIX

The operator [F—(13)F+(24) T =G~ (13)G*(24), the
noninteracting two-particle Green’s function, and its
Fourier transforms appear so frequently that this
appendix will be devoted to a discussion of some of its
properties.

In connection with the second-order effect of the
virtual annihilation, there appears the tensor

(€79 [Fxe(0, 0) 7 (viC)

= fd4X,6_iK(X_X/) (C_l')/i)aa’Ga’ﬂ’H(X; Xl)

X Gagt (X, X")(7;C)pre= fd“X'e"'K(X‘X')

XTrlyiG~(X, X)v,G-(X', X)], (A1)

by Eq. (2.5). This is, however, precisely the quantity
that appears in the vacuum polarization tensor.?? It
is equal to

(47)?

1 V2 _% 2 Cc)2
x[2A+f av A—3VED) ] (A.2)
o m+E(KO)(1-V?)

In the frame where K,°=0, (K¢)?’>—4m?, the tensor

becomes
imt [ a 8a
97

To 27

(A.3)
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The center-of-mass transform of the noninteracting
Green’s function appears in the integral equation (3.10).
Its Fourier representation is

1 fd4keik(:t—z’)
(2m)*

[m— ' GKO+B) Im—v*(GK°—F)]
[E2— 3K+ ko)? I E*— Ko~ ko)?]

when the center of mass is at rest. The quantity E? is
defined by

[FKC(x; x,):l_l=

(A4)

Er= It mi—ie, (A.5)

since Eq. (A.4) represents the noninteracting two-
particle Green’s function for outgoing waves. The inte-
gration over the fourth component of the momentum
can be carried out with the help of the prescription
Eq. (A.5). It gives the explicit function of the relative
time coordinates,

>0,

[Fre(x, x')]—1=i(z,r)ﬂfdkeik.(,_,f)

X (k*+ia'm?)Fi(t—t), (A.6)

where

Fi(t)= _.m_[e—i(E—m)l g gmiE+mIe ]
2E

r o'k ok k?
(50 (=50 )

i 2m 2m 4m?
+%[e—i(E——m)|t] — o i(Etm)| tl]

i al-k o’k
A5 (%)

L 2m 2m
k2 t o-k—a2-k

‘;;(“m )} @

and the total energy of the 1S state has been inserted,
(A.8)

The wave function derived from Eq. (3.11) with the
help of the operator just obtained is

KoC=2m—3%a®m.

o) = (2a/(21)?) f ket

X (B+3am?)—2F () o(0).  (A.9)



