
A SOLUBLE PROBLEM IN ENERGY HANDS

turbed upper half-band the Wannicr function located at
the atom at position 2am may bc written

a'(w —2msr) = (2/~) La(w —2msr —n)+ a(w —2m sr+ sr)]
—(2/3or) t a(w —2msr —3sr)+u(w —2msr+3sr)3

We now wish to consider the sum P(m) exp(2srimg)
Xu'(w —2m.), found by locating these Wannier func-
tions on the atoms at positions 2evr. When we insert
a'(w —2msr), as de6ned above, in this sum, we may
rearrange the resulting double sum, so that it may be
written

P(m) expL2sri(m+-, ')gjaLw —2(m+-,') e.j
&(L(2/s )(expsrig+ exp —srig)

—(2/3sr) (exp3wig+ exp 37—rig)

From Kqs. (46).and (47), however, we know that the
function (2/sr) (expsrig+ exp —orig) equals unity
when g is between —& and ~~, which includes the whole
first unit cell of our lattice of double periodicity. Thus
the'wave function is

P(m) exp(2ori(m+-, ')g)aLw —2(m+-', )sr],

just as if we had the original Wannier functions located
at the points &m, +3m, etc. Thus we verify the state-
ment made in the text Rnd show a simple example of a
case where the identical wave functions can be ex-
pressed in terms of two types of Wannier functions, one,
uLw —2(m+-', )e.], concentrated on a given atom, the
other, a'(w —2msr), extended over many atoms.
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The statistics of the recombination of holes and electrons in semiconductors is analyzed on the basis of a
model in Which the recoInbination occurs through the mechanism of trapping. A trap is assunled to have an
energy level in the energy gap so that its charge may have either of two values differing by one electronic
charge. The dependence of lifetime of injected carriers upon initial conductivity and upon injected carrier
density is discussed.

N connection with studies of tI'Rnslstol physics thc
~ ~ recombination of holes and electrons plays an
important role. The lifetime of injected. carriexs in ger-
manium has been found to be a structure sensitive

property of the material. This suggests that the recom-
bination process takes place through the medium of
imperfections of some sort in the germanium crystal. '
It is the purpose of this paper to investigate the mathe-
matical conscqucnccs of R pR1 tlculRl type of lInpcl-
fection. We shall accordingly suppose that the crystal
contains a density Fg of traps which contribute to the
recombination process.

In Fig. i we illustrate the way in which holes and
electrons may bc recombined through the traps. The
6gure illustrates a trap which may exist in either of
two states diGcring by onc clcctloQlc unit of chRlgc,
being either negative or neutral; similar treatments may
be applied to other possibilities, such as neutral or
positive, or cases in which the charge changes between
—1 and —2 units. If the trap is neutral it may capture

' See W. Shockley, E/oossoms md Polesim Somkmdisotoss {D.van
Nostrand Company, Inc., Near York, 1950), p. 347. The methods
of measuring lifetime and its role in transistor electronics are also
discussed in this reference. This process of recombination has
also been discussed by R. N. Hall, Phys. Rev. 83, 228 (1951) and
87, 387 (1952).

an electron from the conduction band. The energy loss
of the electron is then converted into heat or light or
both depending upon the nature of the trapping process.
It may also capture an electron from the valep ce band
represented by pait (d) of the figure, ill which case i't
RcqulI'cs R negRtlvc cIlRI gc Rnd lcRvcs R hole ln thc
valence band. Parts (b) and (c) represent the emission
of Rn clcctlon Rnd the CRpturc of R ho)e.

The cGects which we shall consider in this study
arise from the statistics of the processes shown in Fig. i,
and the limitation in rate is assumed to be due to the
availabihty of electrons and holes to enter the traps,
Wc shall neglect another possible limiting factor in the
recombination process, the time of readjustment of the
electron in the trap once it is trapped: Thus, the electron
in part (a) of the figure might be trapped in an excited
state in the trap Rnd require some time before falling to
the ground state. .%bile the electron was in the excited
state, the abihty of the trap to emit an electron or to
capture a hole wouM be diGerent from the conditions
represented in part (b) and (c) of the figure and. there
would, therefore, be R time lag before the trap reached
its normal state. Wc shall assume that the readjustment
time for a trapped electron is negligible compared to
time required on the average for the trap to emit the
electron or to capture a hole.
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FrG. 1. The basic processes involved in recombination by
trapping: (a) electron capture, (b) electron emission, (c) hole
capture, (d) hole emission.

SECTION 2. THE BASIC FORMULATION FOR
THE PROBLEM

In Table I we define most of the symbols used in the
analysis.

Since the processes involved are governed by Fermi-
Dirac statistics, we introduce the symbol f to represent
the probability that a quantum state be occupied. f is a
function of the energy level E of the quantum state and
of the Fermi level F:

f= 1/[1+exp{ (E—F)/kT) 7. (2.1)

We also introduce the symbol f„to represent the
probability that the state is empty or, in other words,
occupied by a hole. (We use the symbol p for holes to
be consistent with the notation for p-type semicon-
ductors in which the carriers are positive; we similarly
use the symbol e for electrons to be consistent with
rs-type. ) The relation between f~ and f is

f„=1f=f exp—[(E F)/kT7.— (2.2)

We shall first consider the electron capture process.
The probability of electron capture will be dependent
upon the initial quantum state of the electron. If we
consider a unit volume of material, there will be a total
number

X(E)dE (2.3)

of quantum states in the energy range dE. We shall
denote by c„(E)the average probability per unit time
that an electron in the range dE be captured by an
empty trap. If the speed of the electron is v and the cross
section for capture' by a trap is A, then we have

c„(E)= average of oA for states of energy E (2.4).
If the number of trapping centers per unit volume is X»,
then the rate of capture will evidently be

f~ilV«„(E)f(E)Ã(E)dE, (2.5)

where f„irepresents the probability that a trap is

empty and thus capable of capturing an electron. f(E)
is the fraction of states of energy E that are occupied
by electrons.

The probability that an electron be emitted from the
trap into the band of energies in range dE will be propor-
tional to the number of electrons in the traps times the

probability that the states in range dE are empty. It
can, therefore, be represented by the equation

f&,e.f„(E)Ã(E)dE, (2 6)

f(E)Jt/(E) c„(E)dE, (2.10)

where the integration extends from the bottom of the
conduction band to all higher levels. When the system
is in equilibrium the square bracket vanishes. On the
other hand, if F„is greater than Ii»,, then there is a
higher density of electrons in the conduction band than
is in keeping with the state of the traps and the ex-
ponential term is less than unity so that there is a net
rate of capture.

An entirely similar expression may be derived for
V,~, the net rate of hole capture.

SECTION 3. APPLICATION TO THE CASE OF
NONDEGENERATE SEMICONDUCTORS

We shall now adapt the expressions discussed above
to the case of a semiconductor in which the electron and
hole distributions are nondegenerate. For this case
expression (2.10) derived in the preceding section may

*The quasi-Fermi level has been referred to as the chemical
potential and as the "imref. "

where e„is the emission constant corresponding to c„.
We shall next make the assumption that the electrons

in the conduction band are in thermal equilibrium
among themselves. That is, we shall assume that the
factors f and f~ are given by a Fermi-Dirac function of
the form (2.1) or (2.2) with a suitable value of the
Fermi level. This quasi-Fermi level, *or q.f.l., is denoted
by F . The fraction of the traps which are occupied may
also be described by a q.f.l. P» for the traps. If the system
is in thermal equilibrium then, of course, the relation-
ship,

F„=Fifor thermal equilibrium, (2.7)

must apply. For this case the principle of detail
balancing requires that the rate of capture and the rate
of emission of electrons must be equal. We shall next
apply this consideration to determine the relationship
between e„andc„.

The net rate of capture (i.e. , capture minus emission)
for the energy interval dE may be written in the form

df/-= [fnif(E) (e-/c-)f—if&(E)7&«-(E)&(E)dE (2 g)

For thermal equilibrium the quantity in the square
brackets must be zero and this leads to the result

e /c =exp[(E,—E)/kT7. (2.9)

Inserting (2.9) in (2.8) we find that the square bracket
depends only on Ii and Ii». The total rate of electron
capture U, „

is then obtained by integrating over dE:

U,„=[1—exp{(F,—F„)/kT)7f~,Si
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be rewritten in the form

U,„=[1 e—xp(F, F—„)/kT]f~,nC„, (3.1)

where the new symbols are defined by the equations

n= N, exp(F„—E,)/kT, (3.2)

N, = ~ [exp(E.—E)/kT jN(E) dE,
Ec

C„=Ng(c„),

(3.3)

(3.4)

(c„)= [exp(E, E)/kT—]c„(E)N(E)dE:N.. —(3.5)
Ec

The quantity (c ) is the average value of c over the
states in the conduction band. It has the dimensions of
cm'/sec as may be seen from (2.4) and from the
deinition of c„(E).Due to the motion of the electrons
in respect to the center, the center in e6ect sweeps out
a volume (c„)of space in unit time. Since N~ has the
dimensions cm ', C„=N~(c„)has the dimensions of
sec ', it represents the fraction of space swept out per
unit time. Thus C„is simply the probability per unit
time than an electron in the conduction band will be
captured for the case in which the traps are all empty
and, consequently, in a position to capture electrons.
By a similar procedure, averaging over the valence
band, we may define C„,the probability per unit time
that a hole will be captured if the traps are filled with
electrons so that they are in a condition to capture
holes.

For the case of nondegenerate statistics f„is nearly
unity for the states in the conduction band, and con-
sequently the rate of emission (given in (2.6) before
integration over dE) is a function of f& alone. That the
rate of emission is independent of F„follows in (3.1)
from the fact that the dependences upon F„in the
exponential and in e itself cancel. Thus, we find that

f.~n exp(F~ —F.)/kT=f~N. exp(E& —E.)/kT~ f n&,

(3.6)
where

ng N, exp——(E,—E.)/kT (3.7)

is the number of electrons in the conduction band for
the case in which the Fermi level. falls at E~.

Expressing the net rate of capture in terms of n~, we
obtain

Uc.=C.f,~n C.fini— (3.8)

An entirely similar treatment may be carried out for
holes leading to the equation

TAsz, E I. Symbols.

b=ratio of electron to hole mobility
e=density of electrons in conduction band
p= density of holes in valence band

E,~ energy of highest valence band level
E,=energy of lowest conduction band level

Eg=energy gap=E, —E,
E&= effective energy level of traps (Appendix B)
F= Fermi level for thermal equilibrium

F =quasi-Fermi level (q.f.l.) for electrons
F„=q.f.l. for holes
Fg=q.f.l. for traps
n;=density of electrons in an intrinsic specimen
%~=density of traps

E(E)=density of energy levels per unit energy range
X,=eftective density of levels for conduction band
N„=effective density of levels for valence band
fr= fraction of traps occupied by electrons

f~& =fraction of traps occupied by holes

E,=$(E, E„)+gkTln(N. /N—.). (4 6)

In the subsequent development we shall assume that

suppose that hole-electron pairs are being generated at
a constant rate U by light or by some form of carrier
injection. For steady-state conditions, the net rate of
capture of electrons must be equal to that of holes. If
the concentrations of holes and electrons are n and p,
then the equality of rates leads to

C (1 f&)n C—„f~n&—C,f&p
——Cr(1 —

f&)p&
—(4.1).

This equation may be solved for f„thus obtaining

fg (C„n+C——„p&)/[C (n+ng)+C (p+ pg)], (4.2)

and forf„„
f„=1 f,= (C n—&+C„p)/[C„(n+n&)+C,(p+ pi) 5

(4.3)

When these values are substituted into the rate ex-

pressions, the net rate of recombination is obtained:

U=C„C,(pn —pg g)/n[C (n+ng)+C„(p+pg)j. (44)

In this equation the product p~nq is independent of the
energy level E~ of the traps and has the value

pgn, =N~„e x(p„E—E,)/kT
=N~„exp( Eg/kT) =nP, —(4.5)

where m; is the electron or hole concentration in an
intrinsic sample, in which n and p are equaL For later
use we shall introduce also an energy level corresponding
to an intrinsic sample. This energy E; is the energy at
which the Fermi level would lie in an intrinsic sample.
Its value is

U"=C f~p C f.~pi—(3.9)

SECTION 4. RATE OF RECOMBINATION FOR
STEADY-STATE CONDITIONS

so that
ny)n;) px (4 g)

In this section we shall evaluate the rate of recom-
bination for nonequilibrium conditions, We shaH

The case of E&(E; can be understood by reversing the

go)gs of holes and electrons.
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where

r,o=—1/C„r„o=—1/C„. (5.4)
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FIG. 2. Dependence of lifetime upon composition of the speci-
men. (The composition determines Fo, the Fermi level for equi-
librium. ) The solid curve gives total lifetime r,' the dashed curves
give the two terms of which ~ is the sum. The expressions in I

are approximations valid for the straight segments of the curves.

n=mo+3m, , p= po+3n (5.1)

In terms of this deviation and the corresponding rate
of recombination V, we may define a lifetime r by the
equation

r —=3e/U.

From Eq. (4.4) we find that r is given by

r = (No+ I&+8e)/(sp+ p,+h~) C„
+ (pp+ pg+ Bm)/(np+ pa+ BN)C„

r,o(so+ my+ 8e)/(no+ po+ bm)

+r.o(pa+ pi+ 3p)/(~0+ po+ 3~),

(5.2)

SECTION 5. EVALUATION OF THE LIFETIME FOR
A SIMPLE CASE

In this section we shall consider how the lifetime of
carriers depends upon the conductivity of a sample con-
taining a fixed number of traps. We shall deal with the
case of low disturbances in carrier density. In the next
section we shall consider an extension of the reasoning
to large disturbances in carrier densities. As a further
simplification, we shall assume, in this section, that the
majority carrier density under equilibrium conditions
is large compared to the trap density so that we may
neglect the change in charge density produced by
changing concentrations in the traps. This condition
is relaxed and a more general treatment carried out in
the appendix. It is shown there that the simplified
analysis of the present section is valid if any one of the
four quantities eo, po, ec, p& is large compared to X&.
In this section, the deviations of electron and hole densi-
ties from their thermal equilibrium values, denoted by
~ an.d po, must be equal so as to preserve electrical
neutrality. If we let 8n represent this deviation, then

The quantity r„ois the lifetime for holes injected into
highly n-type specimens. For such specimens, the traps
are filled so that the rate at which injected holes are
captured and annihilated is simply C„times the injected
carrier density. The quantity r„ois similarly the lifetime
of electrons in a highly p-type sample.

In the next section we shall consider the dependence
of r upon 5m for large values of bm. For small values for
8m the value of 7 is simply

0('+0+ +1)/(+0+po)+..o(pO+ pl)/('+0+ po) ~ (5 5)

If it is assumed that the capture constants C„andC„
are relatively insensitive to temperature, then the tem-
perature dependence of r can be predicted from the
relatively simple dependencies of ei, pi, no, and. po

upon temperature. Some observations by F.S. Goucher'
and R. N. Halp appear to be, in general, consistent
with these predictions.

In Fig. 2 we represent in a qualitative fashion the
dependence of v upon the composition of the specimen. 4

The two terms in (5.5) of which r is the sum are also
plotted separately on the figure. The composition is
represented by Iio the Fermi level for thermal equi-
librium conditions. Nondegenerate specimens corre-
spond to values Po lying in the energy gap between E„
and E, and an intrinsic sample corresponds to Fo——E;.
From the plot it is seen that there are four distinct
regions to be considered for Fo. The behavior of r in
these regions may be understood by considering the
following special cases.

In an e-type sample, where Fo)E;, No»po, we have
in accordance with approximation (4.8)

r = , (r1+0'eg/no)

= r„0[1+exp(E& —Fo)/kT],
(5.6)

with a similar relation,

rno+ ryo'+1/p 0

= r~o+ rqo exp(Eq+Fq —2E,)/kT,
(5.7)

for a p-type sample, Fo&E;, po»no.
From (5.6) and (5.7) we see that, as Fo increases

from E, to E„wecan distinguish the four regions as
follows:

(1) In a sample sufficiently strongly p-type that
F0&2E,—E&, po&&ri&, r is constant and equal to r„o.
This corresponds to all the traps being empty and the
number of holes being large enough that a hole will

immediately recombine with every trapped electron.
(2) If the sample is somewhat less strongly p-type so

' Personal communication.
3 R.¹Hall, personal communication.

Data which is, in general, consistent with the trends indicated
in Fig. 2 have been reported by R. N. Hall, Phys. Rev. 86, 600T
(1952}and 87, 387 i1932}.
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r,.=r,o[1+(n,+ P)/ r2]i

= r»[1+cosh(Ei E;)/kT]. — (5.10)

Thus the magnitude of the total possible variation of v-

with composition is determined by the absolute dif-
ference in the energy level of the traps and the Fermi
level for an intrinsic sample. For Ef,=E;, ~ could vary
by a factor of only 2.

SECTION 6. THE DEPENDENCE OF LIFETIME
UPON CARRIER DENSITY

For large values of injected carrier densities, it is
necessary to retain the bio terms of Eq. (5.3). If we
denote by vo the lifetime for vanishingly small values
of bn as given by Kq. (5.5), then the value of r for
larger values of bn becomes

r = rp{1+BN(r&p+ r„p)/[r»(so+ioi)+ r~p(Po+Pl)]}
—:{1+be/(No+ P,)}. (6.1)

This expression is of the form

r= rp(1+abri)/(1+ cbro), (6 2)

from which it is seen that v increases monotonically
with bn if a) c and decreases monotonically for a(c.

The limiting value for v as Ss approaches infinity is

that Fo&2E;—Ei, ooi»po, then r increases with Fp-

r= rypmi/pp= r» exp(Fp —2E +E'i)/kT. (5.8)

In this case the traps are still mostly empty but there
are not a sufficient number of holes to recombine with
each trapped electron before the latter is re-emitted to
the conduction band.

(3) In an I-type sample where Fo&Ei, Np«mi,
decreases with F0

r= rp0oii/rio r» exp(Ei Fo)/—kT. (5 9)

Here the traps are still largely empty and the recom-
bination is limited by the fact that an empty trap
cannot capture a hole.

(4) Finally, in a sample suKciently strongly n-type
that Fo)E&, np))Qy, the lifetime is again constant, now

equal to v„o.This corresponds to full traps, all set to
capture holes, and sufhcient electrons that an electron
recombines at once with every hole that is trapped.

It is interesting to note that if r„0=v„o, then v is
symmetrical in Fo—E; so that the same behavior
would arise for traps with energies lying at E&—E;
below E; as for those lying at Et,—E; above E;. This
symmetry follows at once from (5.3) and thus applies
to large as well as to small densities.

The exact position and value of the maximum value
of r will depend on the ratio r p/r» Unless t.his

divers by an order of magnitude from unity, the
maximum will occur near intrinsic. For the case Tgo= 7 0,

the maximum is seen from (5.5) to correspond to Fp E„:——
so that

It is evident that if 1 p is di8erent from 7 then there
is a monotonic variation of v from one to the other with
increasing be.

The variation be can be deduced from the change in
conductivity bo- so that a comparison with experiment
may be made in a relatively straight forward way. Thus
for an e-type sample we have

bn/(I p+ p p) = bn/rip=' bob/o p(1+b), (6.4)

where uo is the equilibrium conductivity and b is the
ratio of electron mobility to hole mobility. From Eq.
(6.1) we then obtain

r[1+bo b/0 p(1+b) ]/r p

=1+Bn(r»+ rno)/[ryo('+0+ iol)+ r„o(pp+pi)]. (6.5)

For a strongly e-type sample, so that no dominates the
denominator in (6.5), the right side becomes approxi-
mately

1+Bob(r„p+r„p)/rrpop(1+b). '(6.6)

This relationship shows that if the left side of (6.5),
which involves directly measurable quantities, is plotted
as a function of bo., the result should be a straight line,
(It should be noted. that if a number of different types
of trapping centers are involved, the linear relationship
between the left side of (6.5) and h /0. owpill in general
be modified. )

It should be noted that at high carrier densities the
rate of recombination through traps is linear in the
carrier density whereas any direct recombination would
be quadratic. This is in agreement with the endings of
R. N. Hall for p-m junctions operating with high
injected densities in the region of recombination.

SECTION V. INTERPRETATION IN TERMS OF
CAPTURE RESISTANCES

The behavior of the lifetime as a function. of com-
position shown in Fig. 2 may be given a somewhat more
physical interpretation with the aid of the concept of
"recombination resistances. " For this purpose we note
that the quasi-Fermi levels are analogous to voltages
and the U's to currents. We thus introduce

R.= (Fn Fi)/Uc. ='kT/fy—irido&~, (7 1)

Ry (Fi Fp)/Uo p=' k——T/—fiPoC p, (7.2)

the approximations holding for diGerences in the F's
small compared to kT. For the steady state the recom-
bination currents are equal and we have

U(R„+R~)=(F„Fi)+(Fi F~)=F—„F~, (7—.3)—
an equation analogous to that for resistances in series.

In Fig, 3, we plot E„and E„asfunctions of Fo.
Evidently the recombination rate will be limited by
the larger of the two. The sloping lines have a slope of
(1/kT). It is seen that if r„pand r» are approximately

r»+

reap

(6.3) ' R. N. Hall, Phys. Rev. 83, 228 (1951).
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then from Eq. (4.4) the net rate of generation is

—U= C„CpnP/[C„(np+e, —Pp)+CpP, ], (8.2)

corresponding to a lifetime of

r = be/U= —pp/U
(8 3)

rps(n0+ el Po)/eo+ T.PPl/ep,

a result in agreement with (5.3). If the specimen is
strongly e-type, pp and pl will be «np, and r will be
approximately

0
RP Pq

rp=' rpp(np+nl)/ep, (8.4)

&Po
wT P„

0

I

2Ei Et
I

Ef

Fo

f

Et

MO
K

R~

FIG. 3. Variation of recombination resistances with F0. Solid
curve represents total resistance R=R„+R„dashedcurves give
R„andR„.Expressions in l j are approximations valid for the
straight segments of the curves.

equal, recombination is limited by hole trapping for all
specimens except those with Pp) el.

The sloping portions of the 1nR vs Fo plot correspond
to constant lifetime. This result may be seen from the
relationship between R and v which is derived as follows:

the value for very small disturbances. Hence the net
rate of generation of minority carriers is represented by

—U= (po —p)/ro. (8 5)

—U,p ,h. =C C„eP/.(C„e,+C„pl).
This corresponds to a "lifetime" defined as

(8 6)

Tsp. oh. Pp/U p. h. Tpp(el/ep)+ rpoP1/no (8 7)

This is the formula used, for example, in treating the
reverse currents generated in the n-region of a pe-
junction.

On the basis of the above reasoning, it would at 6rst
appear that the maximum rate at which hole-electron
pairs could be generated in the m-type material would
be given by (8.2), which is approximately equal to pp/r p.

Much greater values may occur in some cases, however;
in particular, if the space-charge region in a p-n
junction biased in the reverse direction penetrates the
n-region, then both P and n may be much less than Pl.
Under these conditions (4.4) reduces to

and

r = be/U = bnR/(F „F„),— (7 4)
This lifetime will be smaller that vo for an e-type
sample with Fo)E& approximately in the ratio.

b(eP) =eP{ftexP(F Fp)/kT] 1—}-
='nP(F„Fp)/kT=' (»+P—p) be (7.5)

so that

r= ePR/kT(no+Ps). (7 6)

On Fig. 3 we have also drawn ln(no+ p,); the straight
line portions have slopes of (1/kT), so that they cancel
the slopes of lnR to give the constant lifetime portions
of Fig. 2.

The eGect of a number of diBerent sorts of traps may
be considered on the same basis. For each variety, the
recombination is represented by a pair of resistances in

series and these series pairs are combined in parallel for
the entire system.

SECTION 8. RATE OF GENERATION IN
SPACE-CHARGE REGIONS

If the minority carriers are swept out of an n-type
specimen, so that

Tsp. oh./rp= el/(el+ np) (8.8)

and the rate of generation of hole electron pairs will
be greater in about the same ratio.

Hence the reverse current furnished by an element
of volume of e-type material having Fo)E~ will be
increased by a factor

Tp/T p h =exp(Fo El)kT (8.9)

as it enters the space charge region. For E;(Fo&E~, on
the other hand, the change is less than a factor of two.

For p-type samples, the value for the space-charge
case

Tsp. oh. n0/Usp. oh. Tppnl/pp+ rsppl/pp&

while .o=.,oel/po+ ..o(po+ pl —ep)/pp.

(8.10)

(8.11)

It is again seen that ~,~.,h. is less than ~0 but the ratio
does not become large until Pp becomes greater than nl
corresponding to

be= —Po and P=O, (8.1) F0&28,—E (8.12)
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for which

ro/r Q.ol, .='(r~o/rpo) exp(2E; E—
g

F—o)/k2" (8.13)

In strongly n-type or p-type material, the minority
carrier density is small and, consequently, the genera-
tion of minority carriers is suppressed since the traps
are generally in the state corresponding to the sign of
the majority carriers. The large increases of hole-
electron pair generation given in (8.9) and (8.13) in
these cases result from removal of the majority carriers.
Under these conditions the traps assume an average
state given by (4.2) and (4.3) with

f,=C„pi/(C„ni+C„pi),

fpg= C„ni/(C„ni+C„pl),

and emit electrons and holes at the rates

C„n,f,=C„Pif„,= —U, lp.

as given in Eq. (8.6).

(8.14)

(8.15)

(8.16)

APPENDIX A

In this appendix, we consider the general case where
the density of traps is not small compared with the
normal carrier density; be and bp are then not neces-
sarily equal, the diGerence being due to the deviation
Xgbfg of the number of filled traps from the thermal
equilibrium value.

We consider only the case where the disturbances in
carrier density are small enough that only fj.rst-order
terms in be and bp need be considered. The recom-
bination rates are then linear functions of bn and bp:

U,„=A„„be+A„~bp,U,„=Ap„bn+A~~bp, (A1)

where the A's are constants which we shall evaluate
LEq. (AS)].

Equations (A1), together with the continuity equa-
tions, provide a set of linear partial differential equa-
tions from which the excess carrier densities bp and be
can be found for any set of boundary conditions. In
this paper we are primarily concerned with the steady
state, U,„=V,„=U,rather than with transient con-
ditions. Since in general be Wbp, we have two lifetimes,

r.= bP/U=(Au. A-.)/(A-&n. —A-nA")—
r„=be/U= (A„„—A~„)/(A„„AQ„—A„„A„„).(A2)

In general r„Ar„.For most purposes the lifetime of
the minority carrier is of the most practical interest;
we shall, therefore, find r„for an e-type specimen andr„for a p-type.

To begin we find the A's in Eq. (A1). From Eqs.
(3.8) and (3.9) of the text, it is seen that small deviations
be, bp, bf, from the equilibrium values np, pp, f, give
recombination rates

U,„=C„L(1—f,)bn —(no+el) bfg],
(A3)

U.Q=C~Ugbp+(Po+ pi)bfg]

The relation between bf„be,and bp comes from the
requirement of electrical neutrality

bp be—=Ngbfg.

Since fg in (A3) refers to equilibrium, we have

(A4)

fg= =i—
1+(nl/no) 1+(Pi/Po)

(AS)

Substituting (A4) and (A5) into (A3) gives (Al) with

ni no+Sr
Ane=C +

SQ+Si Xg

sQ+ei'
A„„=—C„

Sg

Po+Pl
A „=—C

(A6)

Pl Po+Pl
Auu=~u +

po+pi X
. Substituting (AS) into (A2) gives the lifetimes

rn=

r o(po+ pi)+r, oLSQ+ei+X(1+no/el) ']
eo+Po+Xg(1+no/nl) '(1+el/no)

(A/)
r 0('S0+ ei)+r 0[po+pi+%(1+po/pl) ]

no+po+K(1+po/pi) '(1+pi/po) '

The two expressions (A'/) are symmetrical in n and p.
It should be noted that ep/el= pi/pp, hence the de-
nominators are the same in the two formulas.

For Xg=O, the two equations (A/) both reduce to
(5.5) of the text. At the other extreme, Xg——pp, we have

r,= r„p(1+n,/eo), (A8)

which is the same as (5.6) of the text for an e-type
sample. Thus the lifetime of a hole in e-type material
is correctly given by the simple theory except near
intrinsic. For 1V~= ~, r becomes

r„=r o(1+Pi/Po) = r QL1+exp(FQ Eg)/kT] (A9)

Thus for Eg) E,, r = r„pfol' all p-type samples when
Xg is very large compared to both Pp and nl. The inter-
pretation of (A8) is that 1+n,/e is simply an alter-
native way of writing 1/fg Hence 1/r„is .simply 1/r„o
times the probability that a trap be ready to capture a
hole by being occupied by an electron. A similar inter-
pretation. applies to (A9).

Ke next consider the lifetime of the minority carrier
for the four distinct regions discussed in Sec. 5 of the
text.

In regions (3) and (4), e-type material, we have
seen, [Eq. (A8)] that the formula for lifetime of a hole
is independent of Xg. (The lifetime itself is, of course,
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(2b) When ni&Nipi/po&po then r=r, oeipo/N~pi
In terms of energies this corresponds to

$(E —E*)&Fo&2E —E*,..=.„e~L(2E,—E*—F,)/Xr].
In order for this case to be possible the number of traps
must be such that

(2c) When po&N, pi/po, v„=r„oni/p, which cor-
icsponds to

—Eg(Fo(i (Eg—E+)

r„=r„oexpL(E,+F0)/kT].

This case is possible only for

8*&38,. (A1/)

Fxo. 4. Variation of lifetime of minority carrier v.ith bo. (a) Xf 0,
(b) Eg=in6nity, (c) intermediate case.

inversely proportional to iA & since v „0is inversely pro-
portional to N~. ) Likewise in region (1), po&&xi, it is
seen that ~„=v„o.Hence, the analysis of the text
correctly gives the lifetime of the minority carrier,
except in region (2). The formula for lifetime of the
majority carrier will depend on Ef, over a wider range,
but this is generally of less interest.

In region (2), ei»p, »no, we have from (A/)

ej,
~a= &no+ i'yo

po+ (%pi/po)

There are three distinct sub cases under (A10) corre-
sponding to diGerent ranges of Iio.

(2a) When ei(po+N„p,/po, then ~„=~„SiOncein
region (ii), ei»p„this iequii'es Ni(Ngp, /p, . It will be
convenient to express Ã& in terms of an energy level E*,
such that eo=E~ when Iio=E*. Also, for convenience,
we take E as thc zero of energy. Then, by de6nition

N& ——n, exp(E*/kT). (A11)

Thus in terms of energies, we have 7„=7„0when

—E*+2F.,&Fo&0. (A12)

This case is only possible when there are enough traps
that

E*&2Eg. (A13)

In case (2c), r„is independent of E* and therefore of
A'~, and is the same as in the text.

It is seen that if E*(E~,N~(ni then cases (2a) and
(2b) are eliminated and, for all values of Fo both positive
and negative, the lifetime of the minority carrier is
correctly given by the simplified formula (5.5) of the
text. It is also readily verified from Eqs. (A7) that (5.5)
of the text correctly gives ~„=7.„when Ef, is small
compared with any one of the four quantities no, po,
iii& pi.

As in the text the case Ef,(E; can be understood by
reversing the role of holes and electrons.

Figure 4 shows the variation of the lifetime of the
minority carrier for E&&E;=0. For convenience Tyo

and 7.„0are taken equal. Due to the logarithmic func-
tions involved, a considerable diHerence between z„o
and v-„0would be required to appreciably alter the curves.

APPENDIX 3. EFFECT OF DEGENERACY OF
THE STATES OF THE TRAPS

The quantity E& used as the energy level for the
traps is in fact an efI'ective energy-level related to the
energy-level E& (true) by the equation

E,=E,(true)+or ln(w„/~), (31)

where m„and m are the degeneracies of an empty and
full trap, respectively. This result may be derived by
noting that the probability factor for the electrons in
t,raps ls

re '/"i', "'»'N&!/(N&fi)!(N f„&)!. (32)

%hen the customary maximizing process for Fermi-
Dirac statistics is carried out, the degeneracy factor in

(32) produces the effect of (31), which may then be
used in equations like (2.1) and (2.2). In case excited
states in the empty and full traps make a signi6cant
contribution, then the ratio w„/w should be replaced by
a ratio of states-sums.


