COLOR CENTER PRECURSORS

trapped by the isolated vacancies. Since the bleaching
process described above, which is based on the recombi-
nation of vacancy pairs, is not available for the case of
isolated vacancies, color centers involving such vacan-
cies are permanent.

In terms of the above scheme, the following mecha-
nism for the phenomena associated with electrolysis
may be advanced. Under the influence of an electric
field at elevated temperatures, the negative ions start
to move toward the anode producing an excess of
negative vacancies near the cathode, and conversely,
the positive ions move toward the cathode producing
positive vacancies near the anode. In order that the
crystal be locally neutral, it is necessary that there be
introduced at the cathode electrons equal in number to
the excess negative vacancies and similarly holesin the
electron band equal to the number of positive vacancies
introduced at the anode. In general, the electrons and
holes will be trapped in the vacancies, thus leading to
color centers which spread from the cathode toward the
anode. It is quite clear that the spreading reverses itself
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if the polarity of the field is reversed at any stage. If
the direction of the field remains unchanged, the
nature of the process changes when the positive
vacancies in which holes have been trapped arrive at
the cathode. When this happens, the condition of the
electric neutrality is satisfied if electrons entering from
the cathode combine with the holes trapped in the
positive vacancies. This allows the newly created
negative vacancies to be formed free of electrons, i.e.,
as color center precursors. As the negative vacancies
containing the electrons diffuse toward the anode they
are replaced by these precursors and in this fashion the
color cloud is swept out toward the anode. The above
discussion does not take into account the inhomogeneity
of the electric field produced by the pointed cathode
and also fails to explain the direct production of
precursors and the increased susceptibility of a crystal
in the metastable state for the production of non-
permanent centers. :

We are greatly indebted to Dr. Philip Schwed for
valuable discussions and suggestions.
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This paper continues an earlier one on the same subject. Its object is to elucidate the nature of the random
motion of an ion about its drift. In Sec. F it is shown that this motion can be described as a diffusion with a
diffusion tensor axially symmetric about the field. If the mean free time between the collisions of an ion with
molecules is independent of speed, then explicit expressions may be deprived for the two diffusion coeffi-
cients; these expressions are written down without proof in Sec. G; they are connected with the mobility by
a natural extension of the Einstein relation. In Sec. H, the longitudinal diffusion coefficient is computed
numerically for the hard sphere model, high field, and mass ratio 1; the method of computation is the same
as in Sec. D. Finally, it is shown in Sec. I how approximate formulas of wider validity can be inferred from

the ones obtained.

IN the first paper of this series!! the problem of the
motion of ions through a gas was formulated under
the assumption that the electric field was too large to
be treated as a perturbation, as is often done. This
problem was solved in the sense that the values of some
simple velocity averages were worked out precisely
while no attempt was made to write down the entire
velocity distribution function. I believe that this type
of approach will yield most answers of experimental
interest. The actual formulation was restricted, how-
ever, to uniform ion densities. In this paper the problem
of nonuniform densities will be tackled in the same
spirit.
F. CHARACTER OF THE RANDOM MOTION OF IONS

It is intuitively reasonable to suppose that the drift
velocity of ions is their most important property from

11 Gregory H. Wannier; Phys. Rev. 83, 281 (1951). The two
papers will be treated as forming together a single unit.

the point of view of observation and that the random
motion about this mean value is essentially a diffusion
process. It will now be shown that this view is correct,
provided the medium is thought of as anisotropic with
the field direction as symmetry axis.

In order to prove this we modify Eq. (6) by assuming
f to be a density in phase space, depending on space
and time as well as velocity. If we adopt the notations

3/9r and 8/dc

for the gradients in ordinary and velocity space, this
formula reads

af(c, r,8)/0t+a-df(c, 1, 8)/dc+c-3f(c, 1, £)/dr
= Jarcerse, x o=t 1, 0)

1
X_'_dnch.

64
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We now make the assumption that we deal with a
distribution decaying at a constant small relative rate
in some spatial direction. In zero approximation this
distribution will displace itself with the drift velocity
{(c). But in addition to this drift current there will be
a current induced by the gradient which we propose to
compute. We thus write the particle density #(r, £) in
coordinate space in the form

n(x, )=ng exp[k- (r—(c)))] (65)
and the density in phase space
fle, 1, )=n(r, ){f(c)+/*(c)}. (66)

In this expression f(c) is the normalized unperturbed
velocity distribution which results from Eq. (6). f*(c)
is a correction to f(¢) which is caused by the presence
of the density gradient. It follows from the definition
of the problem that f*(¢) makes no net contribution
to the density, that is, that

f F4(e)de=0, 67)

It will make a contribution to the current, however.
The total current density j; is given in terms of f(c, r, £)
by the formula

Ji= ff(c: 1, t)cdc, (68)

which upon substitution of (66) decomposes in two
parts, stemming from f(c) and f*(c), respectively. The
first part just equals the product of density and drift
velocity and thus is the expected drift current. The
new current j induced by the density gradient thus
arises from f*(c) and equals

=n(r, 1) ff*(c, Hede. (69)

In order to justify the assumptions (65) and (66)
and, incidentally, to determine f*(c), these expressions
must be substituted back into (64). After simplification
with (6), the following equation results:

af*(c)
a-
ac

dr,dC
+ [ [or@re-merr e o
=—k-(c—{eN{f(c)+*(c)}.

This is an equation in velocity space only ; the disappear-
ance of the coordinates and the time proves the com-
patibility with (64) of the assumptions made in (65)
and (66). In solving Eq. (70) we observe that our in-
terest is only in diffusion, that is, the current resulting
from a concentration gradient when treated in first-
order perturbation. In this case both k and f*(c) are
to be treated as small, and their product in (70) is to be

(70)
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neglected. The equation then becomes

af*( )

+ f f () 70— M (C) (&)

(y
=—k-(c=(e))f(c). (71)

The homogeneous prototype of this inhomogeneous
equation is (6); arbitrary amounts of f(c) could thus
be added to a particular solution of (71) were it not for
the orthogonality condition (67) which makes the
solution definite.

The existence of the diffusion phenomenon follows
easily from Eq. (71). f*(c) is a linear function of
the three components k., k,, and k., with coefficients
which do not depend on the density or its gradient,
but only on the unperturbed velocity distribution f(c);
furthermore, the first two of these coefficients are equal.
Hence, from (69) j comes out as a linear function of the
three quantities #(r, £)k,, n(r, H)k,, n(r, Hk.; these are
the components of the density gradient as is evident
from (65); in addition, the multipliers of the first two
components are equal. We may write therefore

i=—(D)on/or, (72)

where (D) is a tensor which is axially symmetric about
the field direction; its two components, which we shall
call the longitudinal diffusion coefficient D), and the
transverse coefficient D1, are computed entirely from
the unperturbed velocity distribution f(¢). It is to be
noted, however, that they contain the acting electric
field as a parameter.

G. DIFFUSION FOR CONSTANT MEAN FREE TIME;
GENERALIZED EINSTEIN RELATION

It is not surprising, in view of the successes achieved

earlier, that explicit expressions can be derived for the

two diffusion coefficients if the model of Secs. C and E.

is adopted. The derivations, which proceed most easily

- by the classical method of Maxwell!? rather than that

of Sec. B, will be given in BSTJ.* The final result is
. m+M
7= —[

7
M {1—cosx) (#3)

n
— T e <c@><ck>}]

Xk

Here tensorial notation has been employed in order to
exhibit the tensor character of the square bracket,
which, from (72), is just the diffusion tensor. If we
substitute the explicit expressions (60), (62), and (63)
for the velocity averages in (73), we get

(m+M)rkT
Dj=———r
mM {1—cosx)
(m~+ M )3a?r3(2m(1— cosy)?+ M sinx)
mM*(1— cosx)¥(dm(1—cosx)+3M sinzx)’

2 J, C. Maxwell, Collected Papers (Cambridge University Press,
London, 1890), Vol. II, p. 40,

74)
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(m+M)rkT
T mM {1—cosx)
(m~+ M )*a*r*(sin’x)
+ mM?*(1— cosx )*(dm(1—cosx)+3M sinzx).

75)

Special formulations for the isotropic model are obvi-
ously derivable from these. The formulas valid for the
polarization force result by applying to them (30)
and (31).

Equation (73) may be thought of as the natural ex-
tension of the Einstein relation to strong fields. This
can be made explicit by writing it in the form

D,./mobility
=2X (mean random energy along #)/e,

(76)

where % stands for one of the principal directions of the
diffusion tensor. Equation (76) embraces both (73) and
the Einstein relation. This means it is valid (a) for all
interactions at low field and (b) for the mean free time
case at all fields. An occasion to examine its validity
beyond this range will present itself in the next section.

H. LONGITUDINAL DIFFUSION FOR THE CASE
OF SECTION D

Diffusion offers a good test case to substantiate the
claim made in Sec. D, namely, that specific quantities
of experimental interest can be derived from the
Boltzmann equation without working out the entire
velocity distribution. Longitudinal diffusion was picked
for computation, partly because its symmetry permits
the use of the restricted expansion (11) rather than a
more general expression, and partly because it looks as
though the quantity is accessible to experimental
measurement.’

For such a calculation the inhomogeneous equivalent
of the equation system (17) is needed. This system is
derived by following step by step the derivation of
Sec. B, starting out from (71) which differs from (6)
only in its inhomogeneous term. Skipping intermediate
formulations corresponding to Egs. (7), (8), and (14)
we pass directly to the inhomogeneous form of the
Egs. (17), which reads

av(s+v+1){c*1P,_1(cos?) }+a(v+1) (s—)
X {3 Pyyi(cos?)} — 2v+1)(1—-1,,,)
X {c*P,(cos?)/7(c)} = k[ v{c*'P,_i(cosd))
+ (r+1){c*T1P,1(cosd) ) — (2v+1){c cos?)
X{c*P, cos®))]. (77)

Here the curly brackets represent averages over f*(c),
that is, corrections to the angular brackets which are
caused by the density gradient. Equation (77) permit
addition of an arbitrary amount of the pointed brackets

13 The measurements of J. A. Hornbeck, Phys. Rev. 83, 374
(1951), give a fluctuation in the mean drift which shows up in

Fig. 5 for instance, by a rounding off of the vertical drop. One
would expect this to be due to longitudinal diffusion of the ions.
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to these curly ones, because the former satisfy the
homogeneous equations (17). This indeterminacy is
removed by (67).

Just as in Part I we do not have to solve the equation
system (77) completely in order to find the value of the
longitudinal diffusion coefficient. As previously, this is
trivially true for the case of constant mean free time.
Here Eq. (77) with s=»=1 yields the answer directly.
We find, using (16),

3M {1—cosx)
(M+m)r

Because of (65), (69), and (72) this is the longitudinal
part of (73) which is thus derived.

The computation of D) from (77) for other models
demands the use of the method of Sec. D. The case of
special interest is the hard sphere model for equal
masses. Let us specialize the system (77) for this case.
We render the velocity dimensionless by adopting (37);
we abbreviate further

(w*Py(cos®))= (s, »)

{c.}=k-3[(c.})—(c=)*].

(78)
and
{wsP,(cosd)} =kN{s, v}. (79)

The extra complication in the definition of the curly
brackets symbols is such that all external parameters
disappear from the equation system (77), which now
reads

v(s+rv+D{s—1, v—1}+ 4+ 1) (s—»){s—1, »+1}
—2v+-1D)(-1,,.){s+1, v} =v(s+1, »—1)
F D (51, v 1)— @11, 1)(s, ). (80)

Equation (80) forms a system of linear relations among
the curly bracket symbols. Their interconnection is the
same as the one shown in Fig. 4; hence the procedure
for solving the system is identical with the one in
Sec. D. The normalization condition is replaced by
(67), which reads in the present notation

{0, 0}=0. (81)
In the place of (38), (39), and (40) we find
{4, 0}=—(5/3){4, 1)+(5/3)(1, 1)(3, 0)
—(10/3)(2, 0)— (20/3)(2, 0)+-10(1, 1)2.  (82a)

1123, 0} —3{7, 0} =4(7, 1)—4(1, 1)(6, 0)
+(56/5)(5, 0)+(112/5)(5, 2)— (168/5)(1, 1)(4, 1)
—(1344/25)(3, 1)+ (1344/25)(3, 3)

+(448/5)(1, 1)(2, 0)— (448/5)(1, 1)(2, 2).

54{2, 0} —(295/28){6, 0}+(17/165){10, 0}
=—(17/135)(10, 1)+ (17/135)(1, 1)(9, 0)
—(17/36)(8, 0)— (17/18)(8, 2)+(17/12)(1, 1X7, 1)
+7(1, 1)(5, 2)+(54/5)(4, 0)+(108/7)(4, 2)
—(288/35)(4, 4)—(162/5){1, 1){(3, 1)

+(72/5){1, 1){3, 3).

(83a)

(84a)
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The knowledge of the unperturbed velocity averages
required by these equations is rather more extensive
than was anticipated in Part I. Most of them are de-
rivable from (41) and the coefficients following; for
some the accuracy so obtained is insufficient because
of cancellations in the equation system (17); these
were obtained by extrapolation. The resultant numbers
will be published in BSTJ.* Upon substitution the
equations become

{4, 0} = —10.494, (82b)
112{3, 0} —3{7, 0} =647.8, (83b)

54{2, 0} — (295/28){6, 0}
+(17/165){10, 0} = —566.4. (84b)

The following step could perhaps be improved. We know
in a general way that the diffusion correction to the
velocity distribution is some sort of p-type function.
What is needed, however, in this method is the correc-
tion to %(w); beyond the knowledge implicit in (81),
we know very little about it. In view of this ignorance
the form (41) was adopted for this correction, with new
undetermined coefficients p, ¢, 7, s. This is undoubtedly
a poor choice and explains the slower convergence ob-
served here than in (42), (44), and (46). To start with
the zero order is completely lost, because (81) yields a
zero coefficient. We find in first order, using (81) and
(82), pW=4.8842, ¢W=—4.2689, rV=5sM=0; in sec-
ond order, using (81), (82), and (83), p@=—10.542,
g®=-414.993, r@=—4.408, s®=0; in the third order,
using (81), (82), (83), and (84), p®=—0.8710, ¢®
=+41.1754, r®=41.0140, s®=—0.5809. The longi-
tudinal diffusion coefficient results from these numbers
by the use of (65), (69), and (72). With the notation

of (79) the formula becomes
D) =—a\¥{1, 1}. (85)

The average {1, 1}, in turn, is reducible to {3, 0} by
the appropriate equation (80). We find

{1, 1}®=—0.3693, (86a)
{1, 1}®=—-0.2075, ~ (86b)
{1,1}®=—0.2198. (86¢)

This extrapolates with reasonable certainty to
Dy =0.22a%)\5. (87)

To gain an appreciation of this result we can compare

it with the guess that would have resulted from (76).
The mobility concept is ambiguous for all but the cases
discussed then. It would seem that the appropriate
concept here is the differential mobility because com-
parison is made between a small density gradient and
a small change in the applied field. Thus, we would in-
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terpret (78) to mean

a(c.)
Dy =——[{c)—{ca)"], (88a)
da
which, with (37), (43), and (47), becomes
D) =0.26a*\1, (88b)

The error of formula (76) is thus 18 percent, when com-
pared to (87).

I. CONCLUDING REMARKS; GENERALIZED
RELATIONSHIPS

The purpose of these two articles was to develop the
theory of ionic motion sufficiently well so that the
presence of a strong electric field is no longer felt to be
an insuperable obstacle to the use of kinetic theory.
Explicit formulas, such as (43) and (87), were worked
out when the experimental situation seemed to indicate
the need for it.5® For a wider and less rigorous use,
estimates, such as (21) and (76), were presented. In
addition, there is in the formulas for constant mean
free time information which yields to judicious treat-
ment. For example, if we desire to know the drift
velocity of an ion for the hard sphere model and high
field, but arbitrary mass ratio, then we can start from
(18) replacing the mean free time by a mean free path

(cey=[(M+m)/M1(aN/c).

As usual in kinetic theory we interpret the ¢ in the
denominator as a root mean square value; then we can
substitute from (21) and get the final formula

(Coy= (M—+-m)imtM—tad\L (89)

For ions in the parent gas this expression differs from
(43) by only 4 percent. For electrons (89) checks the
result of Druyvesteyn? to within 12 percent. Finally,
for heavy ions in a light gas, where the answer can be
worked out rigorously also,® Eq. (89) is exact. Thus, it
qualifies as a reliable approximate formula.

Because of a shortage of space, certain proofs and
topics have been omitted from these two articles. A
more extensive account is to appear shortly in the Bell
System Technical Journal.*

These two articles owe their existence to the stimula-
tion of Dr. J. A. Hornbeck of this laboratory. In the
course of his experiments he perceived the gap in the
existing theory which this study is intended to fill.

J. ERRATA IN PAPER It

The definition of I, , given in Eq. (16) does not agree with the
verbal statement on the page preceding. A factor (M +m)2/2Mm
has to be added to the verbal definition of I, ,.

In the formula lying between (19) and (20) a factor {1—cosx)
has been omitted in the denominator.

In formula (32) the second M should be an N.

In formula (63) the factor M? in the denominator should
read M.



