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o(-)-1+V-
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E+zg-H (A9)R 'HR=RtHR=H*, (A5)

Eq. (A2) becomes equivalent to (A3) and thus to (Ai). We see
then that the condition for invariance under time reversal is the
existence of the operator R.

We now apply the results just derived to our problem. Spe-
cifically, we introduce "time reversed" states according to the
definition

This proves the remark made in the text following Eq. (9).
Written more explicitly, Eq. (A8) furnishes the information

(c», n(-)c.) =(c ., o(+)c t,). (A10)

As a further illustration of the interconnection between the
various operators T(+) and state vectors +(+) we note the follow-

ing results:(A6)y= Rkb
%,(+)=M, (+)*=0( )t4
~~(-)=m &(-)*=a(+)c &.

where 4 q is the time reversed state corresponding to Cq. I For
the simple case of a particle without spin, R is unity and if
4»=exp(ik r), 4 t, =exp( —ik r) which evidently corresponds to
a wave traveling in the opposite direction and hence with reversed
velocity. ] From our explicit equation for Q'+&, namely,

(A11)

These express the not unexpected interchange of incoming and
outgoing scattered waves. With (Aii) it is easy to show that the
usual form of the reciprocity law4

(+~( ), VC )=(C~, V+,(+)) (A12)10(+)=1+ . . -V, (A7)

where R is a unitary time independent operator which has the result
property

one finds using (A5)

RtO(+)R=i+,V*=n'-»',1

E+zg —H*

where we have assumed Hp and V are hermitian and used the

takes on the form

(4, VQ(+)4 g)=(Cg, VO(+)C }
or, in terms of T&+)= VQ(+),

~(+)—T& (+)

(A13}

(A14)
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The calculations of Kimball and Mullaney applying the cellular method to elemental silicon are extended
to a higher approximation. Although the energy gap is decreased through use of a larger number of har-
monics, the values obtained are still much higher than that given by experiment. The proposal of Pearson,
Haynes, and Shockley that the highest point of the filled band and the lowest point of the conduction
band do not occur at the center of the zone may have a bearing on the results, since the calculations reported
here are performed for zero wave number. The effective mass of the conduction electrons is determined
under the assumption that the lowest point lies at the center of the zone.

INTRODUCTION

HE pure silicon crystal has the diamond type
lattice and an experimentally known excitation

energy as a semiconductor of 1.12 ev. ' Kimball' obtained
a solution for the band structure of diamond by use of
the cellular method and Mullaney' adapted the diamond
solution to silicon. Essentially the same method is used
in part I of this paper to determine the lowest energy
limit of the conduction band and the highest limit of the
611ed band, each for several possible values of the
lattice spacing (under the assumption that the band
limits occur at the center of the brillouin zone in a
reduced scheme). The principal diBerence from previous

work is in the choice of boundary conditions to be used
in the 6tting. In part II the functions obtained in
part I are used to determine the effective mass for the
conduction electrons.

The work reported here was performed in 1949 when
it seemed likely that the top of the 6lled band and the
bottom of the empty band did occur at the center of
the brillouin zone. Pearson, Haynes, and Shockley
have presented evidence4 that these points may actually
lie elsewhere in the brillouin zone. In spite of this, the
calculations seem worth presenting brieRy for their
general value in connection with the properties of
silicon.

I. THE BAND LIMITS

' Pearson, Haynes, and Shockley, Phys. Rev. 78, 295 (1950).
F. C. VonderLage and H. A. Bethe, Phys. Rev. 71, 612 (1947).
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I'4'. X, yS. (2b)

In order to fit the total wave functions of (1) so that
they are continuous and have the periodicity and
symmetry of the lattice, the appropriate number of.

boundary conditions must be chosen on the surface of
the unit cell of the lattice. Figure 1 shows the poly-
hedron formed by passing bisecting planes perpendicu-
larly through the lines joining a given silicon atom to
its nearest and next-nearest neighbors. Since there are
two atoms per unit cell in the silicon crystal, the surface
of the unit cell is made up of two such polyhedra
coinciding in a hexagonal face but rotated 60' with
respect to each other about the line joining the two
atoms of the unit cell. At equivalent points of the two
polyhedra of the unit cell the F& wave function is
equal-valued but has opposite signs in the two poly-
hedra; the F4 wave functions for the two polyhedra
pass into each other upon inversion in the midpoint of
the common hexagonal face. The boundary conditions
are applied at points of special symmetry, "u," "b,"

TABLE I. Band-limit energies and excitation energies.

Internuclear
separation

(Bohr radii)

4.44
4.66
4.88
5.48

(conduction band)
(Rydberg units)

0.314
0.159
0.057—0.091

(filled band)
(Rydberg units)

—0.424
~ ~ ~

—0.465—0.448

Excitation
energy

(electron volts)

9.983
~ ~ ~

7.068
4.834

' D. H. Ewing and F. Seits, Phys. Rev. 50, 760 (1936).

where the Vp are surface spherical harmonics and the
R~ are solutions of the radial Schrodinger equation for
the free silicon atom. If the C&„are obtained explicitly
leaving the A& undetermined, the total P may be fitted
at the surface of the lattice cell for only a particular
value of the energy, which appears as a parameter in
the R&. The angular parts may be constructed by noting
that in the work of both Kimball and Mullaney the
following conclusions are reached:

(1) At the bottom of the conduction band the wave functions
are s-type about each nucleus and change sign upon inversion
through the center of symmetry midway between adjacent nuclei.

(2) At the top of the ulled band they are correspondingly
p-type and even.

Thus it would be expected, ' if these conclusions are
actually acceptable, that the characteristic polynomials
for the conduction band belong to the I'~ representation
of the tetrahedral rotation group which expresses the
symmetry of the silicon lattice, while the polynomials
for the filled band would belong to the F4 representation.
Since the contribution of the higher harmonics is
presumably small, only the erst three characteristic
polynomials were used in the total f for the conduction
band, and only the first two for the 6lled band; these
polynomials are listed below:

I'& .'1, xys, x'y'+y's'+x's' —st(x'+y4+ s4); (2a)

FIG. 1. The cellular polyhedron for silicon.

"c," and "d" of Fig. 1. Point "u" lies midway between
two nearest neighbors at an experimentally determined
distance of 2.22 Bohr radii from each atom of the unit
cell. At "u" the total wave function with the symmetry
of I'~ should have a node, while the total wave function
belonging to I'4 should have a vanishing radial deriva-
tive. The vertices of four translationally equivalent
polyhedra coincide at "b";at this point the F& function
may be expected to have a vanishing radial derivative,
while the I'4 function itself should be zero. The third
boundary condition needed for the I'~ wave function is
obtained by noting that points "c"and "d" exchange
symmetries on passage between the two polyhedra,
so that the wave function at point "c" must be the
negative of that at point "d."The following, then, are
the boundary condition equations:

r, : it(~)=O, (@/dr)„,=O, y(c)= y(d) (3)— .
I', : (dP/dr) (.) 0, P(b) = Q. —— (4)

When the f's of Eq. (1) containing the polynomials
of Eq. (2) are substituted into Eqs. (3) and (4) there
result two systems of equations for the A& for the two
cases, F& and F4.' The determinantal equations which
are the conditions for the solubility of the equations in
the A& are satished only when the R& going with a
particular energy are used. The eigenenergy was ob-
tained for several lattice spacings with the results
given in Table I.

Thus the energy gap as calculated for the center of
the zone is much greater than 1.12 ev, the experimental
value; however, as mentioned above, recent evidence'
indicates that the smallest band separation may
correspond to other than zero wave number.

II. THE EFFECTIVE MASS

The one-electron wave functions which were 6tted to
the silicon lattice in the preceding work may be used in

~The values of the radial wave functions E~ were obtained
directly from reference 3 or by numerical integration using the
effective potential given in reference 3,
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TAarz II. The ratio ta*/m.

Internuclear separation

4.44
4.80
5.00

0.223
0.186
0.164

expansion. %ith this definite form for g", y' is com-
pletely specified by Eq. (10) and, thus, x& is completely
specified by Eq. (8). The energy E& going with z& may
now be obtained from

Eo= cpjI Xo+8 i(k.r)
~

V&+ V lxopi'{x r)dr, (12)
)

a determination of the effective mass of an electron
occupying a level near the bottom of the conduction
band. ' We take the one-electron wave function going
with wave number k in the form

where the following normalization condition is to be
imposed on XI, '.

Xy XgdT = 1. (13)

as usual, so that P of Zq. (1) is given by

(6)

For small k=
~

k
~

we assume

xo = xo+tkx

where iky' is a small perturbation on yo, and substitute
into Eq. (7), obtaining (with the neglect of second-order
terms)

The differential equation satisfied by pI, which is ob-
tained by substituting the form (5) into the Schrodinger
equation satisfied by P&, is

iV)'
V'xo — (ir Vxo)+ Vxo

2m m

The integrals in both (12) and (13) are to be taken over
the unit cell. %hen the explicit form for yq along with
the differential equations satis6ed by xo, p', and x"
are used in Eqs. (12) and (13) (and higher order terms
neglected) the following form for Ei, results:

k'k' c'A'k'
t

Bx'
Eo=Eo+ + —

yom~ ax

Here the k vector has been arbitrarily chosen in the
x direction for numerical computation, since, to the
approximation used here, the direction chosen at the
center of the zone is not significant. If E~ is expressed
in the usual form,

Eo——Ep+ 5'k'/2m*,

then no~, the eGective electron mass, takes the form

—(5'/2m) Vox' —(ko/km)(k Vxo)+ Vy'=Eox' (9)

(10)

The total solution of (9) may be taken in the form

x'= —[(ir r)/kjxo+x",

where g" satisfies

~ -1

2)t xo(8y'/Bx)dr

P
' xp'dr+k' ' x"dr

(16)

—(k'/2ns) V'y"y Vx"=Eox". (11)

Since x' and therefore y", have the symmetry of Vyo,
i.e., the F4 symmetry, an expansion of the type of
Eq. (1) may be made for y" using the radial functions
going with Ep and the angular harmonics given in (2b).
The boundary conditions of Eq. (4) may be applied to
y" to determine the coefficients of the two terms in the

This work follows that of J. Bardeen, J. Chem. Phys. 6, 367
(1938).

with all integrals, again, to be taken over the unit cell.
The integrals in (16) were performed numerically for

three values of the lattice spacing with the results for
the ratio of m* to m given in Table II.

A value of m*/m of 0.67 has been reported by
Pearson and Bardeen, ' but it is not certain at this time
that the calculated values have immediate bearing on
the values obtained by Pearson and Bardeen.

' G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).


