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The Scattering of Elementary Particles by Complex Nuclei —A Generalization
of the Impulse Approximation
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By a systematic iteration procedure it is shown how the problem of the scattering of an elementary par-
ticle by a complex nucleus I'or any many-particle target system) can be expressed in terms of two-body
operators. The results are related to the previous work of Chew and Wick on the impulse approximation,
with special attention given to multiple scattering effects which have heretofore not been formulated in a
rigorous way. An explicit formula for the double scattering terms is presented.

I. INTRODUCTION
' 'N a recent paper, ' hereafter referred. to as I,A. ,
~ ~ Chew and Wick have presented a tentative analysis
of the problem of the scattering of elementary particles
by complex nuclei. They discuss the nature of the errors
involved in treating such problems by the so-called
"impulse approximation" introduced earlier by Chew. '
The basic idea of this method may be stated as an
attempt to represent the scattering amplitude from a
complex nucleus as a superposition of scattering ampli-
tudes from "free" nucleons which have the same mo-
mentum distribution as the initially bound nucleons.
The assumptions under which the approximation is
valid. were stated to be tlie following: (I) The incident
particle interacts only with one single nucleon at a
time. (II) The amplitude of the incident wave is not
appreciably diminished in crossing the nucleus. (III)
The binding force has a negligible efI'ect during the
interval of strong interaction. Of these three assump-
tions, only (III) was discussed quantitatively in I.A.
and even so, the mathematical treatment was based on
a variational method which appeared unnecessarily
devious. Shortly after the paper was submitted, Ashkin
and Kick' succeeded in making a straightforward treat-
ment of (III) for the case of the scattering by a single
bound nucleon. The purpose of the present paper is to
present a formal solution to the complete problem of
expressing the scattering from a complex nucleus in

terms of two particle operators. Our results include
those of Ashkin and Wick as a special case and also
permit a systematic discussion of assumptions (I) and
(II).

II. FORMULATION AND SOLUTION OF
THE PROBLEM

The problem is that of the scattering of a particle by
a complex nucleus. The total Hamiltonian is (following

' G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952).' G. F. Chew, Phys. Rev. 80, 196 (1950).
~ J. Ashkin and G. C. Wick, Phys. Rev. 85, 686 (1952).

the notation of I.A.)

with
H=HO+ V„

HO=X+V.

E is the total kinetic energy operator, U the nuclear
potential energy, and V is the total interaction between
the nucleus and incoming particle. We shall, suppose V
to be of the form

where V~ is the interaction potential between the pro-
jectile and the 0th nucleon. Hp is the "unperturbed"
Hamiltonian in terms of which the initial and final
nucleus plus free particle states are classified. (We shall
not be concerned here with the so-called pick-up proc-
esses in which the incident particle forms a bound state
with one of the target nucleons). By adopting the for-
malism of I.ippmann and Schwinger, 4 the exact solution
of our problem may be expressed in terms of either of
two state functions 0', &+&, +p( ' which satisfy the inte-
gral equatIons

(+)—g& + . V+ (+)
E,+ir) Ho—

+~
(—)=+~+ V+ ~

(-)
Eg—ig —Hp

(4b)

4 B. Lippmann and J. Schwinger, Phys. Rev. 79, 481 (1950).

where the 4 and C~ are eigenfunctions of Hp belonging
to the same energy E, the total energy of the system.
In terms of these functions, the matrix elements of the
operator T, the square of which is essentially the transi-
tion probability of interest, may be written as

T .= (C, V+.(+))= (4 '-), VC.),

with E, Eg=E.
We now replace the fundamental Eqs. (4) by operator
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equations. Define two operators 0(+) and 0( ) by

Q(+)+ —ip (+)

g(—)tcb —@b(—)

(6a)

(6b)

operating on (10a), say with (E,+ig H—p) 'V and
observing that the equation which results after some
manipulation is just the first of Eqs. (7). It is clear
that (10a) and (10b) may also be written

where $ means Hermitian adjoint. (We here deviate
from the notation of I.A. where the symbol 0 is used to
represent the operator designated in this paper by &d'+'. )
The C are assumed to be a complete set so that (6)
defines the operators 0(+). They satisfy the equations

tkk
P

0'+ = I—i, '

dxe l~e" I'+ '*Ve '~'~

0

0&—
& 1 i t dxe»e &&ip*v—e«ep+v&*

(11a)

(11b)

n&+&= 1+ -Vn&+&,
E,+i' Hp—

n&-&= 1+a&-&V
Eb+iq —IIP

(7b)

so long as 0(+) is always going to operate on C, to the
right and 0& ' on 4k* to the left. The operator Eqs. (7)
may actually be freed of all reference to the states 4,
and C» by writing them as

pp
n(+) = & —i dxe"e'&o'Vn(+) (8a)

p0
dXerf~e —t'&o~Q (—) Vet&0~ (8b)

We shall continue, however, to use the forms given by
(7) since there is no loss in generality.

In terms of 0(+) we may write expressions for oper-
ators T(+) and T( ) which have equal matrix elements
between states 4, and 4b of the same energy and are
both equal to the operator defined by Eq. (5) in such a
case. Ke define

T(+)= VQ(+),

T'(-) —g(-) V

(9a)

(9b)

(1Oa)f1&+& —1+ V,
E,+ig Hp V——

0& '=1+V
Eh+i» Hp V——(10b)

as one may verify by expanding in powers of V and
comparing with the iteration solution of Eqs. (7), or by

In the Appendix it is shown that, except for the time
reversal unitary transformation, Q( ) is the transpose
of 0(+) and T( ) is the transpose of T(+). Thus, it is
really only necessary to write equations for the (+)
operators. However, because the properties of the time
reversal unitary transformation are familiar to only a
small number of people, we have elected to write out
the two equations in most cases.

The fundamental step of our development and the
first original contribution of this paper is the recognition
of the fact that the Eqs. (7) can be written in the form

(12)r(+) = V+V V.
E,+i' Hp V——

This expression, while exact and representing the formal
solution of the complete problem, is of course not easily
evaluable. We proceed then to rewrite (12) in a form
suitable under certain conditions to an approximate
evaluation. First we introduce the two particle scatter-
ing matrices t~(+) and tI, ( ' for the kth nucleon, defined

by
(tk&+&)m~= (X~, Vkg„, k&+&),

(tk
—)„„=(p„,k&-', Vkx„),

where the f's are solutions of the equations

(13a)

(13b)

4'k k Xl+ Vkg'k k

Ed-iq —K

The physical meaning of the operators 0(+) and 0( '

is most clearly seen in the formalism of Ashkin and
Wick, ' who do not eliminate the time as we have done
here. They show, for example, that if the system is in
the state 4, "before" the collision, 0(+) is the operator
which transforms 4, into the state %b(+) which exists
"during" the collision. It is perhaps unfortunate that
in the formalism used here, which deals with a sta-
tionary state of the system, the concept of collision time
is obscure. The advantage of the stationary state ap-
proach, of course, is that one avoids the introduction of
wave packets.

The forms of Eqs. (10) and (11)are such that we may
easily develop an expansion of Q&+& (or 2'&+&, using
Eq. (9)) in powers of U. Such an expansion for the
single scatterer problem was the object in I.A. and in
the work of Wick and Ashkin. ' The procedure of keep-
ing only the zeroth-order terms of these expansions
(terms independent of U) is quite properly referred to
as the impulse approximation, since it corresponds to
neglecting the eGect of the binding field during the
collision. However, when more than one target scatterer
is present, as is always the case in a complex nucleus,
the evaluation of these zeroth-order terms still requires
solution of a many-body problem. We need to make a
further approximation in order to obtain a workable
formula, and the systematic formulation of this further
approximation will be the second essential contribution
of this paper.

The formal expression for the operator T(+) is
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The y's are eigenfunctions of E, and E~ is the eigen-
value of X belonging to y~. It is essential to differen-
tiate between tq(+& and 4& & since we require their
matrix elements between states of unequal energy. We
also introduce the analogs of Eqs. (9) and (10):

which when substituted into (20) with a slight re-
arrangement of terms, yields

1
2(+)=P ~ (+&+V [U p)a(+)]

E.+ig IXp—V—

where

(15a)

(15b)
1

+ 1+V (V—Vk) (p) a(+' —1)
E,+ir& Hp —V—

(21)

(pk(+) —1+
E(+i)& X —Va—

(16a)

&a'+'= A.
E(+i1&—E'—Va

The relation between (17) and (18) is as follows:

E + = ba +)+(1/E +i)&—Hp —V)
X{[U, bk'+']+ (V—Va) ba'+') (19a)

This identity is proved by the technique intro-
duced in I.A. , Eqs. (25) to (28). The method con-
sists of writing 4,=P)&()(x), C,) and using the operator
relation (I'—Q) ' —I' ' = (I' Q)

—'QI' —', t—ogether
with HOC =E,C,. There also exists, of course, a re-
lation corresponding to (19a) for (—) type operators,
B( )=&(E-b+i)& Hp V—) ':—
B( )=bk( )+([ba( ', U]

+ba( &(V Va))1/{E—b+i)& —Hp —V). (19b)

p)a( '=1+Va (16b)
E(+i )& E Va— —

The validity of (16) requires p)a(+) to be operating to
the right on x~ and co~& ' to be operating to the left
on x)

At this point a fundamental identity is to be derived.
Let the symbol 8~+) represent any operator of the form

1
g (+)— (17)

E +ir& Hp V——
where A is an arbitrary operator. Let b~&+& represent a
corresponding operator,

The importance of breaking up T&+~ in this way is
that often the part, Patq(+), is much larger than the
remaining two parts, and the operator, t~&+&, is rela-
tively tractable, depending only on the kth target
particle and the incident particle. An adequate and
workable approximation in many cases is thus obtained
by evaluating Pa)'a(+) exactly and either neglecting
completely the last two parts of (21) or approximating
them by further iteration as shown below.

The significance of the last two terms is suggested by
the observation that in general when U vanishes, the
term containing [U, (pa(+)] vanishes, while the other
remains. On the other hand, when there is only a single
target particle, the term containing (V—Va)(&pa(+) —1)
vanishes, independently of U. The connection with the
arguments given in I.A. is, therefore, as follows: The
term proportional to [U, (pa(+)] represents the error
associated with assumption. III, the impulse assump-
tion. The term proportional to (V—Va) ((pa(+) —1) com-
bines the error due to assumptions I and II. We might
call this either the multiple scattering error or the
opacity error, neither name being perfect. One thing is
clear at this point. The name "impulse approximation, "
which has been given to the procedure of neglecting
both the last two parts of (21), is misleading, since it
suggests that multiple scattering effects are not omitted.

III. THE ERROR CAUSED BY THE IMPULSE
ASSUMPTION

By making use of (10b), (7b), and (9b) one sees
that, for transitions to states C~ of the same energy as
C,(Eb——E,=E), the second part of (21) is the same as
the expression derived in I.A. for a single target particle:

1
V [U (pa(+)]—[11(—) 1][U ~a(+)]

E+ir) Hp V——I't is important to notice that the identities (19a) and
{19b) can be used over and over again in a kind of
iteration procedure.

To make a 6rst application of our identities, let us
rewrite Eq. (12) as

1= T(—) [U (p (+)] (22)
E+ir& IIp—

N
1T(+)= P Va+ V ~a"

k 1 E,+i)f& Hp V——

A first approximation to (22) is obtained by application

(20)
of (19b):

We can apply (19a) to obtain
V =QaVa
E+i)& Hp VE+i)& H—p V— — —

Va = (~a(+)—1)+
E,+i » Hp V——E,+ir& IIp V——

X([U, ~k'+']+(V —Vk)(~k'+' —1)),

=Pa(~a( ' —1)+Ra([~a( ', U]

+(~k' ' —1)(V—Va)) (23)
E+ig Hp V——
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+P P Q (&0s & & —1)Vs" (o&s&+&—1). (28)
QsQs (o&i & & —1)LU, o&s&+&]

Regarding this as the second step of an iteration possible to re-express (27) as
procedure, it is consistent to keep only the term
Ps(o»& & —1) if the iteration is converging rapidly.
Thus (22) is approximated by

=+span ts & ' LU, o&s&+&]. (24)
Er+ir& K—

The statements made in I.A. as to the conditions under
which this error is small need no modification here.
It should be noted that the result of Wick and Ashkin'
corresponds to the original form of this term given in
(21), i.e., the form which is valid for all matrix elements
of T&+& and which may be expressed without reference
to C as

0

sV d&egxei&rrp+v&2[U ~ &+i]e—iHox
) (25)

JV. THE MULTIPLE SCATTERING ERROR

The third term of (21) can also be written in a
variety of ways for transitions which conserve the
energy, since

The first part of (28) clearly represents double scatter-
ing, and this is, of course, very plausible as a next
approximation to the single scattering terms +st~&+&.
The second part of (28) involves three particles and
should be neglected unless higher order terms are also
kept in (23). Thus the final result for the first-order
multiple scattering (double scattering) is

Q P [~, &
—

&(o&s&+& 1)

—P Q )s, &
—

& 4&+& (29a)
E&+sr& K—

It is worth recalling here a fact pointed out in I.A.
We might just as well have begun by rearranging T' &

as T&+& and would then have arrived at Ps4&-& as a
erst approximation, with the double scattering term

(29b)

1+V —g(—) —y(—)y—i

E+sr& Ho V—. — (26)
and the impulse correction term

PP [„„&—
& U](„„,&+& 1) (30)

Thus, a possible form for the multiple scattering term
in (21) is

The following qualitative interpretation may be given
this expression: The fa,ctor (o&s&+&—1) represents the
outgoing wave from the kth nucleon. If the interaction
between the incident particle and the individual nu-
cleons is of short range in configuration space, then the
dimensionless operator V '(V —Vk) is localized at the
positions of all the nucleons except the kth. Thus, the
contribution of the kth term to the sum is proportional
to the amplitude of the outgoing wave from the kth
nucleon, evaluated at the positions of all the other
nucleons. This is precisely the situation surmised on an
intuitive basis in I.A. We have no reason to change the
rough qualitative estimates made in that paper of the
multiple scattering, but we can now give a formula
suitable to quantitative calculation in the general case.

To obtain this formula, we carry out for the multiple
scattering part of (21) the rearrangement (23) and
again keep only the term Qs(o&s& ' —1). Thus, the
multiple scattering term in 6rst approximation is

The two alternate forms are essentially the trans-
poses of each other, and Hlatt' has pointed out that if
one wishes explicitly to maintain the property of de-
tailed reversibility one should take the mean of the two.
Actually, as shown by Ashkin and Wick, ' the difference
between the two is less than the residual error in the
approximation.

APPENDIX

The material to be presented in this Appendix is not intended
to be an exhaustive discussion of the subject of time reversal but
rather only to clarify the remarks made above. We assume that
the Hamiltonian of our system may be written as B=Pp+V.
If a system described by a state vector +(t) which satisfies the
time dependent Schoedinger equation,

zae(t)/at =He(t), (A1)

is to be invariant under time reversal, then the state vector
+(—t), which evidently satisfies

—iae( —t)/at =II+(—t), (A2)

must be a possible solution of Eq. (A1). The appearance of the
minus sign in (A2) suggests looking for the connection in the
complex conjugate of (A1) )the state vectors 4'*ill must be
regarded as being on an equal footing with the +(tl j, namely,

—ice*(t)/Bt =K*+*(t). (A3)
If then

L1+Qs (o&s ' ' —1)jets(V —Vs)(o», +' —1). (27) e(—t) =Re*(t), (A4)

Noticing that Ps(V —Vs)(a»&+& —1) may be written
PPsws Vs. (o&s&+& —1), and remembering (15b), it is

5 J. M. Blatt, private communication.' The notation employed here is largely based on unpublished
notes of lectures given by J. Schwinger at Harvard in 1948.
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o(-)-1+V-
1

E+zg-H (A9)R 'HR=RtHR=H*, (A5)

Eq. (A2) becomes equivalent to (A3) and thus to (Ai). We see
then that the condition for invariance under time reversal is the
existence of the operator R.

We now apply the results just derived to our problem. Spe-
cifically, we introduce "time reversed" states according to the
definition

This proves the remark made in the text following Eq. (9).
Written more explicitly, Eq. (A8) furnishes the information

(c», n(-)c.) =(c ., o(+)c t,). (A10)

As a further illustration of the interconnection between the
various operators T(+) and state vectors +(+) we note the follow-

ing results:(A6)y= Rkb
%,(+)=M, (+)*=0( )t4
~~(-)=m &(-)*=a(+)c &.

where 4 q is the time reversed state corresponding to Cq. I For
the simple case of a particle without spin, R is unity and if
4»=exp(ik r), 4 t, =exp( —ik r) which evidently corresponds to
a wave traveling in the opposite direction and hence with reversed
velocity. ] From our explicit equation for Q'+&, namely,

(A11)

These express the not unexpected interchange of incoming and
outgoing scattered waves. With (Aii) it is easy to show that the
usual form of the reciprocity law4

(+~( ), VC )=(C~, V+,(+)) (A12)10(+)=1+ . . -V, (A7)

where R is a unitary time independent operator which has the result
property

one finds using (A5)

RtO(+)R=i+,V*=n'-»',1

E+zg —H*

where we have assumed Hp and V are hermitian and used the

takes on the form

(4, VQ(+)4 g)=(Cg, VO(+)C }
or, in terms of T&+)= VQ(+),

~(+)—T& (+)

(A13}

(A14)
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The calculations of Kimball and Mullaney applying the cellular method to elemental silicon are extended
to a higher approximation. Although the energy gap is decreased through use of a larger number of har-
monics, the values obtained are still much higher than that given by experiment. The proposal of Pearson,
Haynes, and Shockley that the highest point of the filled band and the lowest point of the conduction
band do not occur at the center of the zone may have a bearing on the results, since the calculations reported
here are performed for zero wave number. The effective mass of the conduction electrons is determined
under the assumption that the lowest point lies at the center of the zone.

INTRODUCTION

HE pure silicon crystal has the diamond type
lattice and an experimentally known excitation

energy as a semiconductor of 1.12 ev. ' Kimball' obtained
a solution for the band structure of diamond by use of
the cellular method and Mullaney' adapted the diamond
solution to silicon. Essentially the same method is used
in part I of this paper to determine the lowest energy
limit of the conduction band and the highest limit of the
611ed band, each for several possible values of the
lattice spacing (under the assumption that the band
limits occur at the center of the brillouin zone in a
reduced scheme). The principal diBerence from previous

work is in the choice of boundary conditions to be used
in the 6tting. In part II the functions obtained in
part I are used to determine the effective mass for the
conduction electrons.

The work reported here was performed in 1949 when
it seemed likely that the top of the 6lled band and the
bottom of the empty band did occur at the center of
the brillouin zone. Pearson, Haynes, and Shockley
have presented evidence4 that these points may actually
lie elsewhere in the brillouin zone. In spite of this, the
calculations seem worth presenting brieRy for their
general value in connection with the properties of
silicon.

I. THE BAND LIMITS

' Pearson, Haynes, and Shockley, Phys. Rev. 78, 295 (1950).
F. C. VonderLage and H. A. Bethe, Phys. Rev. 71, 612 (1947).

*Presented in partial fulfillment of the requirements for the
degree of Doctor of Science to the Department of Physics « the The total one electron eigenfunction may be ex-
Carnegie Institute of Technology, Pittsburgh, Pennsylvania.

)Now at the Oak Ridge National Laboratory, Oak Ridge,
Tennessee.' H. C. Torrey and C. A. Whitmer, Crystal Rectzfuvs (McGraw- P=Qt &t[Q~G~l'i"(4, &)]A(&, «), (&)
Hill Book Company, Inc., ¹wYork, 1948), p. 64.' G. E. Kimball, J. Chem. Phys. 3, 560 (1935).' J. F. Mullaney, Phys. Rev. 66, 326 (1944).


