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Scattering of Electrons from Point Singularities in Metals*
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Mott's calculations on the scattering of electrons from substitutional impurity atoms are extended to
include the scattering from interstitial atoms and vacancies; the eGects of lattice distortions around the
singularities are taken into account. It is found that the lattice distortions do not change the order of mag-
nitude of the calculated resistivity in most cases of practical interest, but may in some cases make a diEer-
ence of a factor of three or more for substitutional atoms of the same valence as the replaced atoms. It is
concluded that the resistance change due to a dissociated vacancy-interstitial pair in a monovalent metal of
atomic number Z is about equal to or somewhat larger than that due to two divalent substitutional atoms
of atomic number Z+1. Changes in the temperature-dependent part of the resistivity as a result of lattice
distortions are found to be of the same order, at room temperature, as the changes in the residual resistivity
due to the lattice distortions.

I. INTRODUCTION

HE scattering of electrons in solids by isolated.
point singularities, such as impurity ato~, has

received attention in connection with the theory' ' "of
'the change in electrical conductivities of metals upon
alloying and with the theory of mobilities in semicon-
ductors. Pr'evious theoretical work" on the scattering
of electrons in metals has taken account of the scatter-
ing arising from (1) the screened Coulomb potential
associated with the substitutional atom, of valence
differing from that of the replaced atom, and (2) the
diGerence in the average potential within the atomic
polyhedron of the substitutional atom from that within
the replaced atom, in the case that the impurity atom
and the atoms of the mother lattice are of the same
valence. Calculations based on these eA'ects lead to
semiquantitative agreement with experimental results
on the electrical resistance of dilute solid solutions. In
cases where one might expect good agreement between
theory and experiment, namely, for the monovalent
metals, the ratio of the observed resistance change to
that calculated by the Thomas-Fermi method for
effect (1) above is of the order of 1/7; Mott has at-
tributed this discrepancy to errors inherent in the
Thomas-Fermi method.

Interest in the general problem of scattering of elec-
trons by singularities in metals has been revived because
of the potentialities4 of resistance measurements for the
study of radiation damage to structural materials. One

of the primary problems in the study of radiation dam-

age' is the determination of the number of interstitial

atoms and vacancies, produced as a result of irradiation
with energetic particles, as a function of temperature,
atomic number, crystal structure, and any other experi-
mental parameters. It is clear that resistance measure-
ments represent a powerful tool in such investigations,
once the scattering cross sections of the singularities
are known.

In the lattice surrounding point singularities there
will, in general, exist elastic distortions, i.e., deviations
from perfect periodicity, which give rise to scattering
potentials in addition to those mentioned above. The
scattering arising from this source has previously been
neglected, and neither the magnitude nor the sign of
the eGect on the resistance has been determined. It is
intuitively reasonable to assume that the e6ect of the
elastic distortions on the resistance will be small com-
pared with that of the screened Coulomb potential of a
substitutional impurity atom of different valence but
of about the same size as the atom it replaces; however,
in connection with the interest in measurements of
radiation damage, it is not obvious that the effect will

be negligible for an interstitial atom or vacancy,
around which the atomic displacements may be large.
The purpose of this note is to examine the effects of the
lattice distortions on the electrical resistance for the
several interesting cases of vacancies, interstitial atoms,
and substitutional impurities, and, in particular, to see
if it is possible to explain by distortion effects the exist-
ing discrepancies between theoretical and experimental
resistivities of substitutional alloys, so that the scatter-
ing from vacancies and interstitials can be calculated by
the same methods.

* Research supported by the ONR and AEC.
' N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936). II. CALCULATION OF THE SCATTERING

F. Mott and H. Jones, Properties of Metals and Alloys MATRIX ELEMENT
(Oxford University Press, London, 1936), Chap. VII.

'K Huang Proc. Phys. Soc. (London) 6P 161 (1948) According to Matthiessen's rule, we may treat the
'E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950); scattering from the singularities independently of the

G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949) and purely thermal eGects; in the early part of this work,
references contained therein.

'Henderson, Cooper, and Marx, Phys. Rev. S6, 642 (19/2) therefore, we shall completely ignore interactions with
and Marx, Koehler, and Wert, Phys. Rev. 86, 643 (1952). The lattice vibrations, and the resistance we shall calculate

'ter 's indebted to Professor Koehler for discuss'ons of these is the chancre in residual resistance of a lattice upon the
experiments before publication.' F. Seitz, Disc. Faraday Soc. 5, 271 (1949). introduction of point singularities. With the above cus-
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SCATTER I N G OF ELECTRONS 769

tomary simplification, our problem reduces to the calcu-
lation of the matrix elements of the perturbation
Hamiltonian for an electron in a stationary distorted
lattice. We shall make the further simplification that the
imperfections scatter independently, i.e., that all inter-
ference terms vanish; this assumption is certainly valid
for sufficiently dilute solid solutions but may lead to
small errors in the radiation damage problem if an
appreciable fraction of the interstitial atoms are within
one or two atomic distances of vacancies.

The perturbation Hamiltonian may be approxi-
mated by

FI(r) =P' v, (r—R,—U,)—Q v, (r—R;),

for that atom in a normal lattice site. The extent to
which this assumption is justified will be considered in
Sec. IV.

We now compute the matrix elements of the above
perturbation Hamiltonians between two electronic
plane wave states characterized by the propagation
vectors lr and k'. The matrix elements we require are

(~'i&la) = Q ')I exp( —ik' r)7W(r)+w(r) j
Xexp(ik r)dr =M(x)+m(x), (6)

where

we may write Eq. (1) as

H(r) =8'(r)+w(r), (3)
where

8'(r)——P' U; vv(r —R;), (4)

and w(r) is as defined below. The reason for this separa-
tion will immediately become clear. The prime on the
summation symbol in Eq. (4) now has the definite
meaning that the singularity is excluded from the sum;
i.e., the contributions to H(r) which arise from a region
of the crystal of the order of an atomic volume in size
centered about the vacancy, interstitial atom or im-
purity atom, are to be taken account of in w(r). In
Eq. (4) the potential of the normal lattice atoms of
valence s is denoted simply by —v/e, and the potential
of an impurity atom of valence Z (which may or may
not equal s) will be denoted below by —V/e. With
these understandings in mind, we may express the func-
tion w(r) for the four cases of interest as:

1. interstitial lattice atom: wi(r) =v(r);
2. vacancy: w2(r) = —v(r);
3. substitutional impurity: w3(r) = V(r) —v(r);
4. interstitial impurity: w4(r) = V(r).

Here we have made the assumption that the potential
due to an atom in an interstitial position is the same as

where —v, /e is the potential due to the jth nucleus and
its surrounding cloud of electrons. R, is the equilibrium
position of the jth atom in the undistorted crystal, and
U, is its displacement as a result of the presence of the
singularity. The second summation above represents
the potential energy of an electron in the undistorted
lattice, and thus all the v, 's in this sum are identical.
The prime on the first summation symbol serves to
remind us that we have added, subtracted, or exchanged
an atom in the lattice; in the first or second event the
summation is carried out over one extra or one less atom
than in the second summation, and in the third event
the e, 's are no longer all identical. Keeping only the first
two terms in the expansion

v, (r—R,—U,) = v, (r—R,)—U; Vv, (r—R,)+ , (2)

M(x) = —Q '~ exp( —ix r)P' U, pv("r 'R, )—dr, (7)

4r4(x)=Q '~I exp( —ix r)w(r)dr.

0 is the volume of the metal, and x—=k' —k. The matrix
element rr4(x) is the contribution evaluated by Mott, '
and M(x) is that which takes account of the distortion
of the lattice.

We may estimate the value of M(x) in the following
way. Let us consider the spherical singularity to be at
the center of a large sphere; then according to the
theory of elasticity for a homogeneous isotropic medium,
the displacement of the lattice at a point r, measured
from the center of the spherical imperfection, is propor-
tional to r/r' for r) ro, where ro is the radius of the im-
perfection. ' Letting U, =AR, /RJ3, and approximating'
v(r) by —se' exp( —qr)/r, we obtain

4vise'A R; x exp( ix R,—)
M(x) =

Q(ii'+q') i E~'
(9)

The integral in Eq. (7) has been evaluated by inter-
changing the order of summation and integration,
transforming the variable of integration from r to
r—R, and integrating by parts.

For purposes of qualitative discussion we may use
the approximation of smeared-out positive charge and
replace the summation in Eq. (9) by an integration,
obtaining

16m M A singyo
M(x)

Q(i4'+q')6 iiro
(9')

where 6 is the atomic volume, and ro has the somewhat
ambiguous meaning of the inner cut-off radius for the
contribution to the matrix element from the elastic
distortions of the smeared, -out medium. This approxi-
mation is a rather poor one, but it will serve to show in
what cases the distortion effects are unimportant. The

'We are neglecting a term in the displacement which is pro-
portional to r. The eGects of this term on the resistance are dis-
cussed in Sec. IV.
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more accurate expression Eq. (9) can be used in specific
cases where Eq. (9') shows the lattice distortion to be
significant. The use of Eq. (9) is made more difficult

by the fact that the matrix element depends upon the
direction of x in a complicated way, and, the Boltzmann
transport equation which must be solved for the re-
sistivity has been treated in a simple way' only on the
assumption that tbe scattering matrix element is inde-
pendent of the direction of x. In a more accurate
analysis, therefore, where Kq. (9) is used, it appears
necessary, in order to avoid the considerable computa-
tional difhculties associated with the solution of the
transport equation in its general form, to perform the
indicated summation for a number of directions of x
and to replace the resulting complicated function by a
function of ~pp~ alone which represents a suitable aver-

age over direction; such a function would be expected
to be a better approximation than that indicated by
Kq. (9'), but it is not as suitable for a general discussion
since it depends on the details of the crystal structure
and the type of singularity.

An approximate evaluation of Eq. (7), equivalent to
Eq. (9') but exhibiting another feature of the potential,
may be performed in the following way. Let us replace
the summation in Eq. (4) by an integration before inter-

changing the order of integration and summation, and
obtain

W(r) =Z-i U(R) p„p(r —R)drR,

where the integration is carried out over all space
outside a sphere of radius rp, and the subscript R on the
Nabla operator denotes differentiation with respect to
the integration variable. Making use of the vector
identity for the divergence of a product eU, we trans-
form Eq. (10) into

W(r) =6-' v (pU}—pp'R UdrR.

According to a well-known theorem of vector calculus,
the divergence of R"R is equal to (rp+3)R"; thus, since

U(R) is proportional to R 'R, the divergence of U

vanishes. It should be pointed out that, since V U is
proportional to the density change, the density in an
infinite, continuous, isotropic med, ium remains un-

changed when a spherically symmetric d,istortion is
introduced. That is, any transfer of material to or from
the spherical imperfection is associated with, the surface
at inanity. In spite of the absence of density changes,
however, the potential W(r) and the matrix element

3E(pc) do not vanish, as can easily be seen by transform-

ing the first term on the right side of Eq. (11}by the
divergence theorem and inserting it in Eq. (7). Inter-
changing the order of the integrations and evaluating
directly, we obtain the result given in Eq. (9').

The above result for the total perturbation Hamil-
tonian, w(r)+6 'J'WR (pU)drR, should be compared

with the corresponding expression' for the scattering of
electrons by edge-type dislocations. In the latter case the
term, V U does not vanish, and the term, 6 'J'p (pU)
cancels the term, corresponding to w(r), which arises
from the missing plane of atoms. Th, e physical di8er-
ence in the two situations is that, whereas in the present
calculation there exists a real discontinuity at the
singularity, across the plane of missing atoms, on the
other hand, the discontinuity in atomic displacement
gives rise only to a fictitious discontinuity in the lattice;
that is, the lattice is in register across the missing plane
of atoms.

Mott has approximated' w(r) for case 3 by

w, (r) = —(Z—s)e' exp( —qr)/r+ (Es—E,)8s„
p'g Ep

(12)
r&EO= —(Z- s)e' exp(- qr)/r,

where b,g is the Kronecker delta, and Eo the radius of
the equivalent sphere of the lattice atoms. E, is the
energy of the lowest electronic state in the conduction
band of the pure lattice, and. Eg is the lowest energy
for an electron about the impurity atom, which is com-
pressed or distended to 611 a volume corresponding to
its present position in the foreign lattice. A term pro-
portional to (Es E,) should al—so be included for sub-
stitutional atoms of diQ'erent valence, of course, al-
though its contribution will be small for atoms of about
the same atomic number because of the similarity of the
electronic wave functions. For a pair such as Hg in Ag
the eGect of this term may be as large as the valence
term, so we shall use Eq. (12} without the Kronecker
d,elta in order to allow for the eftect, at least formally,
in all cases. For the other three cases, (1), (2), and (4),
w(r) is taken to be —e' exp( —qr)/r multiplied by the
appropriate quantity z, —z and Z, respectively, plus a
term corresponding to that just discussed which takes
account of the change in average potential in the region
of the singularity. The matrix elements m(pp) LEq. (8)1
are readily evaluated, and the following results are
obtained:

' D. L. Dexter, Phys. . Rev. 86, 447 (1952).

—4xze' DES
m, (~)= + 4~RpPf(.Rp),

Q(8+q') Q

4prse'
mp(pp) = + "prRppf(eRp),

Q(i~'+q') Q

(13)—4pr(Z —s)e' (Es E,)—
-+ — 4prRpP f(eRp),

Q(&~P+q') Q

—4sZe' b,pE
mP(PP) = + 4PrRpPf(~Rp)&

Q(&iP+q') Q

~h~~~ f(y) = (siny —y cosy)/yp.
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III. CALCULATION OF RESIDUAL RESISTANCE

The calculation of the resistivity from the Boltzmann
transport equation proceeds in the manner described in
reference 2; the change in the residual resistivity upon
the introduction of N randomly spaced identical point
singularities is found, to be

s'e'm*'S
d8(1 —cos8)Ap=

6mb'n' ~p

n2k4

&(sin8 ~M(44)+m(44) ~', (14)
~'Z'e4

where the matrix elements are assumed, to depend only
on 8, the angle between k and k', and n is the density of
free electrons in the pure lattice. %e have now to con-
sider only those values for k and k' which lie along the
Fermi surface, so that

~

k
~

=
~

k'
)

and 44=
~

k'
~

—k
= 2k sin-', 0. After making the substitution x= sin-', 0, we
insert the expressions for mi(44) and M(44), Eqs. (13)
and (9'), and obtain for the resistivity change associated
with the addition of N interstitial lattice atoms the value

4z'e'm~'S P' —1
Ape= xadx

3prkPnP J a&+xP

(2kR,)'f(2kRpx) 4prAi sin2krpx '
+~i~ +

i4i(a'+ x') 2krpx
(15)

The parameter a is defined as q/2k and is of the order
unity for the monovalent metals. To obtain the re-
sistivity change associated with the presence of va-
cancies, substitutional atoms, and interstitial impurity
atoms, it is necessary to replace the square-bracketed
quantity above by the expressions

1 (2kRp)'f(2kRpx)
+++ +

a'+x' (ze'/Rp) 6(a'+x') 2krpx .
4gd g sin2krpx '

(Z
(z )

f(2kRpx)
(a'+ x')+ (Ez—E,) (2kR p)'

(ze'/Rp)

4mA 3 sin2krpx '
+

h(a'+x') 2kr px

Z (2kRp) f(2kRpx)
+~4E

z 8 x (zeP/Rp)

4mA4 sin2krpx '

A(a'+ x') 2krpx

respectively.
Before evaluating Eq. (15) let us investigate the mag-

nitudes of the dimensionless parameters a', 2kEp, and
2krp, According to the Thomas-Fermi approximation, '
q is equal to (4m+e /k )(3n/pr)&, so that ap=qp/4kp is

' Reference 2, p. 87.

m*e'/[prk'(3n'n) &7, where we have made use of the rela-
tion k'=3+'e. Evaluating u' for copper with the use of
specific heat data, we set m*=1.47m, and x=0.85
/10" cm ', so that a' becomes 0.65. Experimental
resistance measurements indicate, however, that u' is of
the order 1.5 for the monovalent metals. Such a dis-
crepancy is to be expected from the Thomas-Fermi
approximation. '

We now recall that rp is the inner cut-oG radius for the
contribution from the lattice distortions; thus rp must .

be determined in any particular case from the sizes of
the atoms and the cavities available to them, and from
the elastic constants of the medium. However, in most
cases of practical interest rp will be of the order of Ep,
the radius of the equivalent sphere for the lattice atoms.
Using this value for rp in the present qualitative discus-
sion, we find 2krp is equal to 2(3pr'n)'(3n, «/4prn)"
=3.g4(n, «) l, where n„ii is the effective number of free
electrons per atom, or about unity for the monovalent
metals.

Equation (15) and the corresponding expressions for
the other types of singularities can easily be integrated
numerically in any particular case, once the values of
the parameters are known. Since we are at the moment
primarily interested in the corrections to the resistivity
due to the eGects of the lattice distortions, let us perform
the following approximate evaluation of Eq. (15) in
order to compare the contribution from the lattice dis-
tortions with the largest contribution from the other
sources. In most cases where the shielded Coulomb eftect
exists, it represents the largest contribution to the resis-
tance; consequently we shall compare the distortion
scattering with the shielded Coulomb scattering in all
cases but that of the substitutional atom of valence
Z= z. Thus the following Eqs. (16—1), (16—2), and (16—3)
are not to be considered evaluations of the resistance,
but rather as expressions to indicate the relative impor-
tance of the lattice distortions. Leaving out the term
proportional to A~E, an approximate evaluation of Eq.
(15), valid only for 4prAi/6 less than unity, is found
to be

2z'e'm*'S ( a'+ 1
Ape= I

ln
3~a3~2 I

1

~
[1 rJ(ro)44rA—/6] (16-1).

a'+13

The first term in the square brackets arises from the
shielded Coulomb potential of the interstitial lattice
atom, and the second from the 1attice distortions. The
corresponding expressions for vacancies and interstitial
foreign atoms are

happ= pnr[1+q(rp)47rA 4/6 j,
(16—2)~p4= p~[(Z/z)' (Zlz) n(r p) 4~A—4/~ j,

' F. Seitz, Moderrl, Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), Chap. IV.
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respectively, where wc have wI'lttcIl p~ fol thc quRntlty

2g'e'm*'S ( a'+ 1 1

3z ls'e' & a' a'+11

g is unfortunately a rapidly varying function of ro,
being about O.I for 2kro equal to 3.84, i.e., for ro ——Eo,
about 0.5 for «equal to 4/5 Re, and about —0.1 for
x~= 1.ISEO. Because of this rapid variation of g with
ro, it is necessary to attempt to 6x the proper value for
« from, comparison with the summation in Eq. (9).
It appears that for the vacancy or substitutional atom
go should be chosen somewhat larger than Eo, so that g
is in the range 0.1 to —0.2. For the interstitial atom rf)

should be about Ro, so that q is of the order 0 to 0.2.
For the case of the substitutional atom of valence

diGerent from that of the lattice atoms the comparable
resistivity change is

Aps= p~[(~/g 1)' (—~/g —1)n(«—)4~~s/A3 (16-3)

if the valences are th, e same, however, Apa' becomes

2g'e'no*'S 2(Eg—E,)'(2kRe)'
hp3 =

3rrk'e' (ge'/Ro)'

(ge'/Re) (4rrA s'/A)
f'(2 Rke)xx dx+2

0 (Eg—E,)(2kRe)'

sln2krox xsdhf(2kRex), (18
2k«x a'+x'

on the assumption that the coefIicient of the second
integral is small in comparison with unity. The erst
integral has been evaluated numerically by Mott' for po

equal to the radius of the equivalent sphere of the lattice
atoms, i.e., for 2kro equal to 3.84; he found the value
of the first integral to bt: 4.0&(10 '. Using this same
value for ro and evaluating the second integral nurncri-
cally also, we find that it is equal to 3&10 ' for d' equal
to 1;5. Thc Rbovc vRlucs fol these liitcgI'Rls Rre typleR1
of those for the monovalent metals; if a' is larger than
1.5, the second integral is somewhat smaller than the
value quoted [by approximately the ratio 2/(a'+0. 5)j,
and if ro is larger than the radius of the equivalent
sphere for the lattice atoms, the second integral, corre-
sponding to the lattice distortions, is reduced in about
thc same way Rs ls g.

Equation (18) becomes, on inserting the above
numerical results for the integrals,

2z'e'm*'S 1.74(Zg —E,)'

(ge'/Re)'

0.10(4xA s'/A) (ge'/Re)
X 1+ . (16-3')

(Eg E,)—
From the Eqs. (16) we can now see the sign of the

cGccts of the lattice distortions 'on the calculated. re-

slstance. In the expressions for Ap„kp„and 2 p4 the
signs of the A s are positive, negative, and positive,
respectively; that is, the lattice is pushed out around an
interstitial atom and relaxes around a vacancy. In
these three cases, therefore [see Eqs. (16—1), (16—2),
and (16-4)J, the resistance is reduced by the inclusion
of the CQects of the lattice'distortions, as long as g is
positive. This conclusion. is reasonable physically on the
basis that in each case the relaxation of the lattice
around the singularity tends to smooth out the per-
turbing potential. When q is negative, on the other
hand, the scattering is increased by the distortion.
This situation corresponds to a reinforcement of the
scattered wave, even though the potential is of the
opposite sign from the shieM. ed Coulomb potential,
because of the difference in phase of the electron wave
in the regions where the two potentials are most CGec-
tlVC.

In the calculation of Ap; [see Eq. (16-3)],the lattice
distortions may either reduce or increase the resistance,
For example, if a relatively small, light atom of valence
higher than that of the lattice atoms is in a substitu-
tional position, the distortions will further increase the
magnitude of the scattering potential near the singu-
larity and thus increase the resistance (for ri)0).
Similarly, for Aps' [see Eq. (16—3')j the distortions
may either increase or decrease the calculated re-
sistance; the CGect of a heavier atom of the same val-
ence will be to expand the lattice, but the electronic
energy difference depends on the details of the wave
functions, and Eg—E, may be negative, as for Au in
Cu, or positive, as for Ag in Cu. In addition to these
CGccts the sign of q may result either in a reduction or
increase in the calculated resistance as a result of the
distortions.

We have now to discuss the magnitudes of the
parameters A; we shall first consider A2, which charac-
terizes the displaeements around a vacancy, The relaxa-
tion around a vacancy has been estimated by Hunting-
ton and Seitz," and by Huntington, " for the f.c.c.
lattice of copper, and by Dienes" for copper and for the
b.e.c. lattice of sodium. Huntington and Seitz'0 found
that the nearest neighbors in Cu are displaced inward by
an amount 2&10—9, where X is the nearest neighbor
distance. Thus As is —2X10 'X', and, since 1/A=VZ/)t'
in a f.c.c. crystal 4zds/A= —0.35. In the accompanying
more accurate treatment Huntington" estimated the
inward displacement in Cu to be less than or equal to
about I)(10 'X, and Dienes calculated 2&10 'X for Cu
and something less than this for the b.c.c. lattice of Na.
For a displacement of 2&10 9 the correction to the
resistance [see Eq. (16—2)j is of the order 5 percent.

It seems reasonable to assume, with regard to the
estimates of the corrections to Aps and Ap3', that the
inward displacements are somewhat less around any

"H. B. Hnntington snd F. Seitz, Phys. Rev. $1, 315 (1942),"H. 8, Huntington, Phys. R|.'v. 61, 325 (j.942)."J.Dienes, AEC Report NAA-SR-244 (1951).
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small substitutional impurity atom than they are
around, a vacancy. The relative correction to hp3 for
the substitution of a smaller atom is thus, less than or of
the order, 0.05/( —1+8/z). The magnitude of the rela-
tive correction to

gapa'

is ~0.02(ze'/Ro)/(Ez —E.) For
Ez E, —2 ev (Ez—E;2 ev for the case of copper in
gold' ), z=1, and r0=1.59A (for gold), the correction is
about 0.1.

The remaining situations, those of interstitial atoms
and of substitutional atoms which are larger than the
lattice atoms they replace, are all associated with a dis-
tension of the lattice. We can immediately restrict our-
selves further, in the case of interstitial impurity atoms,
to those which are smaller than the lattice atoms, since
larger ones will not go into solid solution in interstitial
positions; in the event that a large impurity is knocked
from a normal lattice site into an interstitial position
in the course, say, of nuclear bombardment, the lattice
will tend, to rearrange itself to exchange the positions
of the large interstitial impurity and of a lattice atom.

Let us consider on the basis of the theory of elasticity
for a continuous isotropic medium the problem of a
spherical cavity, initially of radius R&, into which we
forcibly insert a sphere of material, initially of radius
E2, too large for the cavity. "We may obtain two values
for A, depending on the two sets of boundary conditions
we may impose at the periphery of the cavity. If we
assume that the sphere is compressible, with about the
same elastic constants as those of the medium, we
obtain

A g=Ri'(Rg —Ri). (20)

In the case of the large, heavy substitutional atom the
second boundary condition is probably the better,
whereas for an interstitial lattice atom it is probably
correct to consider the atom as being partially compres-
sible. The two expressions (19) and (20) differ by about
a factor of two for several of the interesting cases.

We shall associate with R~ the radius of the atom,
that is, one half of the nearest neighbor spacing X in a
pure crystal of that material, not the radius of the
equivalent sphere. Discussing first the case of the
substitutional atom, we see that it is not clear what
length shouM be used for the radius R~. R~ cannot
properly be taken to be the radius of the equivalent
sphere for the displaced lattice atom, since such an
assumption would allow no lattice distortion unless the
impurity atom were at least 10 percent larger in diam-
eter than the lattice atom it replaces. However, if we
take R~ to be half the nearest neighbor separation of the

"N. F. Mott and F. R. ¹ Nabarro, Proc. Phys. Soc. (London)
52, 86 (1940).

Ri'(R2 —Ri) Ri'(R2 —Ri)
A, = (19)

Ri+ 2R2/[1+ 3v/(1 —2v)] Ri+R2/2

where v is Poisson's ratio. If we assume that the sphere
is incompressible, on the other hand, we obtain

lattice, we are exaggerating the distortion inasmuch
as we are not allowing the impurity atom to take ad-
vantage of the electively larger radius of the cavity in
directions other than directly toward the nearest neigh-
bors. Nevertheless, we shall use X/2 as the cavity radius
for an approximate evaluation of 4z.A,/6 (thus exag-
gerating the distortion effects); we find for the f.c.c.
lattice the value 4~A;/6=2. 2(—1+X'/X), and for
the b.c.c. lattice 4zA, /6=2. 0(—1+X'/X). Thus [see
Eq. (16—3)], the lattice distortions associated with
the presence of a substitutional atom of 50 percent
larger radius than that of the replaced atom would give
rise to scattering of about 1/10 the magnitude of that
from the shielded Coulomb potential from an atom of
twice as high a valence as the lattice atoms. However,
according to the Hume-Rothery rule, it is difficult ex-
perimentally to put an appreciable amount of impurity
into a metal if the radius of the impurity atom is more
than about 15 percent larger than that of the lattice
atoms. For a divalent impurity in a monovalent lattice,
consequently, the maximum correction to the shielded
Coulomb scattering is of the order of or less than 5
percent. For a monovalent atom in a divalent lattice,
though, the correction can become 10 percent, and for a
divalent impurity in a trivalent lattice about 15 percent.
These last corrections are too large to be ignored in
careful interpretations of experimental results. Un-
fortunately, the separation of the eGects of distortions
is made diHRcult by the circumstance that as the im-
purity atom increases in size, thus increasing the effects
of lattice distortions, so also increases the effects asso-
ciated with the di6erence in the cores, about which
relatively little is known theoretically; we have so far
ignored these eGects except for substitutional impuri-
ties of the same valence as the lattice atoms, but they
are in fact sizable for atoms of much different atomic
number, and furthermore are in some cases of opposite
sign from those of lattice distortions. This point will be
discussed further in the next section.

The distortion correction arising from a substitutional
atom of the same valence as the lattice atoms likewise
shows a dependence on the valence. For example, a
gold atom has a radius 13 percent larger than that of a
copper atom, and, according to the above model, i.e.,
Eq. (20), produces displacements in a copper lattice
characterized by 4irA3'/6=0. 28. Taking ro(Cu) =1.41
X10 ' cm and Ez E,= —3 ev, ' we fi—nd [see Eq.
(16-3')] that the resistance may be changed about 5
percent by the lattice distortions from, the value calcu-
lated on the basis of the inner potential alone. Divalent
atom, s with these relative sizes and with the sam, e value
for Ez—E, would result in a correction of 10 percent.

For discussion of the displacements of the lattice sur-
rounding an interstitial atom we could, if necessary,
use Eq. (19) and attempt to fix the radius of the inter-
stitial hole from geometric arguments; however, our
result would be extremely dependent on our assump-
tions b{;&@&st;of the smallness of the cavity in compari-
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son with the interstitial atom. Fortunately we need not
rely on the elastic theory of a continuous medium for
the solution of this atomic problem, since the displace-
ments of the nearest atoms have been estimated on an
atomistic basis. Huntington and Seitz" have found, a
displacement of about 0.10 a/2 for the face-centered
atoms in Cu (a= cube edge length), and Dienes" calcu-
lated 0.09 a/2 in Cu, and 0.30 a/2 for the displacement
of the nearest atoms, those in body-centered positions,
in sodium, on the assumption that the center of the
cavity is located in the center of one face of the unit
cell. These displacements lead to values for A of 0.1
(a/2)' in Cu and 0.3 (a/2)' in Na, so that 4s A ~/d, 0.6
in Cu and 0.9 in Xa. Thus, the scattering from the
lattice distortions around interstitial atoms is of the
order 1/10 that from the shielded Coulomb potential
for a divalent impurity in Cu or Na.

IV. DISCUSSION OF RESULTS

In reviewing the above calculations with the intent of
examining their validity, we recall that we have as-
sumed potentials of the form e exp( qr)/r —for the
various nuclei and their surrounding electrons (except
for the substitutional atom of the same valence as the
lattice atoms, in which case we added a square-well
potential to take account of the difference in average
potential throughout the atomic volume). Let us
examine this assumption more closely to see what effect
it has had on our results. We can be fairly confident of its
approximate validity as applied to the evaluation of the
Hamiltonian W(r) [Eq. (4)j and the matrix element
M(x) [Eq. (9)$, which are both related to the effects of
the lattice distortions, since the primary effect of the
small displacement of a lattice atom can be described
in terms of the motion of its shielded nuclear charge
alone. "That this is so can be understood from the fact
that the density of the lattice outside the imperfection
is unchanged, so that no change occurs in the average
potential of the unit cell. Of course, if the volume of the
inner core is not small as compared with that of the
equivalent atomic sphere, the "effective nuclear charge"
may be larger than e times the valence of the atom; we
shall ignore this possible effect, temporarily, and, shall
consider the only serious error in our evaluation of
M(x) to arise from our value of the shielding constant q
as calculated from the Thomas-Fermi approximation.
We may evaluate the shielding constant experimentally
from the resistance change associated with the addition
of small amounts of substitutional impurity atoms of
adjacent atomic number, for which the eGects of lattice
distortions and diGerent electronic energies should be
small. In the following it will be assumed that this has
been done, so that for every metal our shielded Cou-
lomb potential is correct. Thus we expect the relative
magnitudes of the distortion effects as calculated above
to be qualitatively correct, namely, of the order of or

~4 J. Bardeen, Phys. Rev. 52, 688 (1937), Table I; J. 3@rdepp,
and W. Shockley, Phys. Rev. 80, 72 (1950).

less than i0 percent; hence it is not possible to explain
by these distortion effects the relatively large dis-
crepancies between calculated and measured resis-
tivities for solid solutions.

We have, however, introduced serious errors in our
choices of potentials associated with the singularities
themselves, whenever we have neglected the electronic
energy difference, Ez—E„ throughout the region oc-
cupied by the singularity. That is, as pointed out
earlier, Eqs. (16—1), (16—2), and (16—3) are not even
approximately valid in absolute value. It is clear from
the experimental data" that the effect of the AE term is
large, and in some cases, e.g., for the substitution of Ag
in Au, as large as the shielded Coulomb scattering from
an atom of one higher valence (see Table I.) Terms of
the above type, i.e., the AE terms, can easily be carried
along in the scattering matrix elements, as was done up
until the approximate evaluations of Eqs. (16). They
have not been included in Eqs. (16) for the purpose of
exhibiting explicitly the magnitude of the effects asso-
ciated with lattice distortions.

In the remaining discussion we shall explicitly restrict
ourselves to consideration of those metals to which the
application of free-electron theory may be expected to
be semiquantitatively correct, that is, to the alkali and
noble metals. Let us now consider to what extent we
are able to make quantitative predictions of resistance
measurements. We have found. that the lattice distor-
tions around all the types of singularities treated give
rise to corrections in the calculated resistance of the
order of 5 or 10 percent. Experimentally we can measure
the shielding constant q with much higher accuracy than
we can calculate it, but it seems unlikely that even with
adjacent metals in the periodic table we can eliminate
all the effects but valence with an accuracy better than
5 or 10 percent. That is, even using experimentally de-
mined values for q it is improbable that we can calcu-
late resistances to within 10 percent, and it thus ap-
pears that distortion effects are of secondary importance.

It is interesting to note, however, that the lattice
distortions play another role which in some cases is a
very important one and may even lead to a difference
of a factor of three or more in the calculated resistance.
Consider, for example, the resistance associated, with
the additions of Cu to Ag. Mott' has estimated the term
Ez—E, for Cu in Ag from Wigner-Seitz calculations
of the energy of the lowest electronic state as a function
of the radius of the equivalent sphere and has calcu-
lated, neglecting all distortion effects, a resistance about
one third that observed experimentally. Mott assumed,
for the equivalent sphere radius of the Cu atom, the
normal radius of the equivalent sphere for a silver atom
in a pure silver lattice ando btained an energy diGer-
ence E~„—Ep, = —0.5 ev. Since the Cu atom is 13 per-
cent smaller in radius than the Ag atom it replaces,

'~ References to most of the pertinent data can be found in
reference 2 and in K. Griineisen, Krgeb. exakt. Naturwiss. 21, 50
(1945).
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we would expect some relaxation of the lattice, leading
to an effective radius for the equivalent sphere for Cu
somewhat smaller than that assumed by Mott. A dis-
placement of the nearest neighbors equal to one fourth
that calculated" "around a vacancy, that is, 5)(10 9,,
would lead to a reduction of 3 percent for the radius of
the equivalent sphere. Using this reduced radius, we
find an energy difference —0.8 ev from the Wigner-
Seitz energy calculations, thus leading to agreement
with experiment. The displacement of 5)&10 'X was of
course chosen ad hoc, but it is not an unreasonably
large value, and the above example demonstrates how
lattice distortions may have a large effect in cases
where the energy curve for the impurity has a steep
slope at the equivalent sphere radius of the lattice
atoms, and where the energy difference is small. For Ag
in Cu, on the other hand, the above effect is a small one,
since the energy curve for Ag has a broad minimum
between the sphere radii for Cu and Ag. When a shielded
Coulomb term is present, as for a divalent impurity, the
above effect likewise will be a relatively small one if the
square well adds to the valence effect (as for Hg in Cu),
since a square well of the order 2 ev deep is required. to
give rise to the resistance associated with a single

charge, and the energy shifts according to the above
mechanism can be only of the order of a few tenths of
an ev. If the square well tends to cancel the valence
term, as is the case, for example, with Cd in Cu, the
above distortion effect could in principle be important,
although in practice the writer does not know of an
alloy for which it makes a significant contribution.

Throughout the foregoing discussion it has been
assumed that the effective nuclear charge for all the
monovalent metals is e. That this is a valid assumption
for resistance calculations is indicated by the goodness
of the agreement of Bardeen's calculations of resistance
in the monovalent metals with the measured values, and
in particular by the circumstance that his results for Au
are no worse than for Cu although an effective nuclear
charge of e was assumed for both metals. Another argu-
ment supporting this conclusion derives from measure-
ments of the resistivity of solid solutions of the mono-
valent metals, such as Cu in Ag. If the effective nuclear
charges of any of these metals were different from e,
certainly gold would be expected to have one of the
largest because of its large inner core, and conversely,
copper would be expected to have the smallest (of the
noble metals) because of its relatively small core;
furthermore, one would expect to find a relatively large
difference in their effective charges because of the large
difference in their core sizes. Stating this again in a
slightly different way, unless the effective charges are
all close to e, it seems dificult to understand how they
can all be equal. But the smallness of the experimental
resistivities of dilute monovalent alloys and the close
agreement' with experiment of most of these resistivities
calculated with the square well potentials as described
above show that the differences in the effective nuclear

TABLE I. Measured resistivity change (see reference 16) in
micro-ohm cm of the metal s upon the addition of one atomic
percent of the element Z.

in z

Percent
of Z

Hg
Cd
Zn

Au
Ag
Cu

Au
Measured

value

0.41
0.64
0.96

~ ~ ~

0.38
0.48

Ag
Measured

value

0.79
0.38
0.62

0.38
~ ~ ~

0.07

Measured
value

1.00
0.21
0.34

0.55
0.14

CU

Reduced
value

1.13
0.24
0.38

~tl J. 0. Linde, Ann. Physik (5) 15, 239 (1932).

charges must be small compared with e; therefore, we
conclude that they are all closely equal to e. A third
argument in support of this conclusion is based on the
measured resistivities of Cu, Ag, and Au containing
divalent, trivalent, and tetravalent impurities. "These
measurements show that the scattering from the im-
purities of valence Z is approximately proportional to
(Z—1)'. If the effective nuclear charge of Au were
appreciably larger than that for Cu, for example, one
would expect large discrepancies in this proportionality,
and in particular, one would expect to find a negative
slope in a plot of resistivity change in Au versus (Z—1)'
for the impurity series Cu, Zn, Ga, Ge. The consistency
of these data with the interpretation on the basis of the
valence effect is a strong indication that the effective
nuclear charges for the noble metals are all very close
to e.

The measurements of Linde" shown in Table I
provide an excellent test for our understanding of the
resistivities of dilute substitutional alloy; if these data
can be interpreted on the basis of the electronic energy
dffierence, the valence, and the distortion effects, one
might hope to be able to compute in the same way the
resistance change in a monovalent metal upon the
introduction of vacancies and interstitials. The resis-
tivity changes in Cu, Ag, and Au (in micro-ohm cm)
upon the introduction of one atomic percent of m, ono-
valent or divalent impurities are shown in the first
three columns. According to Eqs. (16—3) and (17) the
resistivity change is approximately proportional to n &,

as may be seen by expanding the logarithm in Eq. (17).
Thus in the fourth column we have multiplied the value
for Cu by the ratio of the atomic radii for Ag and Au
to that for Cu, in order to make the values for Cu di-
rectly comparable with those for Ag and Au. The most
striking feature to notice is that for the addition of those
elements for which we expect only valence effects to be
important, i.e., for Hg in Au, Cd in Ag, and Zn in Cu,
the resistivity changes are indeed very simile, r, 0.41,
0.38, and 0.38 p, Q cm, respectively. This result indicates
that the dependence of the Thomas-Fermi shielding
constant q on density is correct, and also indicates that
such effects as the association of vacancies with the



776 D. L. DEXTER

divalent impurity atoms are unimportant for an inter-
pretation of these data.

Most of these data for Cu, Ag, Au in Cu, Ag, and Au
can be interpreted on the basis of the square well

potential, as Mott has shown. ' It should be pointed out,
however, that the resistivity changes of Cu in Au and
of Ag in Au are not consistent with the square well

potential. That is, if the electronic energy for Cu is
0.8 ev lower than that for Ag, as indicated, by the
Wigner-Seitz calculations and by the measured re-
sistivity change for Cu in Ag, then the height of the
square well for Cu in Au should be 0.8 ev less than for

Ag in Au (1.9 ev as measured by resistivity change), or
should be 1.1 ev instead of the measured 2.1 ev; stating
this again in a slightly different way, accepting the
measured resistivities for Cu in Ag and, for Ag in Au,
we would predict a resistivity change of 0.126 pQ cm
rather than the observed change of 0.485 pQ cm for Cu
in Au. Distortion e6ects cannot significantly improve
this discrepancy, nor is it possible to construct a reason-

able, internally consistent set of effective nuclear charges
and square wells that will explain all of these results,
even if we wished to change the effective nuclear charges.
Thus it appears that the details of the wave functions
and potentials are important for interpreting some of
these resistance data.

Similarly the data for Hg, Cd, and Zn in Cu, Ag,
and Au cannot be satisfactorily understood on the basis
of valence, square well, and distortion effects. For ex-

ample, one can explain Zn in Ag giving rise to a larger
resistivity change than Zn in Cu, but one cannot explain
the even larger change for Zn in Au; the result for Cd
in Cu is understandable, but not that for Cd in Au.
Again it is not possible to interpret all of the data in a
reasonable way by assigning different effective nuclear
charges to the various atoms.

Our conclusions from, all of the above arguments are
that the valence and effective nuclear charge effects
alone are fairly well understood, and, that the rough
approximation of a square-well potential is not suffi-

cient to account for the specific potentials and wave
functions in most of these simple systems. Consequently,
we do not believe that it is reasonable to expect to be
able to compute the scattering from vacancies and inter-
stitials on the same approximations. Nevertheless, since
the valence effect does seem to be constant from one
metal to the next and, since there is relatively little
spread in the measured resistivity changes for divalent
impurities, it seems safe to choose a value in this range
for the addition of vacancies and interstitials to the
lattice. The writer's estimate of the resistivity change in

Cu, Ag, and Au per atomic percent of imperfection is
0.4 pQ cm for vacancies and 0.6 pQ cm for inter-

stitials. These values are probably good to within a
factor of two.

To make more precise statements than the above
concerning the scattering from interstitials and vacan-
cies seems a formidable problem involving a self-

consistent calculation for the potential and displace-
ments near the singularity, a calculation in which
modifications to the d shell probably are important.
Until better approximations are likewise made for the
electronic wave functions and for the solution of the
Boltzmann transport equation and until more is known
about the effective number of free electrons per
atom" and the electronic effective mass, it is question-
able if such a calculation is warranted.

We have now to discuss the previously neglected
effects arising from the uniform dilation of the lattice.
In Sec. II we assumed displacements of the form
U=Ar/r' instead of the general form Ar/r'+Br. The
second term is responsible for a uniform density change
throughout the metal, and will lead to a change in
resistivity just as does the application of a hydrostatic
pressure. The latter effect can be qualitatively accounted,
for" in most cases on the basis of the change in ampli-
tudes of the lattice vibrations associated with the
strengthened atomic forces in the compressed metal.
Thus the density change gives rise to a temperature
dependent resistance change which should, not be
treated on the same basis as the changes in the residual
resistance discussed above. At constant temperature,
however, the change in the measured resistivity of a
sample after the introduction of point singularities will

depend not only on the factors discussed in Secs. II—IV,
but also on the density change of the material asso-
ciated with the parameter 8. Furthermore, in an inter-
pretation of experimental resistance measurements,
it must be borne in mind that the dimensions of the
sample also change, both because of the 8 term and also
the 2 term, and thus the resistivity of the material
would, have changed even if the measured resistance
remained constant. The correction to the resistivity
because of this last effect is in all cases small compared
with those previously discussed.

We may obtain an estimate of the magnitude of the
density change effect from the following considerations.
Suppose that a metallic sphere, initially of radius E,
has introduced into it a number N identical singu-
larities. Then the density D is changed by an amount

bD——DÃV U = —3BDN, (21)

where B is given by 2A(1 —2v)/R'(1+v). Now the
change in resistivity bp is given by

bp d(logp) 8D

p d(logD) D

d(logp) 2Sh (1—2vq (4~Ay
(22)

d(logD) 0 4 1+v ) 0

or about (3/2)(4mA/h)f, where f is .the number of
singularities per lattice atom, and where we have made
use of the observed" resistivity dependence on density,

"See, for example, reference 2, p. 271.
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namely, d(logp)/d(logD) —3 for most metals. Since
we found above that 4sA/6 is of the order of or less
than 2/3, the fractional resistivity change associated
with the change in density is of the order of or less than
one percent in. the presence of one percent singularities.
This change is smaH (~1/10) compared with the resid-
ual resistance change arising from the shielded Coulomb
term or the electronic energy difference term discussed
above, and of about the same magnitude as that asso-
ciated with the lattice distortions, i.e., the A term.

In conclusion, mention should be made of the impli-
cations of the foregoing to studies of densities of imper-
fections in metals. For example, in Seitz s'8 discussion
of the generation of vacancies by moving dislocations,
he used a scattering cross section of vacancies for elec-
trons 25 times larger than the estimate given above
and obtained a very conservative value for the density
of vacancies in Cu at liquid air temperatures. His
estimate was based on the measured" resistivity change
in Cu after straining by about 10 percent at liquid air
temperatures, namely, 0.019pQ cm, and on the assump-
tion that all or most of the resistivity change is asso-
ciated with the presence of vacancies. His result for the
concentration of vacancies under these conditions of
1.6X10" cm ' would become, if the present estimate
for the vacancy cross section is correct, equal to 4X10"
cm '. Since the energy required to create a vacancy is
about 1 ev, this concentration of vacancies represents a
storage of about 4X10" ev/cm' and since the energy
expended in straining the lattice by 10 percent is

7.5X10rs ev/cm' these arguments would suggest that at
least half of the energy of cold work is stored at liquid
air temperatures. "

It is of interest to inquire if the low temperature data
are consistent with the hypothesis that dislocations are
predominantly responsible for the resistivity change in

Cu. If the resistivity change per line cm of edge-type
dislocation' is 1.7 P 10 "

p, Q cm and, the energy stored"
per cm is 1.6&10 ev, the resistivity change per unit
stored energy is 1.06)&10 " pQ cm per ev. This value
is to be compared. with 4.7X10 " pQ crn per ev for
vacancies. That is, for a given amount of stored energy,
vacancies have about 4 times as large an effect on the

'8 F. Seitz, Phil. Mag. Supplement 1, 43 (1952).
'9 J. Molenaar and Vf. H. Aarts, Nature I66, 690 (1.950)."Energy storage measurements by G. I.Taylor and H, Quinney

[Proc. Roy. Soc. (London) 143, 307 (1934); 163, 157 (1937)g;
B.Welber LPhys. Rev. 87, 211 (1952)J; and H. Kanzaki fJ. Phys.
Soc. Japan 6, 456 (1951)j indicate that the energy stored during
cold-working at room temperature is only about 3 percent of the
expended energy, thus suggesting considerable annealing below
room temperature, in agreement with the experiments of Molenaar
and Aarts (see reference 19), Koehler (see reference 4) and others.

» J. S. Koehler, Phys. Rev. 60, 397 (1941),

resistivity as do edge-type dislocations. Thus even if
all the energy expend. ed in cold work at low tempera-
tures were stored in the form, of dislocations, the resis-
tivity change mould be only about half of that observed, .
A similar result is found for the room temperature data,
namely, that it does not seem possible to explain all of
the observed resistivity change associated. with cold-
working on the basis of scattering from dislocations
alone. ' If many vacancies are prod. uced. by moving
dislocations, as suggested by Seitz," it seems possible
that at room temperatures they are able to clump to-
gether into cavities of the type recently proposed, by
Blin and Guinier" as a result of small-angle x-ray
scattering experiments, and that an interpretation of
room temperature data on cold-worked. specimens also
may be based on vacancy effects.

V. SUMMARY

We have estimated the contributions to the elec-
trical resistance arising from distortions of the lattice
around vacancies, interstitials, and substitutional im-
purity atoms, and have shown that the scattering
associated with distortion of the lattice outside of the
imperfection itself leads to R correction sufficiently
small, of the order 5 or 10 percent, to be neglected in
all practical calculations capable of being performed, at
present. The reasons for the smallness of the correction
are: (1) the smallness of 4m'/d, that is, the smallness
of the distortion, and (2) the smallness of g because of
the effective cancellation of the scattered wave asso-
clRtcd with thc rRpld VR11Rtlon of its phase ln thc regioHs
where the distortion is sizeable. We conclude that ac-
curate interpretations of resistance measurements can-
not be expected on the basis of the effects discussed, by
Mott for substitutional impurities, i.e., the valence and
the energy difference effects, and that in many cases a
dificult self-consistent calculation is required for both
the displacements and potential near the singularity.
Th,e resistivity change in Au, Ag, and Cu associated
with one atomic percent of vacancy-interstitial pairs is
estimated to be about 1 micro-ohm cm. A brief discus-
sion of deviations from Matthiessen's rule shows that
such effects are small (~1/10) compared with valence
effects.

The writer is indebted to Professor J. S. Koehler for
interesting discussions of his radiation damage experi-
ments, to Dr. J. D. Eshelby for helpful conversations
about the effects of surface stresses in elastic theory,
to Dr. Peter Gibbs for a useful suggestion regarding the
summation in Eq. (9), and to Professors F. Seitz and
J. Bardeen for their kind interest in this work.

~ J. Blin and A. Guinier, Compt. rend. 233, 1288 (1951).


