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Cascade Theories with Ionization Loss
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Analytical solutions have previously been given for the number distribution functions and for the general
moments of the electron-photon and nucleon cascades neglecting ionization losses (approximation A).
Solutions are now given for the moments of the electron-photon and proton-neutron cascades taking into
account energy loss, via ionization, by electrons and protons (approximation B).The diffusion equations for
the differential moment functions, which yield the required factorial moments by a simple integration over
the energy variables, are transformed by Laplace-Mellin transforms to matrix recurrence relations, the
general solution of which is obtained in the form of power series. From these series, solutions for the moments
in a form suitable for numerical calculations are obtained by a generalization of the method used by Bhabha
and Chakrabarty for the first moments of the electron-photon cascade and by Messel in the proton-neutron
cascade. To a first approximation, the solutions for the moments in approximation 8 are expressed as a
correction factor multiplying the solutions obtained in approximation A.

1. INTRODUCTION

A NALYTICAL solutions have recently' ' been
given for the Quctuation problems arising in

nucleon and electron-photon cascade theories in ap-
proximation A (neglecting ionization loss). In the above
references, analytical expressions were obtained for the
general number distribution functions as well as for
their factorial moments. It is the purpose of the present
paper to give solutions for the (m, m) th factorial moments
of the electron-photon and nucleon cascades when
energy loss by ionization is accounted for (approxima-
tion B). In this case it is necessary to distinguish the
protons and neutrons in the nucleon cascade, and to
emphasize this the cascade will be called the "proton-
neutron" cascade.

The method used in this paper is the following:—
The diffusion equation for the diGerential moment
function is solved in series form. From this probability
function the (n, m)th factorial moments are obtained
by a simple integration over the energy variables. In a
manner similar to that used by Bhabha and Chakra-
barty ~ and Messel ' for the first moments in electron-
photon and proton-neutron cascade theory, respectively,
the series solution for the moments is transformed to a
new series, the first term of which gives an approximate
formula for the moments in a form suitable for nu-
merical calculations.

The general results, not unexpectedly, are exceedingly
complicated. The amount of work required to compute
the second moments is not prohibitive providing one
has the aid of an electronic brain. A program is at
present being set up for such a calculation.

2. THE ELECTRON-PHOTON CASCADE

(a) The Diffusion Equations

Using the same notation as previously, ' we let
gm m" (Eo; K, ' ', E;E +~, , E + ', x) be the dif-
ferential moment function expressing the probability
that after a depth of x cascade units a primary (j) of
energy Eo has given rise to e electrons with energies in
the ranges E&, dEI„k= 1, , n in any order, to m

photons with energies in the ranges E„+t, dE„+~, l= i,
~ . m in any order, and to any numbers of electrons and
photons with arbitrary energies. For j=1, the primary
is an electron, for j=2, a photon. It is assumed that the
electrons suffer a constant energy loss P by ionization.
For the cross sections, the well-known Bethe-Heitler
expressions in the full-screening approximation will be
used: w&'&(Eo, E&) for bremsstrahlung, m~@(Eo, E~) for
pair production, and 0."& and a "& for the corresponding
total cross sections.

The last-collision di6usion equation4 satisfied by
q„, (» is

+en&'&+nsn~o~ lq~m~'~(Eo, Ez, ) E~; En+a, , E~+m) x)
La~

ppgn, m—1 (EoiE1y '''pEn —lylEn+En+m iEn+lp '''qEn+m —1 lx)u (EeyEw+m)
ts

+Q q„a + M(E; E ', , E„'E„.. . E„E„'+E„~) ( )(E„' E„')

' H. Messel, Proc. Phys. Soc. (London) A65, 465 (1952).
~ H. Messel and J. W. Gardner, Phys. Rev. 84, 1256 (1951).' H. Messel and R. B. Potts, Proc. Phys. Soc. (London) A65, 473 (1952).' H. Messel and R. B. Potts, Proc. Phys. Soc. (London) (to be published).' H. Messel and R. B.Potts, Phys. Rev. 86, 847 (1952).
6 H. J. Bhabha and S. K. Chakrabarty, Proc. Roy. Soc. (London) A181, 267 (1943).
~ H. J. Bhabha and S. K. Chakrabarty, Phys. Rev. 74, 1352 (1948).' H. Messel, Phys. Rev. 83, 21 (1951).
'H. Messel, Phys. Rev. 83, 26 (1951).
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+Q q, &'~(EO, El', , E„ 1', U; E„+1, , E„~„,x)w&'&(E„', U E„—')dU
~"~0

~ 00

+Q &tn+1, 1'"(Eo,El, , E, U; E +1', , E + 1', x)w&'&(U —E + 'E +„')dU
0

+P g If
o'& (E2' El . . . E„E„+1. . . E„+ ~ 2;) (1)

k=1 QQI,

This equation, apart from the last term which expresses a shift in energy due to ionization loss by electrons, is
the last-collision diffusion equation for the d.inferential moment function in approximation A. The read, er is
referred to this paper for definitions of the notation used in (1) and subsequently.

If the Laplace-Mellin transform Q„,„&"and the Mellin transform W&»' are defined by

Qn. m'"(», , s» s.+» &
s.+ &

l&) = dE1
~

dE.+, d2:(El/Eo)" . .(E.+-/Eo)" (2)

&tttE1 ) &1 ( E2 ) &2

W'"(sl, s2) )'
( ) (

—
)

w" (El, E2)dE2,
EE1+E2~ I&.E1+E2)

then (1) may be transformed to

()&+I&2&1&+2&2&2&2&)Q„,„&»—&&„~; 25„~, ,

=Z ZQn, m —1 (Sl»'''Sn —1&Sn+Sn+m&Sn+1»''Sn+m-1&))W (Sn&Sn+m)
ply

+Z Qn —2, m+1 ($1»' ' ' Sn 2 & Sn+1»' ' ' Sn+n» Sn 1 +Sn & X)W (Sn—1 & Sn )

+2 Qn —1, m+1 ($1»' ' ' Sn—1 & Sn+1»' ' ' Sn+m& Sn
&

X)2W (Sn & 0)
+124

+p Q„,„&»'(sl, , s„;s„+„,s.+; l&)W&»(s„', 0)

+g Qn+l, m,—1 ($1»' ' ' Sn& Snym & Sngl »' ' Sn+m —1 &
X)W (0& Sn+m )

—(P/E&&) P s Q, &"(sl, ~, s. 1, s„—1; s +1, ~, s„+., X). (4)

This equation may be transformed into the matrix The notation is as used in reference 5 with the addition
equations* that SN(s„) is the direct product of %2X2 matrices:

[)iE1+Al(sl)jQl($1, ).)
=Ei—(p/Eo) Sl(») Ql(» —1; l) (S)

SN(s,)= E1X X X Xml.
0 0

rth factor

[llEN+Q AN($&) jQN($1) ' ' '
&

$N
&

l&)
r~l

Z +N 1(SN 1$N) QN 1($1 —' ' ' S—N 2$N 1+SN &—)—
gN

-(p/E)Z S ( )Q (, ", —., -1;)),
gN

$&1. (6)
*For definitions of A„(s„)see Eqs. (22) and ()3) of reference 5.

(b) Series Sollltlon fol' &fn, m&»

The Eqs. (S) and (6) are matrix recurrence re-
lations, the solution of which may be obtained in the
form of a power series in (P/E&&). Although this series
itself cannot be used directly because of its slow con-
vergence, it is shown in a later section that it may be
transformed to give rapidly convergent results,
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Q-, -"'= 2(—0/~o) Q-, -,."',
a 0

QN =p (—P/& )o'Q N. ,
a=0

(9)

Ob(o&+1, o= Qb(o&+&o(,», ' ' ',. sb(o&, solo&+1+ ' ' '+sN ib)—,
which is given by (12);

QC e( 1+1 SignifieS SummatiOn OVer all ChOiCeS Of

sd(, &, sd(, &+1+ +sN —u+ 1+e from sl, , sdi, i,
sdlei+1+ ' ' '+sN &+—1+e;

then from (5) and (6)

Qi, a(»; )1)= [)El+Al(sl)] 'Sl(sl) Q, , 1(sl—1; )l) (10)

and

QN, a($11 ' ' '1 SN1 )1)

Q[)~EN++ AN(s, )7 'WN i(SN 1, SN)
N

X QN —1, a(S11 ' ' '1 SN 2) SN 1+—SN j )l—)

+E[)1EN+E AN(s, )] 'SN(SN)

P"=PC, e&.&+1 SignifieS SummatiOn OVer all ChOiCeS Of

sb (e& bi+ +sN —a+1+e from sl, , sbt, &,

sbt, &~1+ +sN a+—1+e; and b(12) =)V 1. —

The order in which the summations and products in
(13a) are to be carried out is as follows: first II„ then
pb&, &

from the left, next II«,&
and finally g& from the

right. t To illustrate the notation and result, a simple
case will be discussed in a later section.

Equations (13), (9), and (8) determine the solution
for Q„, "'.Taking an inverse Laplace-Mellin transfo™
yields

q (1&(Eo~ gl . . . g ~ g +1 . . . E„+„ig)

(n+~& (E /E ) el+1 ~ ~ ~

X ON, a 1(sl, , sN 1, sN —1; X), g) 1. (11)

For a=0, the solution in approximation 3 is obtained,
namely, '

X(Eo/E )en+m+1 Q ( p/E )aQ (j& (14)
a=0

with I„+„defined as the operator

ON, o= II 2 [)1Ed+1+Ad+1(»)+ ' ' '

d=N —1
Cg

+Ad+1(sd)+Ad+1(sdyl+ ' ' '+SN)]

tc1+ 'boo

I„+ 1 /( 2vri) n+~——f
'g I—'boo

and

fSn+orb+ SOo

dS1 ~ ' ~

~e+m —t oo

n, te, a (S11 ' ' '1 Sn1 Sn+11 ' ' '1 Sn+m1 a)~ ~(s) (

ds.+, (15)

XWd(sd, sd+i, + . +SN)

X [)1E,+Al(sr+ ~ +sN)] '. (12)

0 b(e+1) b(e) +1

QN, .= II Z ( II
e=a—1 b(e) =0 d(e) =b(e+ 1)

P' Fd(,&)g" Gb(, &

X Qb&o&+1, o1 (13a)
where

Fdic& —p Ediei+1+Ad(el+1(sl)+ ' ' '+Ad(e&+l(sd(ei)

+Adlai~i(sd(e&+1+ ' ' '+SN 0+1+e)]

XWdie&(sd&, &, sdt, &+1+ +sN —a+ 1+e); (13b)

Gb(e& [~Eb(el+1+Ab(el+1(si) + ' ' ++ b(e&+1(sb(e&)

To solve (10) and (11) is by no means an easy task
because of the recurrence on S and also on a. The
general solution given below may be verified by
induction:

Xp+ i'&

= (2m.i)—'
I e" Q„

~ Xp—ioo

X($1, ''' S;$+1, '', S+ ', )1)d)1. (16)

[)„E—M]
[ZE+M]-1=P= )t+)i„e' Xb—)1„

a

(17)

The eigenvalues of the matrices appearing in (13) may
be easily obtained. For example, consider the matrix

p AN(s. )
r=l

where AN(s„) is the direct product of 1V matrices of

In carrying out the inverse Laplace transform (16),
it is convenient to express the inverse matrices ap-
pearing in (13) as partial fractions. This can be simply
done by using the following result in the theory of
resolvents:" If M is a matrix of order p with non-
d egenera te eigenvalues X„, then

+Able&+1(sb(el+1+ ' ' '+sN o+ 1+e)]—f The summation Zo refers to Z' and Z". Furthermore, b(e)
and d(e) are dummy variables.

'~ Prazer, Duncan, and Collar, E/mentary 3fatri ces (Cambridge
X Sb(el+1(sb(e&+1+ ' ' ' SN o+ 1 e) i (13'9 University Press, London, England, 1938).
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order 2P

AN(s„) = E1X X
A, (s,) A 2(s,)

A p(s„) A 4($„)
rth factor

x "xE,. (Is)

The Smatrices AN($, ), r = 1, , E, form a set of com-
muting matrices, and hence the eigen values of their sum
are the sums of the eigenvalues of each. If the eigen-
values of the 2)(2 matrix

A 1(s,) A 2($„)

Ap(s„) A4($„)

are Xl(s,) and X2(s,), then the eigenvalues of the direct
product A„(s,), being the products of the eigenvalues
of the factors, are Xl($„) or )(2(s,) according to whether,
in the 2N binary numbers s~s2 ~ s~ with digits 1 and 2,
the rth digit is a 1 or 2. Hence the eigenvalues of

where

(a) I'N is the Laplace-Mellin transform of yN as in
Eq. (2).

(b) BN($), ~ ~, SN) is the iV-fold Mellin transform of
the distribution function bN(Ep, El, , EN) giving
the probability that a primary nucleon of energy
Eo collides with a nucleus giving rise to X nucleons
with energies EI„dE~ and any number of nucleons
with arbitrary energies.

(c) h(s) =1—B,($).

(d) P(p) signifies summation over all compositions of
s~, ~, s~ into the two groups s~', ~ ~, SI,

' and

Sk+1 y p SX ~

The solution of (19) and (20) is

FN(Sli ' ' ', SN,'X)

are

P AN($„)
v=1

)(1($1)+)(1($2)+ ' '+)(l(SN 1)+~1(SN) t

)(1($1)+1(1($2)+ ' ' '+ )(1(SN—1)+)12(SN)1

j.

{IIZ (&+h($2)+ ' ' '+h($ )
c(N-1) d~t

+h(sq(d)+1+ ' ' '+SN)) Bq(d)+1

X (Sq(d—1)+ls ' ' '
2 Sq(d) & Sq(d)+1+ ' ' '+SN) }

3. THE PROTON-NEUTRON CASCADE IN A

FINITE ABSORBER

(a) Preliminaries

The analytical solution for the moments of the
nucleon cascade in approximation A has been given by
Messel and Potts. ' Some of their results required for
the present work are quoted below.

If yN(Ep, El, , EN, 8) is the differential moment
function for nucleons, then the Laplace-Mellin trans-
form of the diffusion equation for y~ is

{X+h(sl)}F'1($1, 1()=1,
N

{X++ h(S„)}VN($1, ~, SN, X)

(19)

N

Q Bp($1 )
' ' '

q Sk ) YN kd-1—
k~2 (I(,)

X($2+1', , SN', $1'+ +sp', X), X)1, (20)

"L.Janossy and H. Messel, Proc. Roy. Irish Acad. A54, 245
(1951).

etc., which may be read o6 from the binary numbers

1 1 1
1 1 1 2

etc. A table of numerical values for Xl($) and X2($) has
already been given by Janossy and Messel. "

The solution for the (n, qn)th factorial moments,
derived from the q„, &», will be given after the diGer-
ential moment function for the proton-neutron cascade
has been determined.

X {)(+h(sl+ +SN) } ', (21)

where p.(N 1) signifies summation over the 2N ' com-
positions of X—1, c being the composition c(1), c(2),~, c(t), with q(d) =c(1)+ +c(d); and g' signifies
summation over all combinations of the q(d)+1
symbols $1 ' ' ' Sq(d) Sq(d)+1+ ' ' '+SN taken c(d)+ 1

at a time.

(b) The Diffusion Equations in
Ayproximation B

The diAusion equations for the differential moment
functions appearing in a proton-neutron cascade theory
are derived in a manner analogous to that used for the
electron-photon case. Let y„, "'(Ep,' El, ' ' ', E;E +1,~, E +, 8) be the differential moment function ex-

pressing the probability that after a depth t) (measured
in interaction mean free paths) in dispersed matter a
primary (j) of energy Ep has given rise to n protons in

the energy ranges EI„dEk, k=1, , e ia any order,
to m neutrons with energies in the ranges E +~, dE +g,

l=1, , m in any order, and to any numbers of
protons and neutrons with arbitrary energies. For j= 1,
the primary is a proton, for j 2, a neutron. Further-
more, we take b„,„(»(E,; El, , E„;E„+.. .E„+„)
as the corresponding differential moment function for
nucleon-nucleus collisions. Assuming that protons suer
a constant energy loss P by ionization, the last-collision
diffusion equation satisfied by y~ „(» is
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(a/a8+22+ m)ym»(E(), E„,E„)E„+1, , E„+„)8)

n m

{bkl( , (U) El )
' ' ', Ek, En'+1 )

' ' ', En+( )yn k+1, m——1

k=0 l=0 (k) (l) J 0k+l) 0

X (Eoj Ek+1 )
' ' ') En ) Uj En+1+I )

' ' ') En+mj8), +bk l (U) El )
' ' ') Ek j En+1 )

' ' ') En+1 )yn —k m —1+1

X(Epj &2+1),En ', En+1+1, ', Enim ) U; 8))dU+p p y„m (Ep., E„,E„;E„+1, , E„+m, 8). (22)
k=1 gg~k

If we define the Laplace-Mellin transforms of y„(&& and b (&) as

p 00 00 pQO

V„, ' (sl, , s„;s„+1, , s„+,j()= dE1 dE,+ d8(E1/Eo)"
42 ~o o

X (En+m/Ep))n+me "'y„, (»B„, ")($1) ' ' ') Sn j Sn+1) '
) Sn+m) (23)

I)
n) nm

dEn+m(E)/Eo)" (En+ /Eo)'n+-bn, '",
&p ~o

(24)

then the Laplace-Mellin transform of (22) is

(l(+22+m)1 n, m ($1) ' '
) sn j sn+1) ' ' ') sn+mj l() 8n+)') bn+)', 2

=p p p Q(Bk, l'"(Sl') . , Sk', S„+1', , S„+1')Vn k+1, „1"'(Sk+1', , S„', Sl'+ +Sk'
k~0 l=0 (k) (l)

/ I, I /. I I ~ I /X+Sn+1 + ' ' '+sn+1 j sn+1+1 )
' ' ') Snym ) )()+Bk, 1 ($1 )

' ' ') Sk j Sn+1 ) ) Sn+1 )
I / ~ I / / I I I ~X 1 n —k n) —1+1 (Sk+1 )

' ' '
) Sn ) Sn+(+1 )

' ' ', Sn+m ) $1+ ' ' '+Sk +Snkl + ' ' '+Sn+1 ) j())

(P/Ep) Q snFn, „—'"(sl, , sn 1) s„—1; sn+1) ~ ' ~
) s))+m) )(). (25)

Just as the transformed diffusion equation for the electron-photon cascade was written in the matrix form,
(5) and (6), so (25) may be written

LxE,+h, (s,)]Y,(sl j ))=E,—(p/Eo) Sl(sl) Yl(sl —1; &) ) (26)

N N

L))EN+Q hN($ )]YN($1) ' ' ') SN j() Q Q BNk(sl ' ' '
, sk )YN—k+1(sk+1 )

' ' ') SN ) $1+ ' ' '+Sk j )()
t~l k 2 (k)

—(p/Ep)g SN(SN)YN(sl) ) sN 1, sN —1; )()) X)1. (27)
gN

hN(s„) =E)X. Xh(s,) X XE),
rth factor

where h(s) is defined as

(28)

h(s) =
p(1) (s) Bl (2) (s)

Bp 1())($) 1 B (2) ($)
(29)

The matrix YN is a 2NX2 matrix the columns of which
correspond to Y('& and F('&, and the rows are ordered,
by the binary numbers s1 sN with digits 1, 2 in the
same way as QN was formed for the electron-photon
cascade. ' The matrix BN, k(s.. ) sk) is a 2NX2N '+'

The matrix hN(s„) is the direct product of A 2X2
matrices:

'B2 o'"(», $2)

Bl 1 ($1) $2)» 2(», $2) ='
B (,) r

1, 1 ($2 j $1)
' Bo, 2'"($1, 2)

B2, o(')(sl, s2)

Bl, l (Sl)$2) & (30 )Bl, 1("(s2,sl)
Bo, 2 (Sl, $2).

matrix in which the rows are ordered by the binary
numbers s1 sN. The nonzero elements are arranged,
according to the following rule: if in the binary number
s1 sN it occurs that s1' ——s2' —— ~ ——s„'=1, and s„+1'
=s„+2'= =sk'=2, then all the elements of the row
are zero except for the terms B„,k „' (sl', , s,';
Sr+1 )

' ' ') Sk ) and Br k r(S1 )
' ' ') sr ) sr+1 )

' ' ')—Sk ))
which are placed in the first odd-numbered and first
even-numbered columns, respectively, in which these
terms have not already appeared. For example,
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,

'B2, 0(')(sl, $2)

0
Bl, 1

("{$1;$2)

0
Eo 2($4 $2) B (1)($ . s )

0
Bo, 2("(sl, s2)

0

B2, 0")(sl, s2)
0

Bl, 1(')(sl' sl)
0

Bl, 1 ($2» $1)
0

Bo, 2'"(», $2)

0

0
B2, 0(')(sl, s2)

0
Bl, 1'"(»;$2)

0
Bl, 1'"($2;»)

0
B(),2(')(sl, s2)

0
Be, o'"(», $2)

0
B),1'"{»;$2),

0
B),1"'($2;»)

0
B0, 2 (sle $2)

L)(El+hi($1)]Y1,0($1 )() El

Ll EN+& hN(s„)]YN, 0(s„,sN., l()

(31)

(c) Solution for y„,„(e), I}=0
If we set p=0 in Eqs. (26) and (27) and write YN, 0

fol YN 111 this case, we get

and photons and the diGerent cross sections for
bremsstfahlueg and pair production. In matrix notation
the equations and solutions become analogous to those
for the proton-neutron cascade in homogeneous nuclear
matter, in which just one type of yarticle cascades by
collisions with single particles of the same type.

(d) Series Solution for y.,
(e), g/0

N

=p p BN k(sl' sk')YN 0(sl+1'
@=2 (I(:)

Equations (26) and (27) are matrix recurrence rela-
tions, the solution of which may be obtained in a

Xs e $, +.. .+$„.y) ~pl (32) manner similar to that used in Sec. 2(b) for t7„,~(&~. Set

These are the transforms of the last-collision diQ'usion

equation for the proton-neutron cascade in approxima-
tion A. Their solution is

YN, 0($1e ' ' 'e SNe l()
1

= 2 (IIX'Ll(Ee(d)+1+he(d)+1(»)+ "
c(N—1) d~t

+g(d)yl(se(d))+he(d)+1(se(d)+1+ ' ' '+SN)]

X~0(d)+1 e(d)+1(se(d—1)+le ' ' '& se(d)» se(d)yl

+ ' ' '+SN)}L)(El+41($1+' ' '+SN)] e (33)

with the same notation as in (21). The solution for

y. ~(e') 0=0 is

(e) —f' g —(ee+ee) (g /g )e)+1. . .

X (g /g )ee+ee+ lg 0(i) {34)

where g)„, ,
0(e') is the inverse Laplace transform of

F,„,0(') as given by (33).
The matrix Eqs. (31), (32), and their solution (33)

for the proton-neutron cascade in approximation 2 are
very similar in form to Eqs. (19), (20), and their solution
(21) for the nucleon cascade in which the protons are
not distinguished from the neutrons. It is the power of
the matrix method that the matrices alone keep the
protons separated from the neutrons. Once the equa-
tions for the proton-neutron cascade have been written
in matrix form the diHerence between the protons and
neutrons is hidden. Even the "trees" used to describe
the solution for the nucleon cascade' can be used as
they stand for the proton-neutron cascade in approxi-
mation A.

This matrix method is a general one and has already
been applied by us' in electron-photon cascade theory
in approximation A. Here again the matrices alone
take account of the differences between the electrons

I".-("=.2( P/&—0)'F.,
c=Q

Y =2( P/&o) —Y,' (36)

From (26) and (27),

Yl,.($1, &)= L&El+hi($1)]-'Sl(s,)Y.. .(s,—1; X) {37)

YN, .(sl, , sN, X)

=Z ZL&EN+K hN($, )j '&N, k(»', , sk')
k 2 (k) r 1

XYN k+1, e(sk+1 e
'—' '

e SN e Sl + ' '+Sk e X)

+ZpEN+Z hN($. )1 'SN(SN)YN, . 1

0 b(e+1) 1

YN, .= f II r. (2'II z"Hd}z'" Gb(.)}Yb(0)+1,0,
e=@—1 b(e)=0 d=f (39)

where

Hd L)(Ee(d)+b(e)+1+he(d)+b(e)+1($1)+ ' ' '

+he(d)+b(e)+1 (Se(d)+b(e))+ he(d)+b(e)+1

X(se(d)+b()+1+ +SN—(2+1+&)j '

X0 (d)+b(e)+1, e(d)+1(se(d 1)+b(e)+le-
Xse(d)+b(e)e se(d)+b(e)+1+ ' ' '+SN (2+1+d) (40)

X(sl, ~, sN 1, sN —1; l(), $)1. (38)

For @=0, we obtain the solution for the proton-
neutron cascade in approximation A as given by (33).
The general solution for YN. , is t compare Eq. (13)],
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The same method as described in Sec. 2(b) may be
used to perform this inverse Laplace transformation.

4. SOLUTIONS FOR THE (n, m)th FACTORIAL
MOMENTS r„,„()

If 2'„(»(Eo;E, P; g) is the (n, m) th factorial
moment of the distribution function p„, (» giving the
probability of finding specified numbers of electrons
and photons above a given energy E and an arbitrary
number of electrons and photons with energies less
than E, then"

~ (I+{1)!(m+b)!
T„„»(E(E0P x)=Q Q

@=0 5=0 g I gt

&& 0)„+,„+b&)')(Eo, E, p; x), (42)

by definition. The solution for T, (&'& is obtained imme-
diately by making use of the relation4

~&e 00

2'„,~" (Eo, E, P;x)= i dEi
i

dE~+~&.~'") (43)

hence from (13),
(»(Eo. E P ~ g)

(E /E) s}+"+ss+s) Q ( p/Eo)e
a=0

X~n, me a Ply p ~+ p ~++~i )
(B~

)&s„+„;x)/si s„p . (44)

Gb&.) is as given by (13b) with the matrix Ab(s„)
replaced by hb($„).

Yb(0)yi, o=Yb(0)+1, 0($1) ' ' ') Sb(0)) Sb(0)+1+ ' ' '+SÃ {1)X)

as given by (33).
p'=p, &b(,+1) b{,)! signifies summation over all com-

posltlolls of (b(8+1)—b(8)}) c beilig tile C0111posl-

tion c(1),c(2), , c(/) with q(d) =c(1)+ +c(d).
Q(, (d} e{d}e){}+)SignifieS SummatiOn OVer all ChOiCeS

$0{d)+b(e)) Sq{d)yb(s)+1+ ' ' '+$)}i (1+1+8 floili
Si) ' ' ') $0(e{)+b(s)) $0(e{)+b(e)+i+ ' ' '+S)V {1+1+8)
and

Q s( }+I signifies summation over all choices of
sb( )+1+ ' ' '+S)})—(1+1+8 fl'0111 Si ' ' ' Sb( )

Sb(s)+1+ ' ' '+Sid (1+1+8.
The order in which the summations Rnd products in

(39) are to be carried out is as follows: first g„ then

pb(, ) from the left, next p', then gq and pc from the
right.

Inverting the Mellin transform we obtain the solution
fol /st, ~ 2 in thc foln1

y. ~{)')(Eo,' Ei, , Es; E.+1, , E.+~', &)

E (s+e)—)(E /E ))i+i. . . (E /E )de+a+i

XZ (—PIEo) $., -,.{", (41)

(Eo/E)si+ +s"s+s g( p/Eo)s
a 0

Xgs, )}),s(sl) ' ' '
) $))) Ss+1)

&&s.+-, 0)/» s-+-. (4& 3

The solutions (44) and (46) for the (I, m) th factorial
moments are of little value for computational purposes
because of their slow convergence. They may, however,
be transformed into a series which is rapidly converging,
The method is a generalization of that used by Bhabha
and Chakrabarty'7 and Messel' ' for the election-
photon and proton-neutron cascades, respectively. The
Bhabha-Chakrabarty method hRs bccn scvcI'cly clltl-
cised, ""but Messel" has pointed out that these
criticisms were inapplicable and that the Bhabha-
Chakrabarty method of solving for the first moments
in approximation 8 is the best available and gives the
most reliable results.

The following development will be carried through
for just the electron-photon cascade; an identical
treatment may be given for the proton-neutron case.

By writing sb+{b/(I+m) for sb in (44) and by suitably
changing the contour of integration, we obtain

T., „&))(Eo., E, P; x)

p(E0/E)s}+" +ss+ +s( p/E )s
@=0

f r {b ) r {1
X

f
I si+

f

"
I s-+-+

n+m ( ~i+ m

X&4, .f
si+ ) ''')ss+

io+m e+m
(1 8

, s„+„~;xf. (47)
e+m n+m

For E we write ((E+Pg) Pg}, where-
g=g)}s) (si) ' ' ',) ss)'s)}+1) ' ' ') s))+s)) x) (47a)

is as yet an arbitrary function, to be determined at a
later stage. Thus

~ I'(si+ +s„+„+{1+b+1)
(1/E) s}+"+ss+)s+s —P

b-o b!I'($1+ ~ +s + +(1+1)
g (Pg) b(E+Pg)

—(s}+"+es+)s+s+b) (4g)
'2 I. E. Tamm and S. Belenky, Phys. Rev. 70, 660 (1946)."H. S. Snyder, Phys. Rev. 76, j.563 (1949).
'4 H. Messel, Phys. Rev. 82, 259 (195k).

An identical set of relations holds between the (io, m) th
factorial moments and y„, (» for the proton-neutron
cascade. Tllus,

~
00 OQ

())(E,.E P. g) dE, . . .
~ dE„„y „(»(&))

4g
(43)

and, using (39),

2'„{)()Eo E P'&))
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In particular,

8
Xs„,„+;~ ~. (50)

N+m'

f. S'» =Gm m'"(Sl, ~

Xs.+1, , s.+, x)/sl .s.+ . (51)

The function g is so chosen that f„, , 1"l=0, i.e.,

ga, m~' (Sl& ' '
& Sai Sa+» ' ' '

& Sa+mi &)

= ($1$S' ' 'S + }(Sl+' ' '+Sa+m)

X(sr+(1+m) '} ' (s+ +(e+m) '} '

1 1
XG;1'"

I »+, ;,s.+-+ )
X(&a,m, o'"(Sl&,S.&Sa+1, , S.+m, ~)} '.

The general series solution (49) for the factorial
moments may now be used for numerical work in the
case of small I and»s. For E=P and Es))P the following
formula gives approximate results for the moments

~m '»(Eo', E& P&&)

[E/(E+pg)$ + "+ +mT„(&l(E ~ E p=0 g) (53)

where [E/(E+pg)g'~+"'+"+m is a correction factor
multlplymg 2'm &»(p=0), the solution for the moments
in approximation A.™

Tllis coIllpletes tile sohltloll fol' tile (1s, »s)tll factorial
moments in approximation 8, both for the electron-
photon and proton-neutron cascades. Together with
the results presented, ' ' it constitutes a complete
analytical solution of the fluctuation problems arising
in electron-photon and proton-neutron cascade theory.
It is true that the solutions obtained in approximation

By introducing (48) into (47) and setting t&=c—u we get

T„, &»(Es, E, P; x)

&I+ "+sa+m ( p ) a

=I-+-~ I-o (E+pg) &E+Pg)

F(sr+ ~ +s + +c+1)
X f .'a, (49)

1'(sr+" +s.+ +1)
where

fn, m, a (Sl»' ' Sa& Sa+1»' ' ' Sa+m& X)

~ (—1)'g' 1'(sl+ +s.+-+1)

.- (-). 1(+"+....+.+1)
a y t e

~ & $$ — ~ ~ a g
I+ms) ( e+m)

A were exceedingly complex and that those just pre-
sented were more complex still; however, this is not
surprising when one appreciates the complexity of the
problems solved. It should be recalled that the solution
of the cascade Quctuation problem demands a mathe-
matical representation of every possible event, with
suitable weight factors, which may take place in
buling up the cascade. When one further realizes
that in many large air showers one often deals with
millions of particles, the results are not unduly com-
plicated. One may wonder what possibility there is of
using the solutions presented for computational pur-
poses. Numerical results for the j.st moments in both
approximation A and 8 are easily obtained and have
been given for instance by Janossy and Messel, "
Bhabha and Chakrabarty, ' ' and Messel."The second
moments in approximation A have also been calculated,
both for the electron-photon and nucleon cascades (see
Janossy and Messel" and Messel"); in approximation
8 results using (53) will be given in a subsequent
publication. With the aid of an electronic brain it is
proposed to calculate the third moments as well and
then to use the first three moments to reconstruct the
appropriate distribution functions (see Green and
Messel' ). This at present appears to be a more satis-
factory method of attack than attempting to evaluate
directly the analytical solutions given for the dis-
tribution functions.

In the next section we will give a simple example of
the matrix method used. in this paper.

where
Ql, o(s; 7)=P,E,+Al(s) j-',

Ar(s) A s(s)-
Al(s) =

As(s) A4
Hence

Ql, s(s; X)= ((X+)1,(s))(l1s(s)—) 1(s))}-'
X[Xs(s)El—Al(s) j
+f ()+) s(s))(l11(s)—l1s(s))}-'

(55)

X[X,(s)E,—A, (s)$, (56)

where Xr(s) and Xs(s) are the eigenvalues of A, (s).
'& L. Janossy and H. Messel& Proc. Phys. Soc. (London) AQ,

iioi (i950).
'6 H. Messel, Progress in Cosmic Ray Physics (North Holland

Publishing Company, Amsterdam, 1952), Vol. 2.
'~ H. S. Green and H. Messel, Proc. Cambridge Phil. Soc. (to be

published).

5.THE FIRST MOMENTS OF THE ELECTRON-PHOTON
CASCADE

To give a simple example of the Laplace transform
and matrix method used in this paper, the g functions
and expressions for the first moments of the electron-
photon cascade will be derived.

To obtain the g function defined by (52) we require
Ql, s and Q1, 1. From (12),
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An inverse Laplace transform of (56) yields

G&pp (Sl x) Qy pp (sl x)
G,g, p(s; x)=

Gp, y, p (s& x) Gp, y, p~ (sl x)

e "'~*&* Xp(s) —A q(s) —A p(s)

4(s) —X&(s) . —Ap(s) Xp(s) —A4.

e "~&'&' X~(s)—A~(s) —Ap(s)

Xq(s) —Xp(s) —Ap(s) Xq(s) —A4

From (13),

Q~, ~(s; X) =[RE~+A~(s)] 'S, (s)[XE&+A~(s—1)] ',
(5g)

Qq i(s; X)= s((X+X&(s))(X+Xp(s))

X (X+ X&(s—1))(X+Xz(s—1)))

(X+A 4)' —A p(s —1)(X+A 4)
(59)—A p(s) (X+A 4) A, (s)A p(s —1)

(57)
Taking the inverse Laplace transform of (59) we fincl

Q, p
&"(s; x) +~ p, ~&p&(s; x)

G,~, g(s;x)=
C', p q

q&" (s; x) Qp &, y '(s; x)

{Xq(s)—A4)' A p(s —1)(Xq(s)—A4}

(Xp(s) —X,(s)) {X&(s—1)—X&(s))(Xp(s—1)—X&(s)) Ap(s)(X&(s) —A4}

(Xp(s) —A4)'
+

{Xg($) Xp($) }{X&(s 1) Xp($) }{Xp($1) Xp($) } A p($)(X2(s) —A 4)

(s—1)z

+
{X&(s)—Xq(s —1)) (Xp(s) —Xq(s —1)){Xq(s —1)—X~(s—1))

(X&(s—1)—A4)'
X

A p(s)(X&(s—1)—A4)

~~
—) 2(s—1)s

+
(X&(s)—Xp(s —1))(Xp(s) —Xp(s —1)) (X&(s—1)—Xp(s —1)}

A, (s)A p(s —1)

A p(s —1)(Xp(s) —A 4)

A p(s)A p(s —1)
(60)

Ap(s —1){X~(s—1)—A4)

Ap(s)Ap(s —1)

(Xp(s—1)—A4}' Ap(s —1){Xp(s—1)—A4}

A p(s) {Xp(s —1)—A4) A p(s)Ap(s —1)

Formula (52) now gives the values of g&, p'", g&, p'",
go 1&'), and g0, 1&'). The result for g1, 0&') agrees with that
obtained previously by Bhabha and Chakrabarty' in a
different manner. The result (60) enables one to cal-
culate T, '"(Ep, E, P; x) using (53). To obtain a more
accurate value for T„,„,&&& one must use (49) and (50);
for instance, to carry the approximation (53) one stage
further it is necessary to evaluate f„, »apnd hence

Q, &, p(s; x). From (13),

Ap(s —2)(y, (s)—A )

Ap(s)Ap(s —2)

G.&, p, p "(s;x) R~, p,
p'p (s; x)

Q, i, p(s; x) =
.Dp, Lp ($; x) Dp, &, p~ (sl x)

B

=s(s—1)g(A4—y;($))e ~ &'*
i~1

X (II (&,(.)-&,(.))}-
i&k

h'() —A )'
X

A p(s) (y, (s) —A4)
(62)

Q, ,(s; ) )= [XE&+A g(s)] 'S~($) LlcE&+ A&($

X S&(s—1)[xE,+Aq(s —2)], (61)

and hence, taking the inverse Laplace transform, we
find

where

'yg($) = gy($)) 'yp(s) = X&($ 1)) 'yp($) X1($ 2)y

r4($) —Xp(s), rp(s) = X,(s—2) and rp(s) = Xp($2).
As mentioned previously, the second moments with
numerical calculations will be discussed in a separate
paper.


