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Franz has shown that for nonrelativistic changes of photon momentum (g) the coherent scattering of
gammas by bound electrons reduces to the form factor calculation. We consider the near-relativistic region,
by an expansion in q/mc. The corrections to the form factor calculation are very small for small atomic
numbers, the order of magnitude being (Z/137)(q/mc). Numerical results for scattering by Z electrons of
tin give an increase of the amplitude of 25 percent above the form factor value for q/me= 1.5 and a smaller
change for smaller values of g. Our results are incomplete since we neglect the effects of binding in the
intermediate state.

L INTRODUCTION pRrRI11ctcl' g/Sic. Tllls cxpallslo11 111 g/1wc works well fol
tin and scatterers of smaller atomic number since the
coeflicient of q/mc in the expansion contains the small
factor Z/137. We shall regard our expansion as basically
an expansion in just the parameter q/@le; and we shall
keep small terms of order Z/137 or its powers wherever
tllcy do Ilo't colltRlll rJ/fsc.

We shaH continue the approximation of a free inter-
mediate state. Preliminary work by Peierls, Woodward,
and Browns indicates that the corrections to the scat-
tering amplitude resulting from binding in the inter-
mediate state are of the same order of magnitude as the
relativistic corrections calculated in this paper. How-
ever, the results of this paper are stiH needed as one
part of the complete calculation.

Our correction wiil be expressed as a factor multi-
plying the amplitude given by the form factor calcu-
lation. We should note that Franz' in calculating the
form factor used the Thomas-Fermi electronic charge
distribution. While this distribution is appropriate for
very low values of q, Bethe' has shown that for values
of q larger than the characteristic momentum of a E
electron (mcZ/137) one should calculate the form factor
using thc Dllac %Rvc fuQctloQ fol thc E clcctI'oQs.
Rohrlich and, Rosenzweig' have extended Bethe's
result by calculating the increase in the form factor due
to the I electrons.

In the next section we give the general expression for
coherent scattering by bound electrons and 6nd an
approximation for the relativistic corrections to the
scattering amplitude, In Sec. III we 6nd numerical
results for this correction for the case of low Z and for
tin. In Secs. IV and V wc consider the absorptive con-
tributions to the scattering and. the diferent cases of
photon polanzation. We shaH not compare our cal-
culations with the experiments of Wilson' or of Moon
and Storruste' at this time for three reasons: (1) our
calculations appear incomplete because of the approxi-
mation of a free intermediate state; (2) the experi-
mental measurements include the CGects of potential

HE coherent scattering of radiation by electrons
in an atom is usually calculated, as the atomic

form, factor

Ii (q) —m-I ae'&'Ndsr,

where Ne is the charge density, and q is the change of
momentum of "hc photoll: /=2(~+/c) s1n8/2 wlml'c (7

is the scattering angle. (We should multiply by e'/c'
and by Lrs(1+cos'8) )& to 6nd the scattering amplitude. )
Franz' has written down the expression for the scat-
tering of a high energy photon by a bound electron,
using second-order perturbation theory in coordinate
space. He shows that his expression reduces to the
usual form factor calculation if he neglects binding in
the intermediate state a.nd makes the Qonrelativistic
approximation:

q&(use.

Halpern and HRH2 have shown that for nonrelativistic
change of photon momentum the coherent scattering
cRIculRtloQ glvcs very slmllRl results fol thclI' scheIQc I
and scheme II. We shall make calculations by the
usual one-electron theory (scheme I) in the near-
relativistic region.

Knowledge of the amplitude for elastic scattering of
gamma-rays by bound electrons is essential for the
analysis . Gf Wilson s experiment on potcQtlal, ol
Delbruck scattering. He has measured elastic scattering
in the range 40' to 135' of Co"gammas (1.33 Mev) and
ThC" gammas (2.62 Mev) by ssSn, and by ssPb and
neighboring elements.

Several of us' have calculated the coherent scattering
for a rather special relativistic value of q (Co~ gammas
scattered through 180'). In this paper the present
author %'ill estimate thc rclRtlvlstlc corrcctlons to the
scattering amplitude by making an expansion in the

~ Part of this work was done while the author was a research
associate at Cornell University under an ONR contract.' W. Franz, Z. Physik 95, 652 (1935);98, 314 (1936).

s 0. Halpern and H. Hall, Phys. Rev. 84, 997 (1951).
~ R. R. Wilson, Phys. Rev. 82, 295 (1951).
4 Grei6nger, Levinger, and Rohrlich (to be published).

~ R. Peierls, private communication.
6 H. A. Bethe, private communication.' F. Rohrlich, private communication.
s P. B. Moon, Proc. Phys. Soc. (London) A63, 1189 (1950);

A. Storruste, Proc. Phys. Soc, (London} A63, 1197 (1950).
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scattering, and this has been calculated only for very
small angles (3) only the 8=40' point of Wilson's
measurements falls in the region where our expansion
is valid.

Q=-', (k,-k,) =-',q,

K=-', (ki+k, ).
(3)

ki and ks are initial and final photon momenta. The
electron momenta are p —Q for the initial state and
p+Q for the final state. The matrix elements for scat-
tering a photon of polarization state p into state v are
given below: 3f' for the case where the photon is first
absorbed; 3f" for the case where the photon is first
emitted. (See Appendix A for the derivation. ) The prin-
cipal value gives the dispersive scattering; the con-
tribution at the pole gives the absorptive scattering.

d'P4 (P+Q) {—v.v.L'v (p+ K)J
—v (E+ )+mj+2iv. (p.—Q.)}4 (P—Q)/(b —a) (5)

M.,"= "d'P.-(p+Q)(-v. v.L'v (p-K)
—v4(E—~)+m)+»v. (P.—Q )}

X &(p-Q)/(b+. ). (6)

E=mc' —e is the energy of the bound electron; ~ is its
binding energy; the p's are the Dirac matrices in
Pauli's notation; q is the electronic wave function in
momentum space,

b= Ps—Qs+2m« —«s,

a=24o(m —«) —2p K.

Let us 6rst consider the case p= v=y; p„p„=1; the
photon propagation K in the x-direction, and Q in the
s-direction. That is, there is no change of polarization,
and the polarization is perpendicular to the scattering
plane which contains K and Q. We shall show below
that, for Q&mc, the case where the polarizations are
both in the scattering plane gives a very similar result,
except for the usual factor of cose. There is a much
smaller amplitude for change of photon polarization.
The scattering amplitude M» ——M»'+M»" equals

II. GENERAL EXPRESSION FOR COHERENT
SCATTERING

Following Bethe, we draw the Feynman diagrams and.
write down the matrix elemtns for coherent scattering
by bound electrons. We use the notation symmetrical
between initial and anal electron states:

In the nonrelativistic case, Qs=0, p=0 inside the
brackets, b=0, a=2m~, and only the y4 term need be
considered. We then keep only 2aoi/( —a') = —1/m for
the fraction.

Then the amplitude

(10)

Equation (10) is just the form factor written in mo-
mentum space; it is equivalent to the coordinate space
expression of Eq. (1), so we have confirmed the results
of Franz. (This result was shown by H. A. Bethe. )

Using Eq. (g) for a, we have the more exact expression

M = d'py(p+Q)

The amplitude
s= P, cosxs8/(m —«). (13)

M..= (m «)—' "—d'P«(p+Q)(1 —s) 'v(p —Q) (14)

Since the wave functions for a bound electron in a
Coulomb Geld are more tractable in coordinate space
than in momentum space, we wish to And a way to get
from the latter, as in Eq. (14), to the former. We shall
do this in an approximate manner by expanding the
fraction in powers of s; shortly thereafter we correct
for the fact that the integration over d'p goes to infinity,
while our expansion holds only for ~s~ &1. The ex-
pansion gives

X(—ro/L(m —«)ro —p K]}q(p—Q). (11)

In Eq. (10) we used the product of the fourth com-
ponents of the four-vectors for the photon (o&, K) and
the electron (E, p). In Eq. (11) we use the invariant
expression for the scalar product of the two four-vectors.

We show in the appendix that Eq. (11) is a good
approximation for Eq. (9) provided we have (a) Q&mc;
(b) not too large atomic number; and (c) small angle
scattering. Condition (b) is needed so that the small
components of the Dirac wave function can be neglected.
This greatly simplifies the numerator since we can then
neglect the terms with v„v„, or v, . Assumptions (a)
and (c) are needed so that we can neglect b LKq. (7)j
compared with a LEq. (8)j.

With K along the x-axis, and of magnitude ro cos8/2,
Eq. (8) becomes

a=2o&Lm —«—p, cos8/2 j=2oi(m «) (1 s—); (1—2)

M=-(m- )-' d'P~(p+Q)(1+s+"+" )~(p-Q)

=m(m —«) 'LF(Q)+Mr); (15)

M, =) d'pp(p+Q)s'y(p —Q).

M„„= ' dspio(p+Q)(2b[ iV p+V4E+m+2iV—„P„]

+2a( ivy~+ v4~) }p(p Q)/(—b' a') (9)— —

'F. Rohrlich and R. L. Gluckstern, Phys. Rev. 86, 2 (2952);
H. A. Bethe and F. Rohrlich, Phys. Rev. 86, 10 (1952),
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The term, 1 in the parentheses gives just the form factor
result F(Q) multiplied by the factor of m/(m —4) which
is close to unity. The term s gives zero on angular
integrations. The main correction is the term M~, which
is evaluated by a Fourier transformation to coord, inate
space (see Appendix 3). Mi is positive leading to an
increase of the scattering amplitud, e:

Mi ——cos'-', 8(m —4) ' d'r exp(2iQ r)

&&44*(r)(—4t'/4!z') 44(r). (17)

We must justify our expansion of (1—s) '. For very
large p, y(p) decreases about as p ', so the integral
with p,' does converge, but the integral with p,' and
higher powers diverge. Let us divide the integration
into 2 regions and, use the expansions

region I, ~s~ &1: (1—s) '=1+s+s'+
(18)

region II, ~s~)1: (1—s)
—'= —(s '+s '+ ).

In Eq. (15) we have integrated the terms 1 and s' over
both regions, rather than just over region I. We should.
have M» ——[F(Q)+Mi M2]—m/(m 4), —where Mi is
given by Eq. (16) integrating over all p, and for M2 we
integrate over region II:

M, = " d'pf4(pyQ)(1+s+s'+

+s '+s '+ )9(P Q) (19—)

The evaluation of Eq. (17) for Mi and Eq. (19) for M2
is easier if we use Schrodinger wave functions for N(r)
and y(p) for the E electrons. We normalize so that an
integration over r'dr gives 2 electronic charges. Schro-
dinger functions are given in Eqs. (22) and (23):

Ns(r) =2&e-',

4 s(p) =(2~) '2"'(1+P') '.

(22)

(23)

Dirac functions for the large component are

»(r)=2'+'r" 'e "[(2v)!j ' (24)

2'+7(y+1)! sin[(y+1) tan 'pj
~~(p) = (25)

(2~)'[(2v) O' P(1+P')"+""

y= (1—0&Z2)1~1—ic44Z2= 1—e (26)

c4= 1/137; e is the binding energy in units of mc'. For
4r4/2«1, we can expand Eq. (25) for the Dirac wave
function in momentum space as

q D(P) =ye(P)[1+(P'—1)4 tan 'P/2Pj(1+P')'~'. (27)

We have omitted the small di6'erence in the normaliza-
tion constants.

Equation (27) shows that the Schrodinger function
ps(p) is a good approximation to the Dirac function for
ep«1, since for ep«1 and p»1 we have

III. EVALUATION OF RELATIVISTIC CORRECTION

It is convenient to work in atomic units of ao/Z for
position, and of fi/(ao/Z) =mcZ/137 for momentum; ao

is the Bohr radius. We use k= 1. In atomic momentum
units

me=137/Z,

Q = (137/Z) (h40/mc') sing&.

(20)

(21)

The advantage of this formulation is that for Q&mc
the term M~ is greater than M2. We calculate M~
exactly by making a Fourier transformation into coor-
dinate space, which is only possible for an integration
over all momentum space. We shall calculate 352 ap-
proximately using an asymptotic expression for the
momentum space wave functions valid for large
momenta, i.e., in region II.

Since we terminate the series in 3f~ at s', we ter-
minate the M2 series at s' for positive powers of s and
terminate the series for negative powers of s at s '.

The discussion above applies to the calculation of the
principal value of the integral of Eq. (14), which we
call the amplitude for dispersive scattering. The am-
plitude for absorptive scattering, represented by the
residue at the pole is quite small, as shown by the
calculation in Sec. IV.

~n(p) =~e(p) (1+~—ep/4) P' (28)

We are interested in values of Q, and consequently of p,
of order of magnitude me=1/Zn. Then

F(Q) =2/(1+Q')'.

The first relativistic correction Mi [Eq. (17)$ is

(30)

Mi ——cos'-'8(m —4) '[tan 'Q/Q' —1/Q'(1+Q') j. (31)

We see that Mi decreases more slowly than F(Q) for
Q))1 (as Q

' instead of as Q 4).
The next relativistic correction M2 [Eq. (18)) can

be approximated writing (1+p') '—p
' in Eq. (23).

vrcP/4= (s/4) (-', n'Z') (1/Zn) = 4rnZ/8. (29)

The Schrodinger wave function is a good approximation
for the Dirac wave function (large component) for
Z&30 and p&mc, and does not give too bad results for
Z=50, where we shall make a numerical comparison.
Also for Z&30, the small Dirac components can be
neglected, owing to the small normalization constant
(1—y)&(1+y) &=-', nZ. (See Appendix 8.)

Using Schrodinger wave functions for E electrons to
evaluate the form factor F(Q) in Eq. (1) or Eq. (10) we
have the well-known result



TAsLz I. Coherent scattering by E-electrons of tin using
Dirac vrave functions.

TAalz II. Coherent scattering by X-electrons of tin using
Schrodinger @rave functions.
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Vge take cos~~~8=1, and a&&m.

64 t (p,2/m'c2+1+2N2C2/p. 2)d'p
M2= —

~

/ 11 L(p2+Q2)2 4p '2Q2j2

Q'mC(m2C2+ Q') '

Q'+32222C2Q2 —152n'C' t'2IIt: )—cot-Ii
m2C2Q2 E Q ~

-=2.3(~.)-2(1—2.1Q /~"2" ). (32)

The last expression is convenient for Q«212@. In evalu-
ating the integral over region II (i.e., ~P~ &212' or
1/Zn in atomic units) we have underestimated the
integral somewhat by neglecting the 4p, 'Q' in the
denominator.

SlInllax' calculations can bc Inadc using thc DlI'ac
large component wave functions given in Eq. (24) and
(25). The form factor is calculated by Bethe as

F(Q) =sin(2y tan-IQ)/yQ{1+Q2) &

The Inaln coI'I'cctlon 3III ls

M = —-' cos2x8(212—e)
—222+2&$(2y) g '

&&i: (2.)—{2~—1) {2&—1)+{~—1)' (»—2)
-«(2.)+{»-»«»-»

+(~-»(3-~)«»-»j, (34)

where

s(22) = (n 1)!sin(22—tan 'Q)/Q2"+'(1+ Q') "~2

[22(22 1)Q'—2—j sin(n tan 'Q)
+2Q22 cos(22 tan 'Q)

t(22) = (21—3)! (36)
Q22n+1(1+ Q2) e/2

The second correction M2 is calculated for Dirac wave
functions using the Schrodinger wave function as an
approximation, thus obtaining the results given in Eq.
(32).

Numerical results for coherent scattering by E elec-
trons of tin are given in Tables I and II. In Table I,
F(Q), Ml and M2 are given using the large component
of the Dirac wave function. In the last two columns we
give the ratio scattering amplitude to form factor

=3IIyy/F(Q) Tile .next to last. Co!111111118 found llslIlg

M» ——L212/(212 —e))[F{Q)+MI—M2j. The last column

gives this result making a correction for the small Dirac
components discussed in Appendix B.For tin 222/(212 —2)
=1.06. We have taken cos2'28=1.0. Note that Q is
given in atomic units of momentum LEq. (21)j and that
amplitudes are in units of r2=e /nac2. The row Q=0 is
for illustrative purposes only as for Q«1 the 1. M ~ ~

electrons are of great importance, and our calculation
holds only for E electrons.

For comparison we give in Table II the results for
the form factor F(Q) and the ratio M~/F(Q) using
Schrodinger wave functions. Comparing the two tables
we see that the Schrodinger wave functions give good
results for small Q, but underestimate both the form
factor and the ratio M»/F(Q) for large Q. The values
given for Q=3 must be regarded as dubious since the
expansion parameter Q/mc becomes greater than 1.
(Still, the corrections Ml and M2 in Table I are reason-

ably small compared to F(Q) for Q=3; i.e., Q= 1,1 pic,
or scattering of Co~ j..332-Mcv gammas through an
angle of 48 . The small values of the corrections Ml and

M2 justify the approximations made in their calculation.
We also note that the correction in Appendix B (last
column, Table I) for the effect of the small Dirac com-

ponents does not change the ratio M/ (FQ) greatly,
except for the dubious case Q=3.

As an Hlustration of the use of Schrodinger wave
functions let us consider scattering by E electrons in an
atom for the case one))Q))1, where all quantities are
expressed in atomic units. Equation (30) gives F(Q)—Q 4; Eq. (31) gives Ml —(2r/2)(212') 2Q ', Eq. (32)
gives M2=2.3(wc) '. We see that the relativistic cor-
rections M~ and M~ are extremely small relative to
form factor due to the extra powers of the mass in the
denominator. For very sm, all atomic numbers the rela-
tivistic corrections are very small even for Q comparable
to 222', since Q and 2wc are comps, rable large numbers,
when cxplcsscd ln atomic units.

%e conclude that the relativistic corrections con-
sidered here cause some increase (10 to 30 percent) in

the scatter'lng amplltudc fo1' cohclcnt small angle scat-
tering by E electrons of tin and that the corrections
111clcRsc wltll 111crcR811lg Q. Tile 811Ilplcl' eqllatlons 11811lg

Schrodinger electronic wave functions are useful for

rough evaluation of the amplitude/form factor ratio,

up to atomic number 50. As noted above, the scattering
amplitude may be changed appreciably due to cor-
rections for binding in the interlnediate state.
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p.—mc ~ ~
dpÃp. ~(p+Q) ~(p Q) (—37)

The amplitude M„ for absorptive scattering is given
in units of ro by

~,= (g~m/3) (m'c'+ Q') —'. (3g)

As above, mc and Q are in atomic units; wc=137/Z
=2.7 for tin. The absorptive scattering should be com-
pared with the dispersive scattering given approxi-
mately by Bethe's form factor [Eq. (33)j. For Q«1,
M~=(gs/3)(mc) ' while the form factor=2, so the
amplitude for absorptive scattering is negligible, being
only 2 percent of the form factor for the case of tin. It
is even smaller for smaller Z. (Note that for combining
the absorptive scattering and form factor we add the
squared amplitudes, since they are out of phase by 90'.
In combining various terms for the dispersive scattering
we add the amplitudes, and subsequently square to
find the cross section. ) The absorptive scattering is
small even in the most favorable case of Q=rlc. Eq.
(33) gives a form factor of 0.8(mc) 'I, while Eq. (38)
gives an absorptive scattering amplitude of (z./2) (mc) '.
The ratio 1.3(mc) "=02 for tin.

V. OTHER POLARIZATION CASES

The case of photon polarization in the scattering
plane, both before and after scattering, is quite similar
to the case of perpendicular polarization discussed in
Sec. III. For the limiting case of zero scattering angle,
the two results must be identical, from the symmetry of
the problem. In the general case, we combine Eq. (5)
and Eq. (6) to give a result analogous to our Eq. (9) for
the special case treated above. For our present case the
combination y„y„+y„y„=2cos8, where 8 is the scat-
tering angle. This combination gives a result just the
same as in Sec. III except for the extra factor of cos9;
which occurs here in just the same way as in the
Thomson calculation of coherent electronic scattering
by free electrons. The terms with

7p7~ 7~7'= 27',7) sol~

give zero using only large Dirac components since they
contain two diferent space-like Dirac operators, multi-
plying expressions containing either one or no Dirac
operators [see Eq. (9)j. Here X is in the scattering'

IV. ABSORPTIVE SCATTERING

The amplitude for absorptive scattering is calculated,
as x times the residues at the poles on the real axis.
In Eq. (14) for 3II» we have a pole at s =p, cos 28/—(m —e)
=1: i.e., p, =mc. Then, as in the calculation of 3E~
above, we can use the Schrodinger form (Eq. (23)) for an
approximate momentum wave function for large
momenta. The integral over p„and p, is done as before
neglecting the term 4p, 'Q' in the denominator in Eq.
(32), giving

plane, perpendicular to p. For the case of Sec. III this
term was identically zero. For atoms of low atomic
number, where we neglect the small Dirac components
we obtain then just coso times the result of Sec. III.
For unpolarized gammas this gives a cross section

2 (1+cos'8) [roF(Q) j'.
The eGects of the small Dirac components are

estimated as in Appendix B. They are quite small for
the case of tin, as here we are interested only in the dif-
ference between the values of this correction term for
the two diferent polarization cases.

In the nonrelativistic form factor calculation there is
zero amplitude for change of direction of photon polari-
zation by 90', i.e., either (1) polarized perpendicular
scattering plane before, polarized parallel after; or (2)
polarized parallel before, and perpendicular after. We
6nd that the amplitude for this process is quite small
in our case. We note that for this case, as for the case
of absorptive scattering, the amplitude combines with
the form factor amplitude by 6rst squaring and then
adding.

In combining Eqs. (5) and (6) we now use

p„p,+p,&„=0 and p„p, &„7„=2&—„7„. By the same
argument as above, the large Dirac components give
zero amplitude for this. scattering process. The main
term, using one large Dirac component and one small
Dirac component, is estimated in a manner similar to
that in Appendix 8, giving

~=3[(1—V)/(1+ v) j*»nk8~(Q). (39)

Even for Q =mc, the ratio M/F(Q) equals only 0.02 for
scattering of Co" gammas by tin (y =0.932) and should
be neglected.

VI. DISCUSSION

We have found that coherent scattering by bound
electrons for photon change of momentum in. the near-
relativistic region gives a scattering amplitude some-
what larger than that of the form factor calculation.
The numerical results have been calculated for scatter-
ing by E electrolls of tin. It is straightforward to obtain
numerical results for smaller atomic number. For larger
atomic number more careful calculations are needed for
terms that are small in the case considered here, so that
they could be estimated crudely in the appendix. These
calculations could be made by methods like those of
this paper.

For the case of tin, for near-relativistic values of
photon change of momentum, the scattering amplitude
has the following properties: (1) The amplitude is a
function of the photon change of momentum, q but not
appreciably of the photon energy. (2) The dependence
on photon polarization is very nearly the same as for
the form factor calculation; (a) the case polarizations
in the scattering plane gives the same scattering am-
plitude as polarizations perpendicular to the scattering
plane, except for the usual factor cos8; (b) the amplitude
for change of photon polarization by 90' is very small.
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q(P+Q)= t exp[—i(y+Q) R]u(R)d'R, (A2)

(3) The absorptive scattering amplitude is much smaller the orthogonality of the vectors K and Q. We write
than the amplitude for dispersive scattering.

We are grateful to H. A. Bethe, P. Greifinger, O.
Halpern, G. Jaffe, R. Peierls, F. Rohrlich, and R. R.
Wilson for discussions of this problem.

APPENDIX A q (p—Q) = exp[ i—(y Q—) r]u(r)d'r. (A3)

Here we shall derive the amplitudes for coherent
scattering of radiation by a bound electron. This cal-
culation neglects the effects of binding in the inter-
mediate state, since it uses the Feynman propagators for
a free electron. For this type of calculation the Feynman
method is equivalent to usual second-order perturbation
theory. Greifinger' has shown explicitly that Franz'
expression' reduces to our present result if a free inter-
mediate state is assumed. The derivation given here was
done originally by H. A. Bethe and was extended to 9

more general case by F. Rohrlich and the present
author.

The Feynman diagrams for M„„' (photon of polariza-
tion p, absorbed; photon of polarization v subsequently
emitted) and 3II„„" (v emitted, then p absorbed) are
shown in Fig. 1. We use the symmetrical notation of
Eqs. (3) and (4) of the text. We shall use Feynman's
notation for four-vectors, and for the Dirac y matrices. '
The amplitude 3f„„'is

HQ SOUND

j4

SOUND

P-0 SOUND p- ~]4 SOUND

Since s= y K/(m —e) &o and K is perpend, icular to Q, we

M„„'= (p(P+Q)iv„[i(P+E)+m j 'ip„q (P Q)d'P—

i(p+K) —m
= ~e(p+Q)v. v.v(p Q)d'p—

(p+E)2+m2
" (A1)

where p=p„y„p„.
Note that the integration over p4 (energy) has already

been done, to give the case of elastic scattering. The
energy denominator is evaluated using the relations

(A)

Fzo. 1. Feynman diagrams for scattering of radiation: 1(A), for
the case of absorption 6rst; j.(B), for the case of emission 6rst.
"Bound" means use the momentum space wave function of a
bound electron; "free" means use the (approximate) propagator
for a free electron.

can write

s'q (p—Q) = cos' ,'8(m e-)—

and
(p)'= p' —E'= p' —(m —~)'

2p J =2y K—2(m —c)&u.

t(—8'/Bx') exp[ —i(y —Q) r]u(r)d'r. (A4)

From Eqs. (3) and (4) we have (ICI'= —Q', the square
of the length of the three-vector. The numerator is
evaluated using y„Py„=—y„y,P+2y„P„. We use an
analogous expression for y„Ky„, and then use E„=—Q„.

Following this procedure, Eq. (A1) gives us the
result for the amplitude M„„' given as Eq. (5) of the
text. M„„",the amplitude for emission erst, is treated
in a completely analogous manner using the Feynman
diagram of Fig. 1(B), and gives Eq. (6) of the text.

APPENDIX B

The Fourier transformation leading from Eq. (16)
for M& as an integral in momentum space to Eq. (17)
for M~ as an integral in coordinate space is based on

' P. Grei6nger, private communication.

Using expressions (A2) and (A4) in Eq. (16), performing
two integrations by parts so that the —8'/8x' operates
on the wave function u(r), and integrating over d'g
and d'p, we have Eq. (17).This proof was suggested by
J. Goldstein.

APPENDIX C

We discuss here two diGerent types of terms that
were neglected in the calculation of the coherent scat-
tering amplitudes for polarization perpendicular to the
scattering plane. In going from Eq. (9) to Eq. (11) we
neglected b in comparison with a [see Eqs. (7) and (8)$;
we also neglected the contribution of the small Dirac
components.

We neglected b both in the numerator and in the
denominator of Eq. (9). The b term in the numerator
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contributes: Eq. (9)

d'pe (p+Q) (2bela') e(p Q)—

&-;(Zn)~ sin'-,'OF(Q) &0.006F(Q). (A5)

We 6nd the second expression on the right by taking
b= —Q' (an overestimate); a=2m'&. The numerical
result applies for 48' scattering of Co" gamma-rays
from tin (Q=3 atomic units=1. 1 mc).

The eRect of b in the denominator of Eq. (9) can be
estimated by an expansion in b'/a'.

t d'p» (p+Q) ( 1/—m) (b'/a'+ ) y{p—Q)

Mz, s= —m 'J d'pp(p+Q)( i—y, i—y,s ) e'(p —Q)

=m —' d' pLu, *(p+Q) (p,/m) u4(p —Q) sinOe'"

+u„*(p+Q) sinOe *&(p—,/m) u, (p Q)]— (A. 7)

The term, —iy, in the erst integral goes out on angular
integrations, leaving the term —iy,s as the leading
term, written as the second integral. The second integral
is expressed as an integral in coordinate space:

&-'(Q/mc)' sin'-'OF(Q) (0.04F(Q). (A6) Mr s= 2m—', f(r) sinOe'~

We have made the same approximations as before, and
the numerical result applies to the value of Q given
above.

We shall neglect both these terms in our present
calculation. The first term becomes larger for high Z,
the second term for high Q. Both become larger with
scattering angle 8.

The small Dirac components have a normalization
factor smaller by a factor L(1—y)/(1+y)]&= 0.18 from
that of the large components. (The numerical result
applies to tin, &=0.932.) The term in Eq. (9) using
sma]1 components for both y(p+Q) and qr(p —Q) will

then be about 3 percent of that using the large com-
ponents for the case of tin, so we shall neglect any rela-
tivistic changes in this small term. (The term itself is
included in Bethe's form factor calculation. )

If we use a large Dirac component for y(p+Q) and
a small component for e(p —Q) (or vice versa), we get
an appreciable correction to our result. Neglecting b in
comparison with u, we have the matrix element from

&(exp(2iQ r) m '(8/Ox—)g(r) d'r (A8).

(There should, of course, be a further correction term
like M2 of the text. ) Here f(r) is the radial function for
the small Dirac components. For E electrons it is equal
to the large component g(r) [Eq. (24)] except for the
term $(1—y)/(1+y)]& in the normalization factor.
Using the Schrodinger wave function of Eq. (22) as a
convenient approximation, we have

Mr.s=—m-'L —2m '(1—y) ~(1+y)-~Q-']

1+2Q' tan 'Q
X

-(1+Q) Q
(A9)

This correction term is calculated for tin and used for
the last column of Table I to give LM„„/F(Q)] . The
term Mz, s is very small relatively for small Q, and
increases to about i5 percent of the form factor for
Q=mc.


