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Bound States and the Interaction Representation
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The temporal development of the state vectors in the interaction representation is investigated for a
quantum-mechanical system that has bound states. It is shown that there is a non-unitary operator which
determines the variation of the state vectors of the free states. This operator satisfies the same differential
equation and initial condition as the unitary operator which transforms a state vector at the remote past
to the state vector at a finite time or in the remote future. The present investigation is relevant to a remark
made by H. S. Snyder.

No iteration process is made use of in the general investigation. Born s method of successive approxi-
mations is discussed at the end.

I. INTRODUCTION

HE connection between the time-independent
(stationary)' and the time-dependent (nonsta-

tionary)' formulations of the theory of scattering has
been investigated by several authors. '" Snyder has
pointed out that further clarification is needed for
obtaining complete consistency in such theoretical
considerations in the case of a quantum-mechanical
system that has bound states. It is the purpose of the
present note to contribute some discussions relevant
to this question.

Our discussions also throw some light on the relativ-
istic two-body problem4 and the general theory of the
bound states. '

II. TEMPORAL DEVELOPMENT OF THE STATE
VECTORS IN THE INTERACTION

REPRESENTATIO N

The time-dependent theory of scattering is usually
developed in the interaction representation with the
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The P's and p's each form a complete orthonormal
set of eigenvectors. There is no p corresponding to P„
but ther'e is a one-to-one correspondence between the

"For a discussion of the identity of the continuous spectra of
IIo and IJ1, see P. A. M. Dirac, Principles of Quantum Mechanics
(Oxford University Press, London, 1947).The discrete eigenvalues
of H are assumed to be real and outside the range of the continuous
spectra. Note the dia'erence between the meanings of the word
"free" for "free particles" in connection with IIO and "free state"
in connection with B.

cr-surfaces taken to be planes. In this section such a
time-dependent theory will be extended to include the
bound states. We shall take the time-independent
formulation of quantum mechanics as our starting
point.

We consider a quantum-mechanical system with the
following properties. The Hamiltonian of the system is
of the form

H= Ho+H),

where Hp is the Hamiltonian of the free particles and
H2 is the interaction of the particles. There is no time-
dependent external force, so that in the Schrodinger
picture Hp and Hj are time-independent. The free-
particle Hamiltonian Hp has real eigenvalues that form
one or several continuous spectra. /he total Hamil-
tonian H has the same continuous spectra of eigenvalues
and also discrete eigenvalues which have no one-to-one
correspondence to the eigenvalues of Hp. The continuous
eigenvalues of H correspond to the energies of the
hyperbolic orbits in the classical theory; the discrete
eigenvalues correspond to the energies of the elliptic
orbits: The eigenstates of H with continuous and
discrete eigenvalues will be referred to as the free and
bound states, respectively. "

Let us first state the basic features of the time-
independent theory of such a quantum-mechanical
system. Greek and Latin indices will be used to denote
the free and bound states, respectively. Let P and p be
the eigenvectors of H and Hp, respectively. We have
then
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P), and Pg. Put
A- WA (5)

The quantltles

(4~, A)=H~, WA)=( ~W~&) (6)

form a matrix which Mgller calls the wave matrix.
It satis6es the equation

(8),—E„)(piWi'A) =(piHgWi X). (7)

In the Schrodinger picture the state vector that is
equal to f+~ at 3=0 is equal to P~q exp( —iE~)) for an
arbitrary value of t. It is therefore given by

P~gP) =exp[i(HO —Z),)t]|t~g (18)

in the interaction representation. It follows from Eqs.
(5) and (18) that

whereThe radiation conditions for Pq to describe plane
incident waves together with spherical outgoing or
ingoing waves give the solutions

(~l W+I ~) = &( —~)~2~F4(&.—&.)(~IH W~l l ), (8)

W~(/) = exp(iHot) W~ exp( iH—ot)

satis6es the equation

i(dW, (~)/d~) =H, (t)W~(t),

[
~(~)

hm 8+(co) exp( Rdf) =-
g-+goo loFor the bound states we have

where with
H)(t) =exp(iHot)H, exp( —iHot).

with I' denoting the principal value. The 5-matrix is
given by

(p($~ X) =5(p.—X)—2mib(Eg —E„)(p,(H)W+~ X). (10)

(20)

(21)

(23)

which gives

(E. E.)(4., 4—.)=(4., HA. ), lim 8 ((u) exp( —i(A) =
)~+GO 8((a)

I
(4. 4")= (4., »4.).

E,—E„
(12) we have

Using the relations

There is no singularity in Eq. (12) as in Eq. (8). The
orthogonality conditions for fq and P, give rise to the
condltlons

W+(—~)=1,

W+( )=~
W (~)=1.

(25)

(26)

(27)

(4" W~A)=o

P, tWp ——0,
]

Wgtf, =0, 1

(13)

exp( —i(ai')df =2mb+(&o) exp( —iMt), (28)

exp( —~cot')dt'=2mb (cv) exp( —~Mt), (29)
where we use the sign t to denote the Hermitian
conjugate of an operator or the conjugate imaginary
of an eigenvector.

As Manlier has shown, the orthonormal condition for
the f+&, and the completeness relation

r'
W+(/) =1 ~H—g(t') W+(t')dh', (30)

J
0+~4+~'d~+Z4A"'=1

lead to the following relations for 8'+.'

8'+~8'+= 1,

W+W+'=1 ZfA"'—
The basic equations of the time-dependent theory are

mathematical consequences of the above equations.
Friedrichs has dealt with the temporal development of
the wave matrix by means of the theory of spectral
representation. It may be of general interest to have a
mathematical treatment using a language more familiar
to physicists.

p
00

W (/) 1+i Hi(t')W (t')d$', (31)

6P. A. M. Dirac, I'rincip/es of QNenfum Mechanics (Oxford
University Press, London, 1947).

which are in agreement with the difkrential equation
and initial conditions for W+(/). The meaning of the
integrals in Eqs. (28) and (29) can be made precise by
using a limiting process as Lippmann and Schwinger,
Ferretti, and Dyson have done. Like all formulas
involving the 8+ function, Eqs. (23) and (24) hoM only
if the two members of these equations are multiplied

by a nonsingular smoothly varying function of ~. %e
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shall use the term "conditional equality" in referring
to this kind of equation.

The temporal development of P+&(/) is given by that
of W+(t), namely„

The analogs of Eqs. (15), (16), and (17) are

~"4+.(t)4+.t(~)d7+24.(~)4"'(~) =1,

%+i( ~)—= A,
P+x(0) = W+4i=Pi,

4+),(~)=5'y), .
(32)

W+t(~) W+(~) =1,

W+(&)W+'(&) =1—Z4. (&)4"'(&) (41)

Thus, the time-dependence of P+&,(t) is formally periodic
but actually aperiodic, as a result of the singularity of
the 8+ function. Comparison of Eqs. (21), (25), (26),
and (30) with the equations given by Schwinger show
'tllat W+(t) satisfies the same equations as the llllltal'y
operator which transforms a state vector at the remote
past to the state vector at a 6nite time or the remote
future.

The analog of Eq. (18) for the bound state is

Kqlla'tloil (41) sllows tlla't W+(/) ls llo't a llilltal'y

operator when there are bound states present except at
t=&~. Thus, the completeness of the eigenvectors
Q), does not imply the completeness of the state vectors
P+x(t). The state vectors P, (/) should be included in
order to obtain a complete orthonormal set.

Irr. UmrmMTv

P, (t) =expLi(HO —E,)t]P,.

It follows from Eqs. (12) and (33) that f, (t) satisfies

I.et us consider now the connection of the nonunitary

(33) operator W+(t) of the previous section and the unitary
operator U(t, , to) which transforms a state vector P(lo)
into the state vector f(/). The operator U(t, to) is

given by any of the following expressions 8

P,(t) = —i H, (t')P, (&')dh',
U(t, 30) =exp(iHot) expL-iH(t —to)7 exp( —WHO/o) (42)

P, (~) =i~ H, (~')y, (~')di'. U(~ ~o) =
~

4+~(~)4+~'(4)~~+24. (~)4"'(to) (43)

Owing to the absence of singularity in Kq. (12), we have

lim P, (t) =0,

in agreement with Kqs. (34) and. (35)."Note that Eq.
(36) is only a conditional equality. The normalization
condition

U(&, ~0) = W+(~)Wy'(4)+24" (~)4"(~0) (44)

The summation over the discrete eigenvalues in Eqs.
(43) and (44) is essential for U to be unitary. Making
to tend to —~, we obtain a unitary operator U(f, —~)
which satis6es the equations

(0"(~), 4.(~))=1 (37) (45)

holds even for very large values of t because the two
rapidly fluctuating factors in the left-hand side of
Eq. (37) cancel each other.

The analogs of Eqs. (14) are

(46)

U(t, —~)=1 f', H, (&')U—(t', -~)dt'. (47)

4"'(~)W+(~) =0)
t

Wgt(/)P, (t) =O. I

(38)

These equations may be of interest to the vari'ational
treatment of scattering problems. '

"Equation (36) is the abbreviated form of the equation

lim (@„,y, (&))-0. (36a)
t~& ~

The product (p&, p, {/})contains the Ructuating factor

exp p~ (E„E.)i)-
Thus the same reasoning that has led to the limiting values of
P~g(t) and 8'~(t) in the above leads to Eq. (36a).

L. Hulthbn, Kgl. Fysiograf. Sallskap. Lund. Forh. 14, No. 21
(1944); B. A. Lippmann and J. Schwinger (see reference 3);
M. L Goldberger, Phys. Rev. 84, 929 (1951).

Ke have seen in the previous section that the operator
W+(/) also satisfies these equations. It may seem sur-

prising that there are two diferent operators that
satisfy the same difrerential equation and initial condi-
tion. The explanation is that in deriving the equations
satisfied by W+(/) we have made use of Eq. (25), which
is a conditional equality. Indeed, if we use in Kq. (44)
the conditional equalities given by Eqs. (25), (26), and

(36), we are led to the conclusion that the operators
U(t, —~ ) and W~(t) are identical. The operator
U(~, —~) is then equal to S as usually stated in the
literature. It seems to the writer that the mathematical

~ M. Schoenberg (see reference 3); M. Gell-Mann and F. Low
(see reference 4); G. F. Chal and G. C. Wick, Phys. Rev. SS,
636 (1952);J. Ashkin and G. C. Wick, Phys. Rev. SS, 686 (1952).
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techniques used in the present-day field theories are not
sufhcient to dlstlngulsh between condltlonRl Rnd cxRct,

equalities. Thus, the confusion pointed out by Snyder
indicates that there is an ambiguity in the determi-
nation of the operator U, a question which is of im-

portance in connection with the problem of the bound
states. ' "

The unitarity of the operator W+(t) at 3= &e, i.e.,

the S-matrix, has been established by Mpller and

Snyder by means of the time-independent theory of
scattering. It can also be derived from the time-

dependent theory without much manipulation. It
follows immediately from Eq. (40) that

From the equations

W t(t)W (t)=1,

W t(t)W+(t)=S, (50)

which can be derived in the same way as Eq. (40),
we find

Thus 5 ls unitary.

W {—~)=St, (51)

(52)

~M. Neuman has discussed an additional condition for the
unitarity, Phys. Rev. 83, 671 (1951).

Pote added ia proof We have.—stated above that the operator
U(t, —~) is unitary as a result of the unitarity of U(t, P) for
6nite g. Dr. M. R. Schafroth has pointed out to the writer that
one cannot infer the unitarity of U(t, —co) from the unitarity of
U(t, P) because the unitarity of U(t, —~) requires not only

lim U(t, g}Ut(~, @)=1

but also

Hm U(~, r,) Ut(~, &,}=1,
g1, g~ —ee

and there is no reason why the latter should hold. As we have
already mentioned above, the operators U(t, —~) and 8'+(/) are
identical if we use' the conditional equalities to give U($, —oo) a
de6nite limiting value. In this sense the operator U(t, —00)
=W+(/} is not unitary, in contrast to U(f, t0), because of the
non-unitarity of W+(/} which we have shown. Professor%'. Pauli
has informed the writer that this fact was previously pointed out
by Dr. R. Jost in a private discussion. The writer is greatly in-
debted to Professor Pauli and Dr. Schafroth for these remarks and
for their interest in this work.

A unitary W~(/) would satisfy Eq. (53), but this
equation does not imply the unitary of W+(/).

IV. BORN APPROXIMATIONS

In the above considerations we have not made use of
the iteration processes that are usually used in connec-
tion with Born's method of successive approximations
or Heitler's integral equation. Born's method consists
in expanding Wp(/) in the form

W+(t) = 1+W+o&(&)+W+&»(&)+

The convergence of this series in physical problems has
been investigated by Jost and Pais and by Dyson. 's

We shall assume here that we are dealing with a
problem in which this series converges, Substituting
this power series in Eq. (53) and grouping together
terms containing the same power of the coupling
constant in the product W+(f) W+t(/), we find

{W (f)W t(t)) "=1,
{W+(~)W+'(~) }'"'

(55)

i) far(t'—), {W+(f')W+t(f)) &" '& jdh'

(e«1). (56)

These equations lead to the result that W+(/)W+t(/) is
equal to unity, so that W+(t) is unitary. This means that
the state vectors P+q(f) of the free states, when calcu-
lated by Born's method, formally form a complete set
without the state vectors f (/)."'

The writer is grateful to Dr. T. Y. Wu, Dr. D.
Rivier, Dr. J. Pirenne, and Dr. E. Corinaldesi for
dlscusslons.
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The product W~(t)W+t{t) satisfies the equation

t

W+(t)W+t(/) =1 s— LBi(t'), W+(t')W+t(t')]dh'. (53)


