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Anisotroyy in the Antiferromagnetic MnF&
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The major part of the anisotropy in the paramagnetic susceptibility of MnF2 above the Curie point, as
measured by Stout and Grill, can be accounted for by magnetic dipole interactions. These interactions
affect the anisotropy in diferent ways above and below the Curie point and lead to an anisotropy field of
the order of 8800 oersteds at O'K. Other sources of anisotropy in antiferromagnetics are discussed, in parti-
cular that due to crystalline fields which is also present in magnetically dilute paramagnetic salts. The
anisotropy field below the Curie point can be measured by antiferromagnetic resonance. It is predicted that
this will require wavelengths of 1 mm at O'K increasing to perhaps 2 mm at 0.9T,. Or one may use centi-
meter waves and static fields of 1.0X10' oersteds at O'K increasing to perhaps 1.7X10' oersteds at 0.9T..

I. INTRODUCTION

S OURCES of anisotropy in an antiferromagnetic
substance such as MnF2 may be considered under

two broad headings: (A) anisotropy dependent upon
the relative spin orientation of pairs of paramagnetic
ions and (B) anisotropy arising from interactions of
individual paramagnetic ions with their surrounding
crystalline fields.

Anisotropy of type (A) may be handled in a manner
similar to Van Vleck's' treatment of ferromagnetic
anisotropy. The simplest forces are long range magnetic
dipole interactions; to these are added short range
forces arising in a complicated way but which may be
expanded in terms of dipolar, quadrupolar, etc. . coupling
between the spin pairs. Such a quadrupolar coupling
has been used, for example, in the quantum-mechanical
theory of antiferromagnetic resonance. ' These short
range forces may be due to directional properties of the
superexchange or may come from the interplay be-
tween spin-orbit coupling within a paramagnetic ion
and the crystalline field connecting pairs of ions.

Anisotropy of type (B) is similar to that found in
magnetically dilute paramagnetic salts, where it gives
rise to fine structure in the paramagnetic resonance
spectra and may hence be measured with considerable
precision. Such measurements cannot be made, how-

ever, on an antiferromagnetic such as MnF~. This is
because forces between spins, both isotropic and aniso-
tropic, become important as the magnetic concentra-
tion increases; and the resonance curve becomes so
broadened as to obliterate all traces of fine structure.

Both types of anisotropy give rise to the directional
properties of the magnetic susceptibility which have
been measured by Stout and Griffel. ' Their data have

*Now at Department of Physics, University of Pittsburgh,
Pittsburgh, Pennsylvania.' J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).

~ F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952). We wish
to correct a typographical error occurring in that paper. Equation
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3 J. W. Stout and M. Griffel, J. Chem. Phys. 18, 1455 (1950).

been correlated with a phenomenological anisotropy
constant by Yosida, 4 who finds an eRective anisotropy
field in MnF~ of the order of 5)&10' oersteds at O'K.
This is quite large, and one wonders which of the sources
mentioned above is primarily responsible.

In this paper we show that the greater part of the
measured anisotropy in the susceptibility may be
accounted for by simple magnetic dipole forces and
that the remainder may possibly be due to forces of
type (B). Other methods of measuring anisotropy in
antiferromagnetics are discussed, in particular, anti-
ferromagnetic resonance. It is shown that the dipolar
interactions enter into the anisotropy in different ways
above and below the Curie point, a fact which may be
of aid in determining the contribution to the anisotropy
from other sources. This fact also forces us to revise
Yosida's estimate of the anisotropy field at O'K up-
ward to 8800 oersteds. This field should decrease
with increasing temperature approximately as the
saturation magnetization of a sublattice.

II. MAGNETIC DIPOLE ANISOTROPY

The crystal structure of MnF2 is of the rutile type,
tetragonal symmetry. The unit cell of Mn~ ions may
conveniently be pictured as a body-centered cube
compressed along the s (or c) axis. Lattice parameters,
as determined from x-ray. diffraction by Griffel and
Stout, 5 are @=3.3103A and a=4.8734A. Erickson and
Shull' have shown from neutron diffraction studies that
below the Curie point the magnetization is such that
the spins at the corners of the compressed cube are all
pointing one way along the s axis, the spin at the center
is pointing the opposite way. The simple two sublattice
model, so often invoked as an approximation in theories
of antiferromagnetism, appears to be correct for this
crystal.

In calculating the magnetic dipole fields in such a
structure it is convenient to define two types of dipole
sums

4,'= —2iV ' Q, 'L1 —3 cos'(s r")jr"—'

' K. Yosida, Prog. Theoret. Phys. 6, 691 (1951).' M. Grill and J.W. Stout, J.Am, Chem. Soc. 72, 4351 (1950).
6 R. A. Erickson and C. G. Shull, Phys. Rev. SB, 208 (1951).
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and
C,"=—2$ ' P;"[1—3 cos'(s, r;,)]r,; '. (2)

Here P is taken over distances r,; between a lattice
point i and its neighbors j on the same sublattice;
P," is taken over distances to neighbors j on the other
sublattice; -',E is the number of Mn~ ions per cm' in
a sublattice. The summations are to be carried out
within a Lorentz sphere; we shall consider only such
sample shapes and combinations of sums that all con-
tributions outside such a sphere vanish.

In the paramagnetic region we shall be interested in
dipole sums over the entire lattice

(3)
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Stout and GriffeP have measured, as a function of
temperature, y~ ~

—xz, or the difference in the sus-
ceptibility of a single crystal of MnF& taken along the
c axis and along an a axis. The crystal had cylindrical
symmetry about the remaining a axis; hence the sum
4,—4, should vanish beyond a Lorentz sphere. A
simple calculation using Lorentz fields shows that for
T& T, and assuming

M=CT '(H+CM),

one obtains

XII =MII/H=CT '/(1 CT '4,);-
X&=CT '/(1 CT '4,). —

These lead to

where we assume the powder susceptibility x is ap-
proximately given by (X&XII)&. Even theories of para-
magnetic susceptibility more exact that the Lorentz
field approach, such as Van Vleck's' diagonal-sum
method, although they give different theoretical evalua-
tions of X, lead to Eq. (4) for XII

—Xz in terms of X.
We shall insert the experimental values' of x into Eq.
(4).

The sum C,—4 may be calculated by the Ewald-
Kornfeld' method. We find for MnF&

4,—C =2.20.

As a check, the value 9.25 compares well to rough esti-
mates of C,' and C ' which may be obtained from a
graph given by Mueller. ' Also a simple summation
out to next nearest neighbors gives 8.93, —3.01, 2.96
for the three quantities in Eq. (5).

That the dipolar interactions account for the major
part of the observed anisotropy may be seen from Fig. 1.

7 J. H. Van Vleck, J. Chem. Phys. 5, 320 (1937).
H. Bizette and B. Tsai, Compt. rend. 209, 205 (1939).

9 H. Kornfeld, Z. Physik 22, 27 (1924)."H. Mueller, Phys. Rev. 47, 947 (193S).
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FIG. 1. Observed and calculated anisotropy in the molal
susceptibility of MnF&.

Below the Curie point ( 73'K) XII
—Xz is negative,

since exchange forces completely determine the direc-
tional nature of the susceptibility once long-range order
has set in. It would appear from Fig. 1 that short-
range order must begin to set in at around twice the
Curie temperature, a result in agreement with neutron
diffraction experiments of Shull" et al. on other anti-
ferromagnetics.

V«t, ——H'(2s' —x' —y'), (6)

then there will be a contribution of the form DS,' to
the Hamiltonian of an individual ion. This is of lower
order than the (quartic) contribution from the cubic

"Shull, Strauser, and Wollan, Phys, Rev. 83, 333 (1951).
'~ A. Abragam and M. H. L. Pryce, Proc. Roy. Soc, (London)

A205, 13S (1951).

III. EFFECT OF THE CRYSTALLINE FIELD

The remainder of the anisotropy in MnF& may of
course be due to any or all of the mechanisms mentioned
in Sec. I. We propose to make what seems to be the
only feasible type of calculation at this time, namely,
a rough estimate of the anisotropy of type (B) assum-
ing MnF& wholly ionic. This assumption is necessary
in order to calculate the crystalline field; it may well
lead to an erroneous estimate of the type (B) aniso-
tropy. Also this assumption throws out all anisotropy
arising from the overlap of Mn++ and F wave func-
tions. We wish to caution, therefore, that the following
calculation is intended to illustrate orders of magni-
tude only.

Abragam and Pryce" explain anisotropy of type (B)
in Mn++ salts as due to coupling of the (3d)' 'S ground
state with the (3d)'4s 'D state via the combined action
of the crystalline potential t/" and the magnetic spin-
spin interaction between pairs of electrons in an ion.
If the crystalline Geld is distorted from cubic symmetry
such that an additional tetragonal component is present,
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part of the held and hence should be much larger.
Pryce" calculates D to be equal to H' multiplied by a
complicated function of the overlap of the 3d and 4s
wave functions of Mn~. Since most of the anisotropy
in a magnetically dilute Mn~ salt is due to this cause,
measurement of anisotropy in the susceptibility of such
a salt gives a direct determination of D. This may be
double-checked by comparison with the (absolute)
magnitude of D obtained from the fine structure of the
paramagnetic resonance spectra.

In this manner Bleaney and Ingram'4 obtained
D=0.024 cm ' at 230'K for the Tutton salt manganese
ammonium sulfate. If now the values of H' are known
for this salt and for MnF2, the size of D in MnF2 can
be estimated. Assuming the 3d and 4s wave functions
of Mn++ to be roughly the same in the two salts, D
should be roughly proportional to H'.

To estimate H' for the Tutton salt we note that the
Mn+" ions are, surrounded by an octahedron of water
molecules elongated along a main axis connecting two
of the molecules. With this axis in the z direction the
held has tetragonal symmetry about z. It is impossible
to calculate this field accurately since the exact loca-
tions of the water molecules are not known. Polder"
has estimated H'=0.4&(10' esu for similar salts of
Cu~ and we may take this value as being roughly
correct for Mn++.

Now we estimate H' for MnF2 assuming the salt
ionic. According to Grifkl and Stout' the crystalline
field is produced by a distorted octahedron of six F
ions at (1.51, —1.51, 0), {—1.51, 1.51, 0), (1.08, 1.08,
&1.65), (—1.08, —1.08, &1.65) for one of the Mn++

ions in the unit cell, and at (1.51, 1.51, 0), (—1.51,
—1.51, 0), (1.08, —1.08, &1.65), (—1.08, 1.08, &1.65)
for the other Mn++ ion. Here the number triples are
distances in angstroms from the Mn+ ion along

(a, a, c) axes. It is seen that these fields for the two
Mn++ ions in the unit cell are orthogonal to each other
and that if we treat the crystal as a whole as pointed
out by Yosida, 4 we may consider the fields as tetrago-
nally symmetric about the s (=c) axis. Subtracting out
the cubically symmetric part of the held one readily
finds H = —0.2X10i4 esu

Crude as these estimates are, they should represent
orders of magnitude fairly well. t It is of interest to note
that although the field from the water molecules of the
Tutton salt is due to the dipole moment of water, it is
roughly the same size as the field from F ions.

We may now estimate

D(MnF~)/D(Tutton) =H'(MnF2)/H'(Tutton)

"M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
'4 B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. (I.ondon)

A205, 336 (1951)."D. Polder, Physica 9, 709 (1942).
f Pote added iw proof: Mr. M. H. Cohen has pointed out to me

that one should include electrostatic fields from more distant
neighbors, both F and Mn++, in estimating II'. This might acct
the result by a factor of two or so.

IV. ANISOTROPY BELOW THE CURIE POINT

A. Magnetic Dipole Fields

Below the Curie point for a two sublattice antiferro-
magnetic with tetragonal symmetry, we expect the
anisotropy energy to be of two macroscopic types, '~

and
fA (+i/2)(Al +Pi +~2 +P2 )I

f~"'=&3{~iix2+pip2),

(8a)

where ni, Pi, yi and n2, P2, y2 are the direction cosines
of the macroscopic magnetization vectors of the two
sublattices.

It is seen that f~' depends only upon the dipole
fields produced at a sublattice site by members of the
same sublattice, whereas f~'" depends upon the mem-

bers of the othe~ sublattice. Since the two sublattices
are oppositely directed below the Curie point, we now
want a minus rather than plus sign in Eq. (3). If M
is the absolute value of the magnetization of a sub-
lattice, it is easily seen that

It i——M'(4. '—4,');
Itg=M'(C, "—C ").

(9a)

(9b)

The effective anisotropy field due to dipoles will be

(IIg) g (E i Kg)/M. —— — (10)

Using Eq. (5) one sees thatfor MnF2, in which Ma=590
gauss at O'K,

(Irq) q= 14.1M= 8300(M/Mo) oersteds. (11)

A similar result can be obtained from a quantum-
mechanical derivation of the antiferromagnetic reso-
nance equations as is done in EK except that now

magnetic dipole coupling is to be introduced rather
than quadrupolar coupling. In this derivation one
replaces 5,* with average values, assumed to be 2Mi'/
1VgP for members of one sublattice and 2M~*/XgP for
members of the other sublattice. This is a little too

' A similar relation for paramagnetics is given by B. Bleaney,
Phys. Rev. 78, 214 (1950).

"See Sec. IV of reference 2, hereafter referred to as EE, for a
discussion of anisotropy in antiferromagnetics. We use the nota-
tion of that reference.

D(Mn F2) =0.024 cm '(—0 2/0 4) = —0.012 cm '.

On using Yosida's relation, '"
wi —x-L=x(—D/&T)L0 45'(5'+1) —o 3), (7)

we find, with 5=5/2, x~ ~

—xi.=0 21X10 ' at 295.7'K
and 0.34&10 ~ at 185.1'K. A glance at Fig. 1 shows
that this is exactly what is necessary to make the
calculated anisotropy agree with the observed. The
agreement now is entirely too good, and we wish

to caution again that the calculation of this section is
meant to indicate orders of magnitude only.
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crude since, as is well known, the ground-state wave
function of an antiferromagnetic is not of the simple .

form niP2nqP4aA ~, even in the absence of magnetic
dipole interactions. Also there will be Quctuations from
the average values of S,' due to zero point motion.
Tessman" has shown that such fluctuations in a cubic
array of parallel magnetic dipoles lead to dipolar
anisotropy fields of the order of 0.2M/S or 50 oersteds
for M=590; S=5/2. It is not unreasonable to suppose
that quantum-mechanical effects in an antiparallel
array such as ivlaF2 will be of the same order of magni-
tude. We shall therefore neglect such effects in compari-
son with our calculated anisotropy.

On following through the quantum-mechanical deri-
vation of antiferromagnetic resonance one finds that in
case ~Mi'~ A ~M2'~, or the s components of the mag-
netizations of the two sublattices differ in size due to
the presence of a field Ho, the effective anisotropy field.
for resonance is

(Hg) g 7.05(Mi——'—Mg*). (»)
This field is to be inserted into the resonance relation

(Eq. (26) of EE)

where the 130 should be dropped near the Curie
point.

We note that at O'K the total anisotropy field is
approximately 8800 oersteds, of which 8300 oersteds
comes from dipolar interactions and 500 oersteds from
interactions with the crystalline field. The last figure is
probably more accurate than our calculation of Sec.
III would indicate since we may consider our value of
D as being given by Stout and Griffel's' measurements.
We are assuming that all types of anisotropy other
than magnetic dipole may be expressed by a term
P,D(S,*)' in the Hamiltonian.

C. Measurement of Anisotropy

One method of measuring Hg below the Curie point
has been discussed by Yosida. 4 This consists of apply-
ing a sufficient field Ho along the easy (c) axis to cause
the magnetizations to flop to the hard (a) axis. This
Qop takes place since Xz& xl ~, and hence the free energy
can be lowered if the magnetization can partake of
perpendicular susceptibility. It will occur for a fMld
H0 at which a&=0 in Eq. (13), for at this point there is
no restraining torque. This condition is

~/~ -—H, (1——', )~L2H. H~+ (-', n)'H, ]. (13)
(HP)AqtA= [2HEH&/(1 —a)]A. (17)

Here it is assumed that the static field Ho is applied
parallel to the domain axis; HE is the effective exchange
field which, in terms of an exchange parameter ),
equals —,') (Mi*—M2'); a=x~~/xi. ; y=ge/2mc is the
magnetomechanical ratio.

H„~7.6(M; M;) 130, — —(16)

"J. Tessman, Phys. Rev. 85, 752 (1952) and private com-
munication."It comes from using the approximation

(~'~-'~A*+-~; .~;*)=- L(~'i-)A. -)-H~',
'.I'he —,

' is necessary only IIear saturation. anrl leacls to the ternI in
question.

B. Remainder of the Anisotropy

We consider the remainder of the anisotropy as ex-
pressible by a term g;D(S,*)' in the Hamiltonian,
where the summation is taken over all ions of both
sublattices. The anisotropy field is easily obtained from
a quantum-mechanical derivation of the resonance
relation

(HA) „=—(2D/!Vg'p')(Mi' Mi')+ (D/gp). (14—)

Here ~.V is the number of ions per cm' in a sublattice,
p is the magneton, g= 2 for Mn~. The last term of Eq.
(14) is to be used only near saturation and should be
dropped near the Curie point. " Using the value of D
obtained in Sec. III we find for the remainder of the
anisotropy

(Hg), ~0.55(Mi' —M g*)—130 i (15)

and hence for the total effective anisotropy field to be
inserted into Eq. (13)

we have
H~ =8800(M/M, ) oersteds, (19)

(2Hi;HA) *'= 1.0X10'(M/Mp) oersteds. (20)

Thus (Ho)A. Ii=1 OX10' oersteds at O'K. This is larger
than Yosida's4 estimate of 0.7&&10' oersteds since our
anisotropy field is larger than his (due to subtraction
of dipole field factors).

The teml&erature dependence of (H„)„;&may be ob-
t;iined from Eq. (17) using the Stout and Griflel"
measurements of Q. combined with Eq. (20). AVe note

In estimating HE we shall use molecular field theory
to assume II~=AM=xz 'M. Molecular field theory is
known to give poor estimates of the exchange integral
and hence of the field parameter X. However, as is shown
in the quantum-mechanical derivation in EE, only
exchange interactions between members of different
sublattices enter into antiferromagnetic resonance. It is
precisely these interactions which are also effective in
determining g z. That X=xz ' is a good approximation
for our purposes is confirmed by a spin-wave calcula-
tion of xz and of the resonance condition near O'K.

Stout and GriffeP show xz(molal) as dropping from
0.028 to 0.024 between O'K and the Curie point. We
shall for simplicity take it equal to 0.026 per mole or
0.0011 per cm'. Thus

HE= (0 0011) '(M/Mo)MO
=5.4X 10'(M/Mo) oersteds, (18)

where Mo is the saturation magnetization of one sub-
lattice, or 590 gauss. Combining this with the result of
Sec. IVB, namely,
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that (M/Mp) varies as the 8rillouin function for
S=S/2. It is found that (Hp)„;t rises nearly linearly
from 10~ oersteds at 0.2T, to 1.7&(10' oersteds at T,.
This is essentially the same dependence as given by
Yosida. 4

Another method of measuring Hz is by means of
antiferromagnetic resonance. Here in the absence of a
field H0 the resonance frequency is given by

M/p=(2H@Hg)1= 1.0&& 10 (3II/Mp), (21)

where use has been made of Eq. (20). This frequency
corresponds to a wavelength" of 1.1 mm at O'K and
about 2 mm at 0.9T.. Above this temperature our

theory should break down as there is no justification
for a simple two-sublattice picture near the Curie point.

"The reader is cautioned that these estimates are subject to
the uncertainties in Hg and Hg mentioned above.

By using 1-cm waves Hutchison" has found a com-
plete disappearance of the paramagnetic resonance line
of MnF~ as the temperature drops below 67'K.

In the absence of millimeter waves one could take
advantage of the minus sign in Eq. (13) and employ
large fields Hp to bring the resonance into centimeter
range. " This requires fields just short of the critical
field, i.e., fields increasing from 10' oersteds at O'K to
1.7X10' oersteds near the Curie point. The reason the
fields must be just short of the critical field is that the
critical field represents the size of Hp necessary to bring
the resonance frequency to zero.

I should like to express my thanks to Professor Kittel
for many stimulating discussion of antiferromagnetism.
This research was assisted in part by the ONR.
"C. A. Hutchison (private communication to Professor Kittel).
"This possibility was first pointed out by C. Kittel, Phys.

Rev. 82, 565 (1951).
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Cross Sections of the D(T,n)He' Reaction for 80- to 1200-Kev Tritons

H. V. ARGQ) R. F. TAscHEK, H. M. AGNEw, A. HEMMENDINGER, AND W. T. LELAND
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(Received May 2, 1952)

Qas targets of deuterium with an aluminum entrance foil of 1.5 mg/cm were bombarded by tritons.
Straggling and scattering of the tritons by the 'foil have been carefully considered and found to introduce
reasonably small corrections. Energy loss in the entrance foil was determined by assuming that the sharp
resonance peak in the reaction occurs at 165-kev triton energy as measured by T. W. Bonner, and then
making use of the dE//dx curve of S. D. Warshaw. Neutrons from the reaction were observed by means
of a BF3 long counter whose energy response has been investigated. Angular distributions of the neutrons
were measured and found to be isotropic in the c.m. system below 600 kev. Near 1 Mev the distributions
deviate from isotropy, more neutrons coming off at the back angles. The maximum cross section is 4.93
barns at the resonance. The limit of error on cross sections is +10 percent. A one-level nuclear dispersion
formula has been fitted to the experimental curve and the resonance is ascribed to a level in the He' com-
pound nucleus, arising from an 5-wave interaction of the T and D, with quantum numbers J=-„l= 2.

I. INTRODUCTION

HE reaction

T+D~He'+ n117.577&0.02 Mev

has proved to be a very useful laboratory source of high,

energy monoenergetic neutrons. Although many experi-
menters have been making use of the reaction for a
neutron source, the yield. in the low energy region has
not been well known. Early experimenters' have shown
that the yield is very high and indicated the existence
of a strong nuclear resonance in the vicinity of 200-kev

' Baker, Holloway, King, and Schreiber, Atomic Energy
Commission Declassified Report No. 2226 (1943); E. Bretscher.
and A. P. French, Phys. Rev. 75, 1154 (1949);Taschek, Everhart,
Gittings, Hemmendinger, and Jarvis, Atomic Energy Commission
Declassified Report No. 2250 (1948); D. I.. Allan and M. J.
Poole, Nature 164, 102 (1949); D. I.. Allan and M. J. Poole,
Proc. Roy. Soc. (I.ondon) 204, 488 (1951); D. I.. Allan and M.
J. Poole, Proc. Roy. Soc. (I.ondon) 204, 500 (1951).

incident triton energy. In the region between 200- and
1500-kev triton energy the cross section is particularly
poorly known. There have been arguments that the
rise at 200 kev may not be a resonance. ' The above
uncertainties and the general interest in the reaction
inspired the present investigation. The measurements
described in this paper were made during the summer
of 1950.

The earlier measurements showed an isotropic yield
in the c.m. system at the low energies. Since the angular
distribution is very helpful in the assignment of states
it was decided to check the isotropy near 200 kev and
also at the higher energies.

II. EXPERIMENTAL PROCEDURE

The experimental method followed, in determining the
absolute cross section for the D(T,n)He' reaction was to

~ D. L. Allan and M. J. Poole, Proc. Roy. Soc. (London) 204,
488 (1951).


