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Energy of a Bloch Wall on the Band Picture. II. Perturbation Apyroach
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Bel/ Telephole I.uboratories, MNrrcy Hill, Kern Jersey

(Received March 14, 1952)

The "exchange stiftness" constant, which appears in the theory of the Bloch interdomain wall in ferro-
magnetics, can be calculated by computing the response of a saturated specimen to a small spatially varying
perturbing field. This calculation is carried out here in the self-consistent field approximation, using running
waves for the one-electron states, and the result is interpreted physically in terms of precession of the spins of
moving electrons.

Combination of the present theory with the Stoner-%'ohlfarth model of the ferromagnetic electrons in
nickel does not give satisfactory results, probably because the latter model' does not approximate the actual
self-consistent field solution very well. However, application of the theory to the free electron gas is of
interest as a confirmation of the validity of the perturbation approach.

It is shown that there exist, even in a ferromagnetic metal, quantum states orthogonal to all the low-lying
states of the conventional band picture and having the properties of spin waves. The presumably universal
relation between the exchange stiffness constant and the energies of spin waves of long wavelength is verified
in the present approximation. It is shown that spin waves carry a current in a metal, though not in an
insulator. For spin waves of long wavelength the present theory can be shown to include Slater's theory of
spin waves in a ferromagnetic insulator, and u fortiori to include all previous theories based on the atomic
model.

I. INTRODUCTION

~ 'HE energy, thickness, and other properties of the
"Bloch wall" separating adjacent domains in a

ferromagnetic medium depend upon the anisotropy
constants of the medium and upon the extent to which
the energy of the ferromagnetic electrons increases when
the orientation of the magnetization vector is made
spatially non-uniform. This increase in energy per unit
volume is commonly written, for cubic crystals,

w=ztvM('/cv', (&)

where M is the magnetization vector and A is a constant
characteristic of the material. The form of Eq. (1) and
the order of magnitude of A can be accounted for on the
basis either of the atomic picture' or of the band picture'
of the ferromagnetic electrons. Moreover, it has been
shown' that A has a fundamental relation to the theory
of spin waves and thus to the temperature variation of
saturation magnetization at low temperatures, a relation
which is probably valid regardless of the choice of any
particular theoretical model for the ferromagnetic elec-
trons. The theory of A given in I, though it provides a
simple physical picture of the behavior of itinerant
electrons in a Bloch wall, is not adapted to bringing out
the way in which spin waves can arise out of the band
picture. The present paper gives an alternative method
of calculating A for the running-wave model, a method
which is more complicated mathematically but which
brings out the relation to spin waves and which is some-
what more promising for practical calculations.

The approach used in the present paper is based on
the observation that if a specimen initially magnetized

' F. Bloch, Z. Physik 74, 295 (1932);L. Landau and E. Lifshitz,
Physik. Z. Sowjetunion 8, 153 (1935);E. Lifshitz, J. Phys. USSR
8, 337 (1944);L. Noel, Cahiers phys. 25, 1 (1944). For a summary
see C. Kittel, Revs. Modern Phys. 21, 541 (1949).' C. Herring, Phys. Rev. 85, 1003 (1952), hereafter cited as I.

3 C. Herring and Q. Kittel, Phys. Rev. 81, 869 (1951).

in the s-direction is acted on by a small sinusoidally
varying torque tending to rotate the magnetization
about the x-axis, the resulting variation in the direction
of M will vary inversely as A, as will the change in the
energy of the system. Thus, a calculation of this energy
change by perturbation methods gives the value of A.
Explicitly, we shall assume a model for the ferromagnetic
electrons in which their electrostatic interactions are
taken into account but magnetic and spin-orbit inter-
actions are ignored, and shall consider the effect of
adding a term

Rg; a„t" sine r;,

to the Hamiltonian, where 0„"' is a Pauli spin matrix
for the ith electron, r; is the position of this electron, x
is an infinitesimal vector, and R is an infinitesimal
amplitude. An elementary phenomenological calcula-
tion, given in Sec. IIIB of reference 3, shows that the
second-order energy perturbation AE due to (2) must,
for a perturbation of suKciently long wavelength, be
interpretable in terms of A by

AE= —QR'M'/Slr'A, (3)

where 0 is the volume of the specimen and M is in Bohr
magnetons per unit volume.

In this paper, as in I, the state of the ferromagnetic
electrons will be approximated by the best possible
determinant of one-electron wave functions, both in the
unperturbed and in the perturbed state. As was ex-
plained in Sec. III of I, this approximation almost cer-
tainly gives too large a value for A. To calculate the
effect of the perturbation (2) on the solution of the
pock-Dirac self-consistent field equations we may make
use of the general perturbation formalism given by
Peng4 for these equations. A simplified version of this

'H. W. Peng, Proc. Roy. Soc. (London) A178, 499 (1941).
Similar principles were employed earlier by J. Bardeen in his
treatment of metallic conduction, Phys. Rev. 52, 688 (1937).
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formalism will be developed for the present problem in
Sec. II while Appendix B will make use of Peng's
formulas in full generality.

In Sec. III and Appendix B general expressions for
the solution of the perturbation problem will be derived,
expressions which can be used to establish a number of
qualitative properties of the solution but which are too
general for easy numerical evaluation. In this solution
the perturbed one-electron wave functions will be ob-
tained to the first order in the amplitude R of the
perturbation and to the two lowest orders in its wave
number ~. To the lowest order in a, each perturbed wave
function will turn out to be essentially the unperturbed
running wave multiplied by a spatially variable spin
function corresponding to orientation of the spin along
the direction of the local macroscopic magnetization, a
direction which varies from point to point of the crystal
with an angular amplitude proportional to 1/ii', as (3)
shows. However, to get the energy to order 1/x2, or
equivalently to get the coefFicient of 1/x' in the expres-
sion for the angular amplitude, it is necessary to knovr
the terms of order 1/x in the one-electron wave func-
tions. When these terms are included it will be found
that at any particular point of space the spins of
diRerent electrons diRer in direction by an angle pro-
portional to 1/x, i.e., to the gradient of the inclination of
the macroscopic magnetization. These facts and their
physical interpretation in terms of precessing spins will
be discussed in Sec. IV.

Sections V and VI vrill be devoted to the obtaining of
numerically explicit solutions, first for an actual metal
using some rather crude approximations, and then for
the idealized case of a free electron gas, which can be
solved without approximations.

In Sec. VII it vrill be shown that a spin wave state of
infinitesimal wave vector x can be approximately repre-
sented by a linear combination of all the determinantal
wave functions derivable from that of the ground-state
by taking an electron out of one of the singly occupied
levels and putting it back with reversed spin and with
its vrave vector increased by x. To the zeroth order in I(.

the coefficients of all these determinants are the same,
but in the first order they diRer. This representation of a
spin wave is essentially the same as that given some
time ago by Slater' for a ferromagnetic insulator; the
same representation appears to be valid for a metal,
although in the calculation of the energy for a metal
certain terms not present in Slater's treatment must be
included. An obvious consequence of the present picture,
vrhich will be discussed briefly in Sec. VII is, that spin
waves in general carry a current in a metal, though not
in an insulator. This result diGers from that reported
recently by Bogolyubov and Tyablikov in that these
authors consider only the case of an insulator, i.e., a
crystal for which the ferromagnetic electrons completely

~ J. C. Slater, Phys. Rev. 52, 198 (1937).' N. N. Bogolyubov and S. V. Tyablikov, J.Exptl. Theor. Phys.
U.S.S.R. 19, 256 (1949).

fill a band, and predict a current for this case. It will be
argued below that their conclusion is erroneous.

II. EQUATIONS OF THE PERTURBATION APPROACH

Let the one-electron wave equations of the self-
consistent field problem be

[II+EX]f;=X;|t„ (4)

where E is an abbreviation for the 0 „sine r of (2), X; is
the energy parameter, and II is the sum of the kinetic
energy, the interaction with the ions of the lattice, the
Coulomb potential, and the Fock exchange operator.
The solutions f;('& of this system of equations when
E=O will be presumed known. To calculate the Bloch
wall coeflicient A by (3) we need the energy to the
second order in E, and to compute this we must de-
termine the 1t; to the first order in R. The complicating
feature of the latter problem is that the Coulomb and
exchange operators in EI depend on the P; of all the
occupied states. Although the problem can be solved
formally without introducing any approximations re-
garding this dependence of H on the f; (see Appendix
3), the essential features of the exact solution can be
derived much more simply by a treatment which as-
sumes that the iP,'Oi of both spins have the same
orbitals, and that the small changes which the pertur-
bation produces in the f, merely produce an additional
exchange field similar in eRect to the original perturbing
field (2), though of course of an entirely different magni-
tude. Since the more complete calculation shows that
the error involved in using this simpler treatment is
probably rather small, we shall use it here.

Both here and in Appendix B we shall calculate
merely the difference between the unperturbed energy
and the energy of the determinant of perturbed wave
functions satisfying (4) and reducing to the unperturbed
set as R—+0. However, in a metal the total energy varies
continuously not only with the form of the one-electron
functions themselves, but also with the choice of which
levels are filled and which are empty. It is, therefore,
legitimate to ask whether the energy of the perturbed
solution we shall obtain here might be lowered by a
subsequent alteration of the occupation numbers of the
various states. Fortunately, it can be shown that as far
as the second order in R no such redistribution can lower
the energy; the argument is given in Appendix A. We
shall therefore worry no more about occupation numbers.

To the zeroth order in a, the operator E' connects each
f,('& only with the two wave functions of the opposite
spin which lie in the same band and have reduced wave
vectors differing from that of f~&" by +x. Our assump-
tion regarding the exchange field, stated roughly above,
may now be described more precisely by saying that we
shall assume the perturbed P; to have the form

4'=0""+&[U'+|((~i"'+~' 4('-.i("j, (5)

where the square brackets in a subscript denote re-
versal of spin. Moreover, since changing the sign of x in
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P,= exp(ie e/2)P, (" (8)

which corresponds to replacement of each )b,'" by a
state with the spin rotated by an infinitesimal amount e

about the direction a. The local state of the crystal in
the presence of a perturbation with finite ~ will be, in
zeroth approximation, the state obtained by rotating
the unperturbed spins to the local perturbed orientation,
but to the next order in ~ it will differ from this, and it
is just this difference which is responsible for the

(2) is equivalent to changing the sign of R, we must have
U; (x) = —U,+(—x). Since a mixing of two states both
of which are initially occupied does not affect the
determinantal wave function, we shall adopt the con-
vention that U,~=O when states i and i~x are both
occupied.

When (5) is substituted into the expression for the
exchange operator, first-order terms of the form
RUPIAH/8(RUP) result. Noting that the one-electron
energies ); are unchanged to the first order by the
perturbation (see Appendix A), we have for the 6rst-
order part of the wave Eq. (4)

&)t""+2+ U.~~)'~.)A +.) '"
+Xi;+ Ui+L~H/~(~U~")])b'"=~ Z U~A'+. )'", (6)

the summation on j being of course confined to occupied
states. Taking the scalar product of this with f);~.)('& we
get

—IC~,+„),;——(X),~,)
—X,)U,

+Q, [BH/B(I)!U,+)](;~„);U,+

=P, 4„(&x)U,+, say. (7)

This system of simultaneous equations determines the
U,+ for the occupied states j.

Several properties of the equation systems (6) and (7)
are worth noting at this point. Since the function (5)
has a spin direction which differs from that of )t;&') by a
small angle which varies sinusoidally with position, the
operator BH/8(EUP) represents an exchange field at
right angles to the s direction, roughly equivalent in its
effect to an operator of the type (2), i.e., to a transverse
magnetic field. We shall evaluate this exchange operator
explicitly in Sec. V. Its matrix element which appears in
(7) will approach a finite limit as ~—+0, as will the X

term in C,; and the term E~;+„~,i However, we cannot
obtain the desired solution of (7) by considering only the
limiting forms of its various. coefficients as ~—+0. If ~

were zero, the energy of the crystal would not be
changed by rotating the spins to a new orientation, and
the response to the applied torque would be infinite.
Mathematically this means that the determinant of the
matrix C;, approaches zero as f(~0. The U; which
satisfy

P;4„(0)U,=0,

can easily be constructed by comparing (5) with the
expansion of the equation

stiffness which makes the response of the spin system to
the perturbation finite.

We are therefore led to solve (7) by expanding all
quantities in powers of ~. For a given direction of x let

U~=&U'/z'+U /i~+Ui"+

4,,(+x)= C,io&~4;,'+x'4 ~/'+

(9)

(1o)

E = llnlE [i+a], i—g p~0
if we adopt the phase convention )b),)'0)= 0 f;&0)

III. SOLUTION OF THE EQUATIONS

(14)

The solution of (11) is most easily obtained from (8);
it is

U' .0 U'0 (15)

an as yet arbitrary constant independent of i. The
correctness of (15) can also be shown directly, by
substituting it into (11) and using the explicit form of
4,,(0) from (7). Since X),) differs from X; precisely by
virtue of the different exchange fields seen by electrons
of the two states of spin, we have for f~:=0

a result which is most easily derived from the explicit
expression below for BH/8(RU, ). Thus (11) is satisfied
identically.

The value of U can only be determined by solving
(12) and (13).If we sum (13) on i, the first term on the
left goes out because of (11) and the Hermiticity of
C,P, while the second term can be transformed by (12)
and the fact that 4; is also Hermitian. Solving for U
we get

U'= J)IE'/[P;, ; 4,,"—P;,—; b,*C;,'bg, (17)

where E is the number of uncompensated spins in the
specimen and b, = U /U' satisfies

Q, 4, b,+Q; 4;,'=0. (18)

The range of values of j occurring in the summation on
the right of (7) is that for which j is occupied, Lj+x]
empty. If this range is independent of x, as is the case
when the doubly-filled orbitals comprise an integral
number of bands, the equations resulting from insertion
of (9) and (10) into (7) are quite simple, otherwise not.
As the general case is considered in Appendix 8, the
present treatment will assume the former simpler
alternative; because of the reciprocity between electrons
and holes the results must be applicable to cases where
the ferromagnetism is due to holes in a filled band, as
well as to those involving electrons in an empty band.
With the present assumption we get from (7),

Z~ 4"'UP=0, (11)

Z~(C"~'U~'+4"~'UP) =o, (12)

Q,(4;,'U,"+4; U,'+4,,"U )= E', (13—)

where



ENERGY OF HLOCH %ALL ON BAND PICTURE 63

AE=-', Q,(P,, RKP,). (19)

Using (5), (9), (14), and the reality of U', which follows
from (17), this reduces to

This equation does not, of course, determine the 6;
uniquely, since a constant independent of j can be added
to any solution; however, such a constant has no effect
on the value of the denominator of (17). The values of
U which actually occur physically could presumably
be determined by analysis of higher equations of the
form of (11), (12), and (13). We shall see in the next
section that a simpler line of reasoning gives the re-
quirement P b, =0, and so removes the ambiguity
without reference to the higher equations.

To the second order the mean value of the perturba-
tion term (2) in the perturbed ground state of the
assembly is, as in any problem involving displacement of
equilibrium of a harmonic system by a small force, equal
to 2AE, where AE is the change in total energy produced
by the perturbation. Therefore, to the second order in R,
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AE= 2R'1VK'U'/»', (20)

to the lowest order in». (The next term is presumably
O(1), since AE is even in «.) Combining this with (17)
and (3) gives the Bloch wall coefficient A. With
3f=N/0, where 0 is the volume of the specimen, we
have

A=(40) 'LQ;, , C,,"—Q, , , b,*4,,'b;]. (21)

It is easily verified that the first term in brackets in
(21) gives the value of A which would result if we were
constrained to use only determinants of functions (5)
with U,+ strictly independent of i. The possibility of
using different coeQicients for diferent electrons enables
us to lower the energy further, and gives a negative
contribution to A represented by the second term in
brackets. For free electrons (see Sec. VI) the first term
in (21) gives A for the model in which all perturbed
states are required to have the same spatial variation of
spin, as considered in I, Sec. VIII; however, this exact
correspondence to the model considered there does not
hold in general.

IV. INTERPRETATION IN TERMS OF
PRECESSING SPINS

The physical significance of the analysis of the pre-
ceding section can be appreciated by considering the
spin orientation for an electron in the 4th state. If we
split the unperturbed wave functions into orbital and
spin parts according to

4«i"=x«~ or x«p,

n and P being eigenfunctions +1 of 0„ the perturbed
wave function is, to the first two orders in ~,

A =x «~+RU'[(1/»') (1+»&«)x «p.
—(1/»')(1 —»b«)x« „]P,

FIG. I. Path of mean spin direction of kth electron on the unit
sphere. Numbers are values of x r. Dot-dash line is path of
average spin direction of all electrons, as x r varies.

whence

coeff.P 8«
=exp(iy«) tan—

coeG.a 2

1 (x«+.—x« .) 4 (x«+.+x«-.)=E.U'— +—
Xl ~ XI

where, as in I, 8«(r), y«(r) are the polar angles of the
direction along which the spin of the 4th state has the
eigenvalue +-', . If we write

x«+„=exp(ix r)Lx«+ix vi+ ], (22)

and remember that HI, is infinitesimal, this takes the
simple form

e«(cosvp«+& sin%«)

=(4iR/» ')t sine. r+(.x v«/x«) cosx r]
+ (4b«R/») cosx r+O(1), (23)

where 0(1) refers to the behavior as»—4.
From (23) we see that in regions where x r is near an

odd multiple of ir/2, the spins of all the electrons will
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be practically parallel and oriented in a direction in the
y—s plane (the plane y=&~/2, in which the applied
torque is trying to move it), this direction making an
angle 0 with the s-axis which is of order 1/z'. At other
points the orientation of the spin of any given state will
in general not be in the y—s plane; the spin direction will
show local Quctuations over each cell, but its mean
direction in any cell will be that given by averaging (23)
over the cell with weight

~
x~~'. The v~ term in (23)

disappears from this average, since vj, and X~ are
orthogonal, and so it can be seen that as x r varies, the
spin direction for the 4th state will describe an ellipse on
the unit sphere as shown in Fig. 1. When x r is near a
multiple of m, the spin of the kth state will depart
slightly from the mean spin direction of all the electrons,
which is always in the y—s plane, the departure being in
the x-direction and proportional to b~ times the rate at
which the mean spin direction is changing with position.
This can be interpreted in the same way as the free
electron behavior discussed in I, the latter being in fact a
special case of the present problem. A wave packet
formed of states neighboring to k will, in moving through
the crystal, be acted upon by a torque due to the ex-
change fields of the other electrons, this torque being in
such direction as to tend to bring all spins into coinci-
dence. This torque will cause the spin of the packet to
precess, so that its projection on the unit sphere will
move at right angles to the great circle joining it to the
mean spin direction. If the mean spin direction moves
back and forth in the y—s plane, as shown by the dot-
dash line in Fig. 1, the spin direction of the wave packet
will describe the ellipse shown.

The behavior of the average spin direction of all the
electrons, which we have just mentioned, provides us
with a simple way of showing how the arbitrary con-
stant occurring in U, or b;, must be chosen. We have
seen that (18) does not determine b; completely, but
leaves us free to add to it any constant independent of j.
Now if the average of b, over all electrons diGers from
zero, the average spin direction of all the electrons will
desc'ribe an ellipse on the unit sphere as x r changes,
while if the average of b, is zero, the mean spin will
always remain in the y—s plane. That the former is
impossible is obvious from symmetry: As we move
through the crystal in the x-direction, so that x r
changes, there is no more reason for the average spin
direction to describe a clockwise ellipse than a counter-
clockwise one. This argument can be formulated in
mathematical terms by making use of the time-reversal
symmetry~ of the unperturbed Hamiltonian and the
antisymmetry of the perturbation E, but we shall omit
the details.

V. ROUGH EXPLICIT EVALUATION OF A

As we shall see in Secs. VII and VIII, the generality of
the expression (21) (or (8.8) of Appendix 3) for A is

7 E. Wigner, Nachr. Wiss. Gottingen, p. 546 (1932).

c;;o=~X;s,,—J;;,
c; =(axM/aq. )s;;,
@/"=

2 (~'&~~i/~i ')~i'

(26)

(27)

(28)

where d)I, ;=KM —X,=P; J';;, the summation being
over the singly-occupied orbitals only. Thus (18) reduces
to

p; J,,(b;—f;)+Bi%.M&'&/Bj, =0. (29)

All the assumptions leading to (29) are valid for the
free electron problem, and we shall use it without further
approximation in the next section. In this section, how-
ever, we shall from now on make the further assumption
that

J,,=J/1V, (30)

independent of i and j, where as before S is the number
of singly occupied levels. This approximation, which of
course is quite crude, amounts to assuming that the
torque which the other electrons exert on the spin of an
electron in the jth state is in each region of space simply
proportional to the departure of the spin orientation of
the jth state in that region from the local mean orienta-

useful in that it enables certain relationships inter-
pretable in terms of spin waves to be established rigor-
ously for the self-consistent Geld model. However, it
would be very difficult to evaluate (21) exactly for the
rigorous self-consistent field solution for an actual
ferromagnetic metal, since one would have to start with
the wave functions of the unperturbed self-consistent
field solution, evaluate various integrals over them to
get C;io, C,,', and 4,,",and solve the integral Eq. (18).
In this section we shall consider some approximations
which, though crude, enable an explicit evaluation to be
made while retaining the most important physical
factors upon which the solution depends.

Consider the matrix element [BH/B(RU;+)]~;+„~;
which, according to (7), constitutes the most difficult
term in C;,(x). Of the Coulomb and exchange operators
in H, only the latter is changed in first order when (5) is
substituted for P;&'&, and from the form of the exchange
operator it is easy to show that the matrix element in
question is simply the negative of the electrostatic
interaction energy of the charge distributions

X&+& Xj+& an Xj X&p (24)

where the y's are the orbital parts of the P&'&'s. Now the
former of the distributions (24) is independent of L for
free electrons, and also in the limit of tight binding for a
band arising from a nondegenerate atomic level. Al-
though neither of these cases corresponds to the situa-
tion in actual ferromagnetics, one is tempted to explore
the consequences of assuming that

L~JJ/—~(~~~+)l~'+.i'= Ji',=J'i,
independently of x. With this assumption we have,
taking the x axis in the direction of x,
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tion. Stoner' has elaborated the theory of ferromag-
netism at some length on the basis of an analogous
assumption.

With the assumption just mentioned, the solution of
(29) which satisfies P b;=0 is

bi= J '8) [i]/8j ~.

Using this with (26), (28), and (30), the expression (21)
for A becomes, if we assume cubic symmetry,

A=(240) 'P LV')[[ ]
—2~ m[;] ~'/Jj (32)

the V operators being, of course, differentiations in wave
vector space. For the case where the holes in the d band
can be treated as free particles with an effective mass
no*, a case which Stoner' has treated in detail and which
Wohlfarth' has applied to nickel and its alloys, (32)
becomes

A = (N/4n) (m/nl*) (1 4) /—3J)
= (N/40) (m/m") (1 2"'eo/S—k8'), (33)

where X=(k'm/m*)A, is the mean energy of the holes
relative to the band edge, and where at the right we
have translated X and J into Stoner's notation by setting
7=2k8' and eo

——)[,„/2'*, eo being the maximum energy
of a hole relative to the band edge for the case where the
holes are distributed equally between the two states of
spin. It is noteworthy that according to (33) a ferromag-
netic spin arra, ngement should become unstable with re-
spect to long wavelength fluctuations when k8'(2"'eo/5
=0.63560, while Stoner's criterion, based on a com-
parison of energies of states with different occupation
numbers for the two spin directions, predicts ferromag-
netism at O'K whenever k8') 2eo/3. The criteria for the
two kinds of stability are thus surprisingly close to each
other.

One is tempted at this point to try to pick numerical
values of m*, eo, and k8' for nickel and compare the
prediction of (33) with the experimental value 2=8
X 10 r sec/cm" ' although one could hardly ex-
pect quantitative agreement with so crude a model.
Wohlfarth' suggests en=0. 17 ev, k8'/co=0. 8, values
which when combined with X=0.6Xnumber of atoms
give 2.7X10 ' erg/cm for the product of the first two
factors in (33), and 0.2 for the third factor. Alterna-
tively, Slater" has attempted to evaluate the ferromag-
netic properties of nickel u priori; his results, if inter-
preted in terms of the Stoner model, correspond to
ep= 0.24 ev k8 /eo= 0.73, values not far different from
Wohlfarth's. However, the model used in Slater's calcu-

~ E. C. Stoner, Proc. Roy. Soc. (London) A165, 372.(1938)]
A169, 339 (1939), Rep. Progr. Phys. 11, 43 (1946).

~ K. P. Wohlfarth, Proc. Roy. Soc. (London) A195, 434 (1949).' I am grateful to Dr. E. P. Wohlfarth for correcting an arith-
metical error in this coefficient, and for pointing out that the
similarity of the two criteria for stability of the Stoner model is to
be expected in view of the similarity of the two criteria for the free
electron model, as found in I, Sec. VII.

'I M. Fallot, Ann. phys. 6, 305 (1936)."J.C. Slater, Phys. Rev. 49, 537, 931 (1936).

lation differs in one important respect from the Stoner
model, in that the top of the d band is not a single state,
but is highly degenerate, so that the holes occupy
overlapping bands centered on different points of the
Brillouin zone. It follows that the model used in deriving
(33) is even cruder than one might at first suppose,
since in addition to the error involved in assuming (25)
and (30) there is undoubtedly a large error in assuming,
the relation of Ã, eo, and V'X~ to be the same as for free
particles of some effective mass m*. Correction of this
error might well increase the computed A several times. ,

While it is gratifying that a crude interpretation of
Slater's calculations seems to lead to an A value of the
right order of magnitude without use of any empirical
parameters relating to the magnetic or electronic struc-
ture of nickel, it is obvious that such comparisons as we
have been making cannot at present provide any
quantitative evidence pro or con regarding the validity
of the band picture.

&i~i=j' (35)

With these substitutions (29) is identical with Eq. (20)
of I if we interchange the x and s directions and identify

where Vg was de6ned in I to be the mean gradient of
spin orientation, and $~ was the angle between the spin
of the 4th electron and the plane in which the macro-
scopic direction rotates. We can easily verify that the

' F. Bloch, Z, Physik 57, 545 (1929)."E.Wigner, Trans. Faraday Soc. 34, 678 (1938).

VI. THE CASE OF FREE ELECTRONS

A gas of perfectly free electrons is known to be
ferromagnetic in the self-consistent field approxima-
tion, "although an exact calculation of its ground state
would probably show it to be nonferromagnetic. "As an
essentially exact calculation of the Bloch wall coefficient
A was given in I for free electrons in the self-consistent
field approximation, it is of interest to show that the
equations of the present paper coincide with those of I'
for this case, in spite of the different approach. This
comparison provides an explicit illustration of the fact,
physically obvious but mathematically less so, that one
comes out with the same A regardless of whether. one
considers a complete reversal of the spin direction over
the dimensions of a large specimen, as was done in I, or
considers, as here, a truly infinitesimal perturbation of
the spin orientations, i.e., one involving a change «one
unit in the total spin of the crystal.

The assumptions made in the previous sections as far
as Eq. (29) are all valid for free electrons, within the
limitations of the self-consistent field approximation. So
to carry this approximation through rigorously for free:
electrons we only need to substitute into (29) the proper
values of J;;and Xt,~, vis. , in atomic units,

(34)
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A = (1V/40) (1—0.267m.k,„),

while the latter choice gives

(37)

A = (1V/4n) (1—0.647m.k ..). (38)

These may be compared with the correct value given by
Eq. (26) or (27) of I, sis. ,

A = (1V/40) (1—0.7217irk, ). (39)

It will be seen that (38) is much superior to (37) and is in
fact a surprisingly good approximation.

VII. RELATION TO SPIN WAVES

It was shown in reference 3 that, if 0' designates the
eigenfunction of the entire system of ferromagnetic
electrons in the presence of the sinusoidal perturbation
(2), the 4' of a ferromagnetic insulator is asymptotically
equal to the unperturbed ground-state eigenfunction 4'p

plus R/»' times a linear combination of the two states
%~, derivable from %p by excitation of a single spin
wave of wave vector +x. This means that for an
insulator the wave function 8%„/BR is, in the limit
~—+0, an excited eigenfunction of the unperturbed
system, of the nature of a spin wave. It is, therefore, of
interest to study the properties of 8% /BR for a metal,
where the other theories of spin waves are inapplicable,
to see to what extent it is legitimate to regard this func-
tion as an eigenfunction of the system, of the spin wave

type. Of course, the approach of the present paper is
seriously limited, in that we have considered only
determinantal approximations to 0'p and +; neverthe-
less, it is natural to hope that many qualitative prop-
erties of our approximate 8%„/BR may also'be possessed

by the true 8%'„/BR.

identification (36) is consistent with the expression (23)
for the spin direction of the kth electron. For in (23) the
mean spin is in the direction y= m/2 (see Fig. 1). At a
point where x x is a multiple of 2m the deviation of the
kth spin from the plane q = s./2 is the semi-minor axis
of the ellipse of Fig. 1, equal to 4bqR/» Sin. ce at such a
point the gradient of mean spin direction, dB/dx, is»
times the semi-major axis of the ellipse, we have

semi-minor axis= b~dB/dh,

in agreement with (36). Finally, one can easily show, by
using (18), (27), (28), (35), and (36), that (21) gives the
same A as Eq. (25) of I.

It is interesting to consider the consequences of
making the additional approximation J,,=J/1V inde-
pendent of i and j, as was done in the preceding section,
instead of using the correct expression (34). Two
possible choices of J are the choice which gives the total
exchange energy the correct value, and that which

gives the correct difference in exchange energy between
the magnetic and nonmagnetic states. Use of the former
choice in (33) gives

It is clear that if 4'„ is normalized to unity inde-
pendently of the perturbation amplitude R, the function
8+„/BR is orthogonal to 4'o, hence a linear combination
of excited eigenfunctions. Its mean energy E is related
to the energy change AE produced by the perturbation
(2), since to the second order in R the mean of the
unperturbed Hamiltonian II in the state
+R8%' /BR is

E„=(ED+R'CE)/(1+R'C), (40)

where Ep is the ground-state energy and C is the
normalization integral of 8%'„/BR. Now to the second
order in R the energy E„ lies above Ep by the same
amount that the energy of 4 with the perturbed
Hamiltonian lies below it. Equating (40) accordingly to
Eo—AE, where hE is given by (3), and solving for E, we

get
(41)E=Eo hE/R'C—.

This relation, though derived for the case where 0 p and
%„are true eigenfunctions of their respective Hamil-
tonians, is equally valid when E„and Ep represent the
energies of the best determinantal approximations to the
eigenfunctions, since the form of Peng's second-order
energy expression (Eq. (B.4) of Appendix B) shows that
even in the self-consistent field approximation the first-
order wave function determines the second-order
energy.

To evaluate (41) using the determinantal form for +„
derived in Sec. III, we note first of all that as»—+0, (5),
(9), and (15) give

Inserting this into (41) and using (17) for U' and (20)
for AE we get

E Eo »' Q (C —" b;——*C, b—;)/1V= (4QA/1V)»' (42)

by (21). That the simplifying assumptions used in
Secs. II and III are not responsible for this result can be
shown by using in (41) the C and AE obtainable from
the more general treatment of Appendix 8, and noting
that the same expression (42) results.

The field theory of spin waves developed in reference
3 gives an expression for the energy of a spin wave of
wave number x which is identical with (42). This
coincidence of energies is more than merely suggestive
of the validity of the field theory and the legitimacy of
regarding 8% /BR as an eigenfunction of the spin wave

type. For if (42) is valid for the true eigenfunctions 4'

as well as for the determinantal approximations, the
reasoning given in Sec. IIIC of reference 3 shows that an
expansion of 8% /BR in terms of eigenfunctions of the
unperturbed Hamiltonian must consist almost entirely
of states whose energies above the ground state dier
from (42) by an amount which is (((42).

The characterization of 84„/BR as a spin-wave state
is supported by consideration of some of its other
properties. In the present determinantal approximation



ENERGY OF BL'OCH WALL ON BAND PI CTURE 67

the normalized state 8%„/'BR is of the form di6erentiations in V are, of course, with respect to the
wave vector j. For an insulator Q; V'I; vanishes, since
the summation is over a full band, but for a metal it
does not. Thus for a metal Eq. (45) will usually give a
current of the same order as the current carried by an
electron of the ferromagnetic band with wave vector x.

The present calculation seems to refute the claim
made by Bogolyubov and Tyablikov' to the effect that
the current is nonvanishing when the ground state has
a full band of ferromagnetic electrons. For, if I under-
stand their calculation correctly, they obtain this result
for a spin-wave eigenfunction of the Bloch type, i.e., a
linear combination of states derived from the ground
state by reversing the spin of the electron in one of the
atomic states. This eigenfunction is a special case of
those considered in the present paper.

C—&Be„/BR= 2
—l(+„—4,), (43)

where 0'„ is a linear combination of all the wave func-
tions A„(k) derivable from 4'0 by removing an electron
from some singly-occupied state of wave vector k and
putting it in a state of opposite spin with wave vector
k+r., the coeKcients of all these wave functions being
equal to within an error of order x. The functions ++„
obviously correspond to spin waves of wave vectors +x,
respectively. All the determinantal states A„(k) have
mean energies above the ground state of the order of the
exchange energy of an electron, a quantity which is
))(42) when x is small. Thus all the A„(k) are orthogonal
to all the determinantal states derivable from the
ground state by exciting one or a number of electrons
with a total energy of excitation of the order of (42).
The spin wave states are, therefore, orthogonal to all
the states of comparable excitation energy which are
considered in the conventional itinerant electron model.
Moreover, it is easy to verify that when the state of the
system is a linear combination of the ground state and
one of these spin-wave states with a coefficient of the
form exp(iidt), the mean spin direction in each region of
the specimen precesses in time around a narrow cone,
just as it would for the well-known spin-wave states of
an insulator. Finally, as will be shown in detail in the
next section, when the singly-occupied states completely
fill a band the spin-wave states obtained from 84„/BR,
using the approximations of this paper, reduce to those
which are already familiar for insulators.

The preceding discussion suggests that approximate
representations of states with several spin waves excited
can be obtained by taking linear combinations of states
derived from 4'p by reversing the spins of several
electrons, changing the wave vector of each by the wave
vector of one of the spin waves. These states, like the
singly-excited states just considered, will be independent
of the low-lying excited states of the conventional
itinerant electron model.

The present theory of spin waves in a metal predicts
for them a property not possessed by the more familiar
spin waves in an insulator, namely, that of carrying a
current. From what has been said following Eq. (43), the
spin wave eigenfunction is, in the approximation of
Sec. III,

e„=X '*p,[1+-.b,yO(") j~„(j),

VIII. RELATION TO SLATER'S THEORY

The relation (42) enables us to calculate A if the spin
wave energies are known, or to calculate the spin wave
energies, to the first order in ~, if A is known. Since
Slater' has given a method for the calculation of spin-
wave energies for a ferromagnetic insulator, it is natural
to ask how Slater's method is related to the methods of
the present paper. Slater assumed the ground-state
wave function +p to be of determinantal form, and
approximated the wave function 4„for a spin wave by a
linear combination of the X' states obtainable from +p
by removing an electron from one of the ¹ccupied
states, say the ith, and placing it, with reversed spin, in
some state having the same orbital-wave function as
some one of the initially occupied states, say the jth.
In this section we shall begin by proving that the use of
any such linear combination for +„is equivalent to the
use of a determinantal form for the wall functions 0'„
related to the +„by (43), at least to terms of the first
order in the perturbation amplitude R.

The theorem which we shall prove first is actually a
little more general than is required for application to
Slater's work. It may be stated thus: Let +p be a
determinantal wave function, C„any determinantal
wave function constructed from %p by removing an
electron from some one-electron state and placing it in
another, and let C be any linear combination of the C „.
Then the state No+eC coincides with a certain de-
terminantal wave function 4' (e) to within a difference
of order e' as e—+0. The index e may have a discrete or
continuous range, and the new one-electron state in-
volved in 4„ is not restricted to have any special
relationship to those involved in %p.

The proof is very simple if we consider what at first
sight seems to be a special case, namely, where each C „
is obtained by replacing the state P of the initially
occupied set by a different state p, . The state +o+ cciC'i
is then a determinantal wave function diGering from %p
in having the fi of the first column replaced by fi
+ tcipi. The state 4'p+ cciC'i+ 6c2C», though not exactly
of determinantal form, .coincides to the first order in esince b, is an odd function of j while VI; is even. The

where b, is de6ned by (18).The total current operator I
has no matrix elements connecting different ones of the
determinants h„(j), and its mean value in the state
h„(j) is I,+„I,, where I; is the mean c—urrent of the one-
electron state P;. Therefore, the mean current of the
spin-wave state is

(e„,I+„)=A='P, [1+2'Re(b,)](I,+„I,)+0( )K—
45

=IV 'x Q, VI,+O(x'),
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with the determinantal wave function obtained from 0'p

by replacing Pz by f&+ac&p& and P2 by P2+6c2+2. This
can be continued to show that 4'0+eC is determinantal
to the 6rst order in e.

To construct a general mathematical proof it is only
necessary to show that no matter how many C „'s there
are in the expression for C, this expression is always
equivalent to one of the sort considered in the preceding
paragraph. This can be done by using the creation and
annihilation operators of quantized wave theory. " If
a(P) is the operator removing an electron from the one-
electron state f, and u+(y) is the operator introducing
an electron into the state y, the most general possible
form for the wave function C mentioned in the theorem
would be obtained by operating on +p with an operator
of the form

with p and f completely unrestricted except for the
requirement that f be initially occupied, y initially
empty. However, since any a or a+ can be expressed as a
linear combination of the corresponding operators going
with any orthonormal set of wave functions, this oper-
ator can always be written in the form

where the P; are any orthonormal set spanning the
initially occupied subspace, and the p; are a suitably
chosen set of initially empty states, not necessarily
orthogonal to each other. In the latter form the operator
gives a wave function 4 of the form used in the pre-
ceding paragraph.

Note that no analogous theorem can be proved for the
case where C contains terms involving two or more
substitutions in %p, since linear combination of two
determinants which differ in more than one column does
not, in general, give a determinant.

It is now clear that, as far as spin waves of long wave-

length are concerned, Slater's theory of spin waves must
be a special case of that given here. Since Slater' has
shown that the results obtained in earlier theories of
spin waves, using the atomic approach, are included in
those obtainable from his approach, these earlier
theories are also special cases of the present treatment.
However, the present approach is very different from
Slater's and it is an interesting mathematical exercise to
show that Slater's final energy expression is really
identical with that obtainable from our Eq. (21) or
Eqs. (B.S) and (8.9) of Appendix B.The details of this
correspondence will not be given here; it will suffice

merely to call attention to the formal similarity of the
two terms in Slater's Eq. (31) to the two terms of our
(B.9). To the accuracy of Slater's tight binding ap-
proximation this similarity can be shown to be an actual
quantitative identity of each species of term, factor by
factor.

'~ P. Jordan and E. signer, Z. Physik 47, 631.(1928).

Although the reasoning just mentioned illustrates in
detail the equivalence of Slater's approach to that of
this paper for a ferromagnetic insulator, it is worth
noting that for the case of a metal, which Slater did not
discuss, our expression (21) for A contains terms of
quite a diferent physical nature from the two terms in
Slater's Eq. (31). For in the verification of the corre-
spondence of our results with Slater's it is necessary to
use the fact that the second derivative of the energy
parameter with respect to wave vector vanishes when

summed over all states i and j in a 6lled band; if a
partly 611ed band is present, as in a metal, this term will

give a large contribution to our expression (21) for A,
perhaps even larger than that given by Slater's whole
expression.

This essential difference between filled and partly
filled bands can be illustrated more concretely by con-
sidering the free electron problem. One might at first
suppose that Slater's approach could be used for the
free electron problem by replacing the actual ground
state of this problem by a state in which almost-free
electrons exactly 611 a Brillouin zone, i.e., by starting as
in the atomic-model calculations of Sec. VI of I and then
improving the energy by Slater's method. But this
would give completely wrong results: The correct solu-
tion of the wall problem for free electrons leads, as we
have seen, to a determinantal wave function each of
whose one-electron components is a linear combination
of an originally occupied plane wave state of wave
vector k and the states of opposite spin with wave
vectors k~x. Some of the latter would lie outside the
hypothetical Brillouin zone just mentioned, and so one
could not get anything resembling the correct wave
function by Slater's method. The omission of terms
containing plane waves outside the Brillouin zone is in

fact the root of the fact that the approach used in
Sec. VI of I gave such a poor approximation to 2 for
free electrons.

APPENDIX A. EFFECT OF REDISTRIBUTION
OF OCCUPATION NUMBERS

We wish to show that in the presence of the perturba-
tion (2) the energy of the state with the same occupation
numbers as the unperturbed ground state divers from
the energy of the state with optimum choice of occupa-
tion numbers only by an amount of higher order than
the second in the amplitude E. of the perturbation. This
will clearly be the case if it can be shown that the one-
electron energies X; are unchanged to the 6rst order by
the perturbation, since the energy lowering which can be
achieved by reshuffling is of the second order in the
changes of the X;. The absence of 6rst-order changes in
the X; can easily be established. For it is clear that the
self-consistent 6eld solutions for R and —R will be taken
into each other by rotation of all spins through 180'
about the s-axis, an operation represented by the Pauli
matrix ir, for each electron. We can, therefore, choose
the one-electron functions P; in such a way that they
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depend continuously on E and satisfy

4i( ~—)= ~~~A ~(~),

where co, = 1 for states which for the unperturbed system
have the majority spin direction, and = —1 for the
remaining states. The Coulomb and exchange operators
in the one-electron Hamiltonian contain terms of the
first order in R, and the diagonal matrix elements of
these first-order operators, relative to the P,ioi, consist
of terms of the same form as the first-order parts of the
Coulomb and exchange integrals formed from a pair of
states i, j. But each of the latter integrals has the same
value for E and Esince —~co;~'~&0, ~'=1, and so the
diagonal elements of the first-order operators must
vanish. Since the diagonal elements of E also vanish,
there can be no first-order term in any X; unless the
perturbation connects two states of opposite spin with
the same energy. This cannot occur for the model con-
sidered in the text, and for the more general cases
considered in Appendix B it can occur at most for a
number of states which is inhnitesimal as R~o.

In applying the same sort of argument to problems
other than the one considered in this paper, it should be
borne in mind that the proof just given is valid only for
cases where the diagonal elements of E vanish. More-
over, it may sometimes be possible to solve what is
essentially one and the same physical problem in two
different ways, one of which may involve a reshufQing of
occupation numbers while the other does not. An ex-
ample is the problem of computing the paramagnetic
susceptibility x of an assembly of free electrons which
in the unperturbed state contains electrons of plus and
minus spin in equal numbers. The familiar solution of
this problem involves subjecting the assembly to a
constant magnetic field II and computing the changes in
occupation numbers of the states with plus and minus
spin. It can be shown, however, that the same value of x
can be computed from the changes in the wave functions
of the occupied states induced by a perturbing magnetic
held of the form II=80 sine. r, without any change in
occupation numbers. This is because the sinusoidally
varying field corresponds to a E whose diagonal matrix
elements all vanish, while the constant magnetic field
does not.

APPENDIX B. CALCULATION OF A WITHOUT
SIMPLIFYING ASSUMPTIONS

Results formally similar to (21) and (18) can be
proved to hold for the rigorous solution of the Bloch
wall problem, in the self-consistent field approximation.
In other words, it is not necessary to assume wave
functions of opposite spin to have the same orbital
parts, or to assume the perturbed wave functions to be
of the form (5). The argument will be sketched very
briefly here, primarily for the purpose of showing that
(42) is always satisfied rigorously by a self-consistent
field solution.

A convenient starting point is provided by the equa-

tions of Peng' for the alteration of a solution of Fock's
equations by an external perturbation. Let the per-
turbed wave function of the ith state be written

The second-order energy is given by

iimhE/R'—=E&'&=Re Q K;„U„;. (8 4)

where Re means "real part of" [compare (19) of the
text].

Our first step is to show that for the present problem
(8.2) can be written symbolically in a form similar to
the second Eq. (7) of the text, namely,

(8 5)

E and U being conceived as vectors, or one column
matrices, whose components are labeled by indices k, e,
~, where k refers to the second sufhx of a matrix
element such as U„~, m labels the band in which p lies,
and k&x is the reduced wave vector of p. The legiti-
macy of (8.5) is not at first obvious, since the first G
term of (8.2) contains U„;*instead of U„;.However, we
can show that (8.5) is justified for the particular case
we are considering, where IC is 0 „sinter. Suppose for the
moment that we have chosen a basis f;&'& consisting
entirely of real functions of the coordinates multiplied

by the spin functions n or P. This can always be done,
since the one-electron Hamiltonian is real. Then all the
G s in (8.2) will be real, and all K; will be imaginary.
Therefore, if we make the solution unique by requiring,
as in Sec. 4, that the mean spin lie in the y—s plane, all
the U» must be imaginary, and relative to this basis we
can replace U„;* in (8.2) by —U„;. A matrix equation
of the form (8.5) will then hold relative to this basis,
and by transformation an equation of the same form can

.be derived relative to any other basis. However, in using
(8.5) we must remember that it is equivalent to (8.2)
only when U„; represents an operator which takes real

4 *=&""+~Zu U.'4.'", (8 1)

where p runs over all empty states of spin opposite to i.
(Compare (5) of the text, ) Peng's equations to de-
termine the U„, are the generalization of (7) of the text,
and are, in our notation,

Kaj (lpga ~j)Uaj+Pi, p[(Gapij Gati i) U'pi

+(G-' —G- .)U.'], (8 2)

where here and below it is to be understood that Greek
suKxes run over empty states, Latin suffixes over filled

states, and where the G „;,are Coulombic integrals of
the form
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wave functions into imaginary ones. A simple analysis,
which we omit, shows that the matrix describing C is
Hermitian, i.e., that

@'I +, I + =~1

The matrix, or operator, C and the "vector" U will of
course depend on the wave vector x of the perturbation,
and can be expanded in power series analogous to (9)
and (10). As ~~0, 4 approaches a limit C', and the
invariance of the energy with respect to rigid rotations
of the spin system requires that one of the eigenvalues of
C' must be zero. It is not hard to show that, if the
unperturbed system has no degeneracy other than that
associated with spin rotations, the null eigenvalue has
only the multiplicity two corresponding to two eigen-
vectors I»', N2' which may be specified to have the
properties

(+1 )j~= (NP) jn—
y (+2 )ja=(+2 )-jm (B 6)

If &o~(x) are the eigenvalues of C(v) and N„(x), the
corresponding normalized eigenvectors, we can write the
solution of (B.5) in the form

U= —C
—'K= —P„(N„,K)u„/(o„. (B.7)

Of the two eigenvectors I», u2 whose eigenvalues cv»,

co2—4 as z—&0, only the eigenvector I» will have in the
limit a nonvanishing scalar product with E.As ~—4, all
terms of the summation (B.7) except the one p= 1 will

be bounded; since we are interested only in the leading
term in the energy as ~~0, which involves only the part
of U which goes as 1/x', we can ignore the terms p) 1.
For the same reason we can replace N&(x) by Ni(0) =Ni'
in the numerator. By (B.4) the second-order energy is
therefore, to order 1/a',

AE/E'= —
i (K, zci')

i
'/z'a&i", (B.S)

where ~»" is the coeS.cient of ff.
" in the expansion of co» in

powers of x. (The first-order coefficient &v&' vanishes by
symmetry. ) Combination of (B.S) with (3) gives a value
for the Bloch wall coefficient A which is proportional
to co~".

In the present case the null eigenvector I»', though no
longer having all its components equal as in the approx-
imation of Sec. III, can be shown from (8) to be of the
form (u&'); += &a(0,)„;,where p is the state of the Nth

band with the same wave vector as j but opposite spin,
and u is a normalizing constant. A straightforward
calculation, which we omit, shows that as ~—&0 the
vector E becomes parallel to I»', so that the numerator
of (B.S) reduces to

~
a~ 'S', where 1V is the number of

uncompensated spins in the crystal.
The result (42) of Sec. VII can be derived from (B.7)

and (B.S) without further knowledge of how cubi" is
determined. However, we can get some insight into the
range of validity of the calculations of Sec. III by
sketching how co»" can be calculated in principle. One of
the most obvious ways of doing this is to expand the
operator C in powers of ~ and use perturbation theory.
This can be done provided we take account of the fact
that the range of values assumed by the set of suffixes

jr& depends on x, since we allow only values for which
the state of the eth band with wave vector j~x is
empty. This fact gives rise to additional terms in the
perturbation expression for co»", in the form of integrals
over a surface in wave vector space. In terms of oper-
ators C"' and C" defined analogously to (10),

(di =(Nil 4'~gi) Q ~(Si, 4QP)~ /CO

p)2

+surface integrals, (B.9)

where u„' and ~„' are respectively the pth eigenvector
and eigenvalue of O'. Note that the unknown factor a
cancels out of (B.S).

It is obvious from (B.9) that electronic states which

may be approximately described as "doubly occupied"
have very little inQuence on the value of co»", since the
jr~ component of I»' is very small when j is such a state,
while the surface integrals involve only regions of j
space bordering the "singly-occupied" levels. The
electron-hole reciprocity assumed in applying the results
of Sec. III to a metal such as Ni can be justified by
similar reasoning;


