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The detector crystal responds to the difference in the incident
power {or intensity) with and without the magnetic field. The
crystal signal is then proportional to

t:I ( )+Io( )+I-()j—I( )
= -PI(v) —(BI/Bv) Sv+ —(c}I/Bv )Sv2+ j+-I(v)

+ 3 P(v) +(~I/»)»+ & (~'I/»'}»'+ $—I(v)
= -'(O'I/8v') 5v2+higher even degree terms.

Because relatively low modulating fields are used, bv')&bv4. Hence,
terms involving fourth and higher degrees may be neglected.

Also, bv is a constant for any one line. Thus, the detector responds
to a signal that is proportional to O'I/Bv'.

The argument is good, even for the (1+cosset) type modulation
used, as contrasted with the ideal square pulse of the derivation.
Since the actual applied field remains within 15 percent of its
maximum and minimum values for half the period of modulation,
it reasonably approximates the ideal square-pulse field. The more
complex Zeeman splitting resulting from higher rotational states
will yield more terms in this derivation, but. the net effect will be
the same as that developed for the simplest case.
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The spin-wave theory of antiferromagnets, recently studied by Anderson for the absolute zero of temper-
ature, is examined here for finite temperatures to derive the thermodynamic properties of antiferromagnets
at low temperatures. Somewhat differently from Anderson's semiclassical treatment, the present theory
has used the formulation devised by Holstein and Primakoff, upon which the thermodynamic quantities
are derived quantum-statistically, The parallel susceptibility is shown to be proportional to H, while the
perpendicular susceptibility is independent of the temperature in the first approximation but. decreases
with increase in temperature if calculated in the second approximation. A tentative discussion is given of
the nature of the divergences which arise in the simple formulation of spin-wave treatments in the absence
of any kind of anisotropy.

INTRODUCTION

ECENTLY Anderson' has presented an approxi-
mate quantum theory of antiferromagnets on the

basis of the semiclassical spin-wave theory first intro-
duced by Kramers and Heller. ' He examined very
carefully the zero-point energy terms and showed that
the spin-wave theory can be used to give pretty good
approximations to the ground states of antiferro-
magnets. His result lies between the limits predicted by
his variation method, and moreover, it is very close to
the rigorous value in the case of a one-dimensional

chain of spins equal to one-half, which was treated by
Hulthen4 and by Bethe. '

As a matter of fact, the spin-wave theory of anti-
ferromagnets is far more complicated and probably
poorer as an approximate method than that of ferro-
magnets. Unfortunately the spin-wave theories are still
far from satisfactory in both cases, because we know

very little about the limitations of the method, which

necessarily introduces great simplifications to bring the
problem into the tractable form of independent spin-
wave oscillators.

In spite of this situation, the writer wishes here to

*On leave from the Department of Physics, University of
Tokyo, Tokyo, Japan.

' P. W. Anderson, Phys. Rev. 86, 694 (1952).
2 G. Heller and H. A. Kramers, Proc. Roy. Acad. Sci. Amster-

dam 37, 378 (1934).' P. W. Anderson, Phys. Rev. 83, 1260 (1951).
4 L. Hulthen, Arkiv. Mat. Astron. Fysik 26A, 1 (1938}.
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present a statistical-thermodynamical theory of anti-
ferromagnets based on the Hulthen-Anderson spin-wave
theory. The reason is, in the first place, that the spin-
wave theory is at present the only approach we can
use to at tack the problem at low temperatures, and
secondly that Anderson's success suggests that the
low-lying energy levels may be reasonably approximated
by this method. Approximations for higher tempera-
tures can be treated by several methods. Van Vleck's
theory of antiferromagnetism' is one of them and should
be regarded as the standard theory. Refinements of
this theory have been tried by Li" using the Bethe-
Peierls-Weiss method and also by the present author,
Obata, and Ohno. '

The treatment to be presented here is of course to be
regarded as a starting point from which we should
proceed to more rigorous theories. Also it should be
emphasized that such improvements will be achieved
more easily by handling the density matrices directly,
rather than the Hamiltonian, to yield the separate
energy levels. We hope the present theory will be
improved in the future by taking account of the higher
terms in the Hamiltonian, which are omitted in the
simple theory but are very important to establish any
satisfactory theory. In the last section of this paper we
shall consider, by fi.rst-order perturbation theory, some
of the eff'ects due to these higher terms together with

6 J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).' Yin-Yuan Li, Phys. Rev. 84, 721 (1951).' Kubo, Obata, and Ohno (unpublished).
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some discussion as to the applicability of the customary
perturbation methods.

We confine ourselves at present to some simple
models of antiferromagnets, which are surely unsatis-
factory for the understanding of any actual antiferro-
magnetic crystals. However, most of our theory may
be extended to apply to the more complicated anti-
ferromagnetic structures, which will be discussed on
some other occasion.

1. THE HAMILTONIAN FOR THE SPIN WAVES

First we shall repeat some of Anderson's treatment
in a somewhat dift'erent language, namely in the
formalism invented by Holstein and PrimakofI, ' which
seems useful to make clearer the nature of the approxi-
mation. Following Holstein and PrimakoG, we express
the spin operators in the forms

S,+iS„=(2S)'*[1—(a*a/25)]~a, (1.1a)

lattices, we have to introduce two different definitions
of the spin-deviation operators, the, t is,

5„+iS„,= (25) l[1—(n;/2S)]'a, ,

5„—iS„,= (2S)~a,*[1—(n,/2S)]l,

S„=S—n, ,

(1.8a)

(1.8b)

(1.8c)

5„—iS„p (25——)1[1—(np/25)]by,

S,«= -5+na
(1.9b)

(1.9c)

for a spin k on the other lattice, say the (—) lattice.
The operators b and b* are naturally defined in the
same way as a and a*, and satisfy the equations

for a spin j on one of the subla. ttices, say the (+)
lattice, and

5,&,+iS,&,
= (25) 'by*[1—(ng/25) ]') (1.9a)

S. iS„=—(2S)~a*[1—(a*a/2S)]l, (1.1b)
bI,*bk ——mp, bj,b,*—bj,*bl,——i. (1.10)

S,=S—a*a, (1.1c)
The simplest form of the Hamiltonian of an anti-

ferromagnet is usually assumed to be

where S is the magnitude of the spin in units of 6, and
the operators a~ and u are defined by

(n+1l a*in) =(n+ 1):,
with positive exchange interactions between the nearest
neighbors. Inserting Eqs. (1.8) and (1.9) into Eq.
(1.11), we obtain

uu* —a*a= 1. (1.3)

II = ——'Ss J S'
in the representation diagonalizing 5, They satisfy '* 2 l l +
the commutation law, + I JISM&~»(f.(n~)a~f. (n~)bk

+ af.( n) .b*f.( ~n))
—IJIZ&p&n, n~ (1.12)

As one can see from Eq, (1.1c), the operator

IJ.*=—JP&,~& S,"S~, (1.5)

we obtain

II, = iNsJS'+ [sJ—S+n, JSQ &,&&{a,*f—,(n,)f, (n&) a&,

+ap*f, (n&)f,(n, )a, ) —JP &, ~& n, np]. (1.6)

In Eqs. (1.5) and (1.6) the exchange interactions are
supposed to be present only between nearest neighbors.
This assumption can easily be removed if necessary.
In Eq. (1.6) we have introduced the abbreviation,

f,(n) = [1—(n/25) ]*' (1.7)

In the antiferromagnetic case, where the lattice is
assumed to be divided into two interpenetrating sub-

is the "spin deviation, " so that a* is to be regarded as
the creation operator of the spin deviation and a is the
annihilation operator.

In the ferromagnetic case, where the Hamiltonian is
assumed to be

The semiclassical formulation is simply obtained by
the approximation

(1.13)

and by omitting the last term of Eq. (1.12), which is
square in the spin deviations. Smith and Klein" have
used this kind of approach in their argument about the
semiclassical theory of Kramers and Heller in the
ferromagnetic case, and these approximations are
completely equivalent to Anderson's treatment.

As was noticed by Holstein and Primakoff, the
operators a, a*, b, and b* are to be considered as
matrices with infinite dimensions in order to satisfy the
commutation rule (1.3), which is very useful in simpli-

fying the mathematics and makes the spin-wave parti-
cles obey the Bose statistics. This mathematical trick
is, of course, quite rigorous as far as we treat the whole
expression of the Hamiltonian such as Eqs. (1.6) and
(1.12). In the n-representation, that is, the representa-
tion where all the spin deviations are diagonalized, the
eigen spaces are completely separated into three parts,
namely, for the e, , e&&0, O~e;, e1,~25, and for ej
)25. Therefore the apparent infinity of dimensions
does not introduce anything wrong.

' L Holstein and H. Primakoff, Phys. Rev. 58, 1908 (1940). "M. J. Klein and R. S. Smith, Phys. Rev. 80, 1111 (1950).
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Now the function f,(n), Eq. (1.7), can be developed

f ( )=L1-(/2S)l'
=1+fin+ fin'+ +f2en" (1.14)

which is rigorous for O~e~25. Since the subspace
which corresponds to this range of values of I is com-
pletely separated from other parts, Eq. (1.14) can be
used for rigorous treatments of the Hamiltonian (1.12).
The examples are

f;(n) =1—n,

fl(n) =1—(-', —V2)n ——2'(V2 —1)n',

f~(n) = 1—6-(11+3v3—6+6)n+k(6+4+ —5+6)n2
+-,'(—1—v3+Q6) n'.

For large values of S, the polynomial expansions (1.14)
are naturally approximated by the binomial expansions.

As a matter of fact, the inclusion of higher terms of
(1.14) and the square terms in n presents insurmount-
able difhculties for mathematical manipulation. Conse-
quently, we usually omit these terms to get simple
spin-wave Hamiltonians. However, with this simpli6-
cation we cannot avoid introducing other difficulties,
because it will certainly destroy the separability of the
space and it causes the appearance of any large number
of spin deviations. This is the chief reason for the fact
that we have to have many divergences in the ordinary
spin-wave theories. We shall return to this point in a
later section.

One might think that the spin-wave theory may
reasonably be applied to the ferromagnetic case, while
it is not so good for the antiferromagnetic cases. In
fact, the spin-wave theory is perfectly rigorous for the
ground state of the ferromagnet, which is, however,
trivial, and on the other hand, it remains only an
approximation if applied to the antiferromagnetic case.
However, the difhculties with regard to the excited
states seem almost of the same nature in both cases,
Though it may sound somewhat paradoxical, this
situation seems to suggest that the spin-wave theory
may be applied to antiferromagnetics as well as to
ferromagnetics.

Postponing more discussion of this point to later
sections, we proceed to establish the Hamiltonian of a
spin-wave system following Anderson's treatment. In
Eq. (1.12) the operators follow the commutation rules

Eqs. (1.15) are transformed into

Q;PP —Pl'Q, =~8,y, R2S2 S—2R2= 2522,

Q;R —R Q;=0,

Q;S —S Q;=0,

I'Ek —EpP =0
&.~a—~I~ =0.

(1.17)

which satisfy the commutation rules

QlPV —Pl Q), =gl), , RES), —Sl Rl=28ll,

Qd4 —Rl'Ql=Pd4 —R Pl=0,

Ql» —Sl Ql=PlSl —SvP)=0,

The Hamiltonian of the spin waves is

&.*'=—2nsl I I s'+(s)
I J Is(zl n'+22 n2)

+ I
~ I SZ, &r»(~A+~'&.*), {120)

which is obtained from Eq. (1.12) after the simpliflca-
tions mentioned before, In terms of the I'ourier trans-
forms Eq. (1.20) is written as

a,.=——,'XsI~IS(S+1)+(s/2) I~ISP,{P,+Q,
+Sl2+Rl'+2m), (Q84—Pal) }, (1.21)

where y), is defined by

y), ——(1/z)g, e-'"&, (1.22)

with p denoting the vectors to the nearest neighbors
from a lattice point. The diagonalization of Eq. (1.21)
is accomplished by the transformation,

(pl%+ p2X)/ 4 QX (gll+$2X)/~2g
(1.23)

S),= (ply —p2),)/~2, R),= (ply —g2),)/~2,

which gives

a..=——',XslXIS(S+1)+-,'sI~ISLP, {q„'(1+~,)
+pl),2(1—7),)+q2),'(1—V),)+pu, 2(1+Vt,)})

= —~Nsl JIS{S+1)+-,'sl JISLP{(2n, +1)
+{2n2),+1)}{1—Vl)'j. (124)

We introduce the Fourier transforms by

P,=(2/Ã) g1, e l'P, Q, =(2/$)~g, e- lQ, ,
(1.18)

S),——(2/$)1+2 e-'"'S2, R),——(2/$)&+2 e'""Rg„

uui —u'i a—JJ

u;bI, ~—bk*a; =0,

u;bg, —bg,u; =0,

b~bi *-bs'br = &~a,

u-*by, —bt,u.~=0

stcu str

(1.15)

As a typical form of antisotropic forces, we assume
here that the crystalline 6elds cause anisotropic fields
on the spins with an additional Hamiltonian,

H, ;.= K(P; Sj+g& S.22)—
By the canonical transformation defined by

;=-:(Q;+'P ), ; =-:(Q,-'P;),
f2=2{R2+2S2), 4*=2(Ra—2S2),

(1.16)

=—ES(S+1)+2ES(p;n,++2 n2)
—E(gg nls+p2 n22), (1.25)

which is only reasonable for S&~ and for tetragonal
structures. Anisotropic fields with symmetry higher
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2. MAGNETIZATION OF THE SUBLATTICES,
AND THE FREE ENERGY

The magnetizations of the sublattices are defined by
the operators

Ms+=gvoE~ Sg, , M, =gypped S.p, (2.1)

where g is the Lande g-factor, po the Bohr magneton,
and the superscripts, + and —,refer to each of the
sublattices. With the use of Eqs. (1.8), (1.16), (1.18),
and (1.23), Eq. (2.1) is transformed to

M.+= p&gpoS gyoQn;—

= —,'&g~o[S+-', —(2&) 'P(pii'+ pod. '+ qii'

+qgp+2p p ixi+p2qq »)]pi
(2.2)

M. = ,'XgypS gyp-Qnp—

= p&g~o[S+ p
—(2&) 'Z(pi2+ pod'+qii'

+q pi 2p» p &—2q &qp), )]—.
The magnetizations of the sublattice, M,+ and M, ,

are not, of course, constants of motion for the Hamil-
tonian (1.27). However, it is important to recognize
that this situation does not prevent us from asking for
the probability distributions of the observables M,+
and M. (long-range order parameters), which are

than the form (1.25) can also be treated without any
serious modification. Equation (1.25) is transformed as

H, „;,= XE—S+2ES(Q; n;++ p np)
E—(P; nP+P p npo)

NK—S(S+1)+KSQ i,(Pg'+ Q),'+S),'+R),')

E(P;—nj+gp neo)

Iq E—S(S+1)+ ESQ (qU, '+Pig'+ qpg'+ Pod')
K—(P; nP+P p np'). (1.26)

Thus, including the effect of anisotropy, the Hamil-
tonian of the spin waves is assumed to be

Ho =H,„o+FI,„;,o
= ——lit's

i I i (1+n)S(S+1)
+-,'(s

I
J

I S)[P,q„(1P ~+&,)yP„P(1y~—V,)
+qp~'(1+ ~—v),)+pp~'(1+ ~+yi)]

)S(S+1)+p(sIIIS)g, {(2n»+1)
+ (2npq+1) }[(1+a)' —y„']&, (1.27)

where o. means

~=2K/slII. (1.28)

Equations'(1. 24) and (1.27) were given by Anderson,
who has examined the zero-point energies of the
oscillators.

In the following we shall examine some of the
thermodynamic properties of the spin-wave system
expressed by Eqs. (1.24) and (1.27).

phase functions constructed from a great number of
dynamical variables (S„and S,&). Usually such phase
functions are expected to have normal distributions
(Gaussian distributions) with extremely sharp maxima.
If such distributions are really proved for the expecta-
tion values of M,+ and M, , we should be justified in
conceiving the magnetizations of the sublattices to be
thermodynamic quantities. And if these magnetizations
are proved to be finite, then our theory may be con-
sidered as self-consistent.

Generally speaking, the probability distribution of
dynamical quantities A&, A2, A&, in a system with
a Hamiltonian H and the canonical distribution
exp( —H/k T), should be defined by its moment-
generating function

expc'(4, 4 ")
=trace[e '"r e&~"~+&p"p+" ]/trace e "'"r (2.3)

which has a natural correspondence in classical sta-
tistical mechanics. A complexity in the quantum
statistics is the product of operators A~, . Ay, but
these are reasonably interpreted in Eq. (2.3) as the
symmetrized products. All expectations of dynamical
quantities are defined by Eq. (2.3) in agreement with
the simple definition

(A)=trace(e 'k A)/trace e ~'P .

Equation (2.3) can be transformed inversely to give
the probability distribution of "thermodynamical
variables" A &, A&, A &, by

P(Ai, Ap, Ap) =
(2pri) "~

exp[C(h b ")

—~,A, —t,A, ]a~,d~, " (2 4)

~=E~i(Ai)+!EZ~; Vi+ (2.5)

Then Eq. (2.4) is explicitly written as

P(Ai& Ap, Ap) = (2pr) P[deth; i]'
Xexp{—ipse, i(h '), i(A,—(A;))(A&—(Ai))}, (2.6)

where the A s should be distinguished from their
averages (A;)'s.

Although we lack any exact proof, it seems very
reasonable to expect a certain form of the central limit
theorem to hold for the distribution (2.4) in quantum
statistics, if the dynamical variables A&, A& have
really their counterparts as thermodynamical variables.
But of course we need some conditions for this state-
ment. Unfortunately we know nothing about such
conditions, so that we have to check the situation in
each case.

If one assumes a Gaussian distribution for (2.4), we
need to know the expansion of C(&i, $p. ~ ) only to
second powers, which can be conveniently written as
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where

(A ~)
= trace(e ~'o A ~)/trace(e "r)

~,,= (A,o)—(A,)',

a, i
——(-,'(A, A (+A iA, ))—(A,)(A i).

(2.7)

Returning to our problem, we take $+ and g as the
generating parameters. Then we have

&+M.++/ M. =gpo[ ', »'(S-+ ,')(P+-P—)
4(5+ 5—)Zx(q» +p» +q» +pox

—
o (5++5—)Z~(qi&qox+ p»p»)], (2.8)

which indicates that we had better ask for the distri-
bution of (M,++M, )/2 and (M,+—M, )/2, taking

and

M, = (M.+)= —(M;)
=l»t'gI o[S (2/—»')-'2 ((q '+p '+q '+p '—2))3

iVg po 1 2 (1+n)
S+——P

2 2 1V {(1+u)' —yy'} i

1
X —+ — . (2.15)

2 e&"—i

The fluctuations are calculated as follows: One can
easily show that

((p~'q», '+ p~ "pi),')') = ((p~"qo~'+ p~'po2)')

h'= 5++t- 5"= 5+ (2.9)
= -'P), '(2 coth'-'P —1). (2.16)

because we have

)+M,++) M,—=-,'(M, ++M, )$'+-,'(M, +—M. )P"

ggo[ o $ Z (qlkq2x+ plkp2x)

+p"{-',»'S —-', Q), (q»'+ p»'
+qox'+ pox' —2) }. (2.1o)

In our problem the whole expression for the gener-
ating function can be calculated without difficulty. But
in the present paper we do not make use of it, so we
give here only the first and the second moments,
assuming a canonical distribution with the Hamiltonian
EP, (1.27). For convenience, we introduce the following
notation:

On the other hand, we know that the equalities

(pg4) =3(pp)' (qg') =3(qp)' etc. (2.17)

hold because of the Gaussian properties of the canonical
distribution for harmonic oscillators. Equations (2.16)
and (2.17) give at once

(p» q» +qlx p1x ) (p2A q» +q» pox )
= —,

' coth'-,'Pq —1. (2.18)

Further, we evidently have

—(p»q») = (q»,p», )= —(p»q») = (q»p») = z/2. (2.19)

Equations (2.17), (2.18), and (2.19) are enough to yield
the formulas for the fluctuations. For brevity we put

(Z~ J~S/2kT)(1+a+ad&, )=Pg',

(Z~Z~S/2uT)(1+ ~—~,) =P,",

2(P),'Pg")'*=(Zi JiS/kT){(1+n)' —y)P}'=Pg.

(2.11)
(p»'+q»') = (p»o+qog') =m),

(1+u)
coth-,'Pg, (2.20)

L(1+~)'—v~'3'

The well-known formulas for harmonic oscillators give
us

(Px q» +O'A p» )= (Px q» +PL pox )

(' 1 5=p.
/

-+
E 2 ee"—1 l

which shows that

(q»') =(p»') = 2(P~ /P~')' cothoP»

(p ),')=(q ),') =-', (P~'/P~")'* cothpP~

We also have evidently

(qlkq2X) (plkp2X)

(2.12)

(2.13)

(2.14)

((p»'+ qi~')') = ((po~'+ q»')') =3m~'
(2.21)

((plx~+qlx )(p» +q» )) mx
where

8g ——1+coth'-,'Pg.

Now one can easily see from Eq. (2.8) that

(exp{-,'(M,++M. )&'+-,'(M.+—M. )$"})
= exp{-,'»rgpo(S+1) $"}X[1—4guop' Q&, 2m~

+—', (o'gpop")'{P+4mqmq'+Pq[2(3m' —8q)+2m'j}
X gX'

+-,'(—,'g, p')'-,'Q (coth'-'P —1)+ 7

= exp(M. t"+ o
t"'~"+ 2 5"~'+)

From Eqs. (2.13) and (2.14), we obtain

(M,+)+(M, )=0,

with d ' and 6" defined by

6'= s(ggo)'g), (coth'-,'P),—1), (2.22)
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~-=-:(g")Z(2- -~»
2(1+n)'

= p(geo)'Zi,
(1+n)'—7~'

2(1+n)'
+

(1+ )'-v"
—1 (coth'-', Pi —1) . (2.23)

The free energy F(M,+, 3II., ) is defined by

e ' =(trace e ~'"')I'(M, +, M, ),

so that we have

F(M,+) M.—,T) = ——,'Ãzl Jl (1+n)S(S+1)

+zl JISP,{(1+ )'—~,'}

+2kTQ), log(1 —e-e")

kT
+ {-',(M,+—M,-)—M,,) '

2g I I

(2.24)

kT IM,++M.—q'+-,
l

—I+, (225)
2a' I 2 )

which is an expansion in the neighborhood of the
equilibrium values of the magnetizations

3. MAGNETIC SUSCEPTIBILITY

'I he antiferromagnet we are now considering is
magnetically anisotropic, the anisotropy being caused
not only by the antisotropic energy II„,;,, but also by
the approximate form of the Hamiltonian (1.21),
though in fact the direction of the magnetization can
be settled only by the existence of anisotropic energy.

. Thus we have two diff'erent susceptibilities X~ and X&„

the former being observed in the external field parallel
to the spontaneous magnetization, the latter in a
perpendicular field. The parallel susceptibility X„can
be calculated in two ways. In the presence of an

In Eq. (2.25) the second term is the zero-point energy
of spin waves, which has been discussed by Anderson.

The equilibrium values of the energy, the entropy,
and the specific heat are derived from Eq. (2.25) by
the standard methods. They are given by

E(T)= —ziSzl Jl (1+n)s(s+1)
+ IJlsZ {(1+ )'—~")'
+2s

l
J

l
Sgi{(1+n)'—yi, ')&(e~i' —1) ', (2.26)

S(T)= —2kgq log(1 —e e")+(2zl J
l S/T)

@PE{(]y n) —yg ) l(e~"—1) ' (2.27)

(T) =2[(zl Jls)'/»3
&&Pi,{(1+n)o—yi, }ee"(ee" 1) . (2—.28)

kT 8 1 I

log trace exp — (H' H,M ) . —(3,6)
H BII kT

Inserting Fq. (1.27), (3.6) is simplified to

kT zlJls
Lucio'(1+ n+ vo)

2kT
XL log trace exp

H, BIZ,

ggp
+pip (1+n pp))+ (Ss)'II Ij'lo . (. .7)

kT

The magnetic energy —H,M, gives simply a shift of

p= gyp(XS) "H /[s l
J

l
S(1+ +np )] o' (3.8)

to the equilibrium point of the oscillator (10), so that
the exponent of Eq. (3.7) can be brought into the
standard form by a simple canonical transformation
exp(ippip). Hence we get

k T () g2p02ÃSH, 2

Xi=
H BH, 2s

l
J

l
SkT(1+n+ y p)

$7g2~ 2

(1+n+~p)zl Jl
(3.9)

external field H„ the potential energy term,

Hi; ie=H (M++M )

H~gPop) (gi&go&+ p»p», ) (3 1)

is added to the Hamiltonian (1.27). The new Hamil-
tonian can still be brought into a diagonal form, so
that we can calculate the free energy as a function of
II„M,+, M, , and T. The second procedure is a
thermodynamical one, namely with the use of the
equilibrium conditions

BF/B(M, ++M, )=II—„ itF/8(M, + M—. ) =0 (3. .2)

Of course, this thermodynamical method is equivalent
to the first one, as one can easily see from the fact that
Hi;, id, (3.1), commutes with the Hamiltonian (1.27).

Inserting Eq. (2.25) into (3.2), we obtain

M,++M, = (4h'/kT)II. , M.+—M. =2M..
Thus we arrive at

x„=46'/kT= [(gyp)'/2kT]gg(coth'zP& —1), (3.3)

which clearly vanishes at the absolute zero.
The total magnetization in the x-direction is given

hy the operator

M*=gIJO(r. ' S*'+2&S*&) (3 4)

which is expressed in the Fourier component as

M.= gp p(IiIS) lqi p, (3.5)

using the simpliTication (1.13). The perpendicular
susceptibility X~ is obtained from the equation
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which can be written as

f'
L-, (COSXi+COSX2)]'"dXidh2

(2s)» &

(2SJ
I&~i

4. TEMPERATURE DEPENDENCE

1 t
~ p( Xg Xg)'"

g pox =Aug'p '/2SJ (310), I
cos—cos—

I
dX

(2~)» ~ E

if we neglect n relative to I and put go= i. Equation
(3.10) is exactly the same as the susceptibility x. at the
Curie point derived by Van Vleck. ' (Note that J used
in the present paper is just twice the ordinary definition
of the exchange integral. )

(4 g)

Now we turn to the discussion of the temperature
dependence of the thermodynamic quantities derived
in the previous sections. Equation (1.22) gives the
following expressions for y)!, .'

I
L3 {cos-,(Xi—X2—Xa)+cos~ (X2—Xi—Xi)

(2ir)» & ~

1. one-dimensional chain,

yi ——cos(X/2);

2. two-dimensional square lattice,

(4.1)

+cos-', (Xs—Xi—X2) )]'"dX id X&dpi

! ! L-', (co@,+ cosl,+cosl, )]&-dx,dz, dz,
(2')'& ~ &

3. NaCl-type,
py

——cos-,'A» cos2X2) (4.2)

yi ——-',
I

cos-,'(Xl—X2—X3)+cos-,'(X~—Xi—Xi)
+cos-', (X3—Xi—Xi); (4.3)

4. CsCl-type,
y~= cos-', X» cos-', ) 2 cos-,'X3,'

(2N)!4—3—2n2 —2n

n+a+r-n (P!q!r!)2

(2''It n (2iii) ( N'l
=3 '"2 '"I

I & I&~i-=o&~i i~i (4.9)

where the wave numbers are referred to the reciprocal
lattice of the sublattice, so that each component varies
independently from —m to m. Thus we can replace all
the sums over wave numbers such as (2.15), (2.22),
(2.23), (2.26), (2.27), and (2.28), by integrations over
X's, namely,

S
P&L ]=—,~ " 'L ]dr, "d~n, (4.5)

2 (2~)»

D

'r&, =—Q coshi~ (4.6)

used by Anderson, but it turns out that except for
Eq. (4.4) they are equivalent to (4.6), because of the
relations,

~n( ))2n
I

cos—
I

dX
2s.&, 4 2i

1 p (2iip
(COSA)'"dX= 2-'"I I, (4.7)

where a=i, 2, 3 denotes the dimensionality of the
lattice. In Eq. (4.3) 'tile Rxes Rle llot ol'tllogollal, so tllRt
it is sometimes more convenient to change them into
orthogonal coordinates defined by Xi'=-', (4+4—4),
etc., the integration domain being changed at the same
time into the first Brillouin zone of the face-centered
cubic systcIQ whose volume ls cqUal to 4% . At, first
sight Eqs. (4.1)-(4.4) look different from the simple
foI'irlUla

HOWCVC1 q

1 ! I' r( xi x2 x3)'"
I

cos —cos —cos —
I

dliidlimdli3(2)~» E 2 2

(2th !
2—

RnI

(ni (4.10)

e=I T/SI JIS,
M„=XglioS/2,

(4.11)

(4.12)

and for the averages over wave number space we Use

is not equal to (4.9). Equations (4.7)—(4.10) are useful
for the numerical evaluation of integrals.

At absolute zero, x„, 5(T), and C(T) are zero, as
they should be, while E, M„A", and x~ are finite.
But in the absence of the anisotropy E, M, diverges
for the one-dimensional case (D=1), and 6" diverges
both for a=I, and D=2. As will be seen later, this
divergent character is emphasized more at finite temper-
atures, where M, and x„(d') diverge for D=1, 2, and
6"for all cases. These divergent quantities remain finite
if we assume a 6nite anisotropy K, which may be much
smaller ln magnitude than the exchange constant J.
Therefore, in the following we may neglect E for
convergent integrals, while the divergent integrals are
evaluated with finite E((SIJI; but in some cases the
convcrgcncc thUs attained ls to bc consldelcd as
superficial, as will be discussed in the next section.

For brevity we use the following notation:
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the symbol [ ]A, , for example,

2
L(1—v~')']A. =—Z(1—vi')'"" g

(1—v~')'(d~)
(2pr)n&,

or

[(1-»')-:(ee"-1)-];
1

(1—yg') &(ee"—1) '(dX)n. (4.13)
(2pr)n&

with
Ag= 2/pr

A, = 2/pr

Ap ——3&/n'

A4 ——4/n'

for the linear chain,

for the quadratic layer,
for the NaCl-type,
for the CsCl-type.

For example, Ez is calculated as follows:

Er/Xe~ J~S=[(1—yq')'*(ee" —1) ']A„

—[g(ex/P 1)
—1]„

00

=Ag X P e
—""lean—'dX

(4.22)

For convenience we rewrite here the thermodynamic
quantities derived in the preceding sections in the
following forms:

and Msv.'
n=1

=A )I'(D+1)t'(D+ 1)8 +', (4.23)

L'= Ep+Er,

Ep= —-', Sz
~
J

~
S{S+1—[(1—y),') '*]g,}, (4.14)

~sr = —[(1—y~') —
(e &—1)—']A~

M /S
Er= Sz

~

J
~
S[(1 y&P)&(e» 1)—']„

S,=zk{-[log(1—e-e )],„
+8 'L(1—v~')*'(e'" —1)]A ~ (4 1~)

=A P ~e-""'9,n 'dX-
n=i

=AiI'(D —1){(D—1)8n '. (4.24)

Cz =Nk8 '[(1 y&,')e—»(e» 1) ']—
A

Me ——Mep+Mer,

(4.16) In Kqs. (4.23) and (4.24), { means Riemann's zeta-
function, whose values are

= —(M /S)L(1+ ){(1+ )'—7'} '(e'"—1) '],
x&i = (ft/g pp /4kT) [coth'-,' P~—1]A„,

gll g Il+ g ll

(4.18)

(1+n)'
ap" ———,'at'g'~p'

(1+n)' —yg' —Av

(4.19)

2(1+n)'
, l.

(1+n)'—v~'

Mep=Mw[1+~rS '{1—(1+n)[{(1+n)'
—y~'} ']A.}], (4.17)

1(2)= m'/6, {(3)= 1.202, {(4) = m.4/90.

The results of the integrations are summarized in
Table I, where the integrals involved in Ep, Mgp, and
6p" are calculated numerically with use of formulas
(4.7)—(4.10). Some of the numerical results have been
borrowed from Anderson's work. The integrals which
are divergent for 0,=0 are evaluated crudely only to
the leading terms.

Leaving to the next section the discussions on the
nature of the divergences in the limit of vanishing
anisotropy, we shall now make some comments on the
results. The most interesting point is the temperature
dependence of x», which is given by

&& (coth'-,'P&, —1)
- Av

4''pp' jt' kT
X»

IS «Iris)
(4.2S)

yg'= 1—X' (4.20)

with normalization factors properly chosen for the
integrals. The approximation formula is

[f(yg')]A„A) t f(1—X')Xn 'A (4.21)

At temperatures lower than the order of magnitude
s

~
J

~
S/k, the low frequency spin waves are most

important, so that we may approximate in the custom-
ary way the frequency distribution of the spin waves
by retaining the first-square term in the wave number
X in the expansion of p&. Thus, for all types of crystals
we can put

The perpendicular susceptibility, p~, has been predicted
to be independent of temperature by Kq. (3.9). There-
fore, the decrease of X~—X1& with temperature is
expected to be proportional to F', a fact which has
been observed by GriAel and Stout" for the case of
MnFp (see Fig. 1).

It is interesting to note that our theoretical formulas
are consistent with experimental data on this crystal.
From Kqs. (3.10) and (4.25) we obtain

1 d(x« —x,) 8 p k )'1
(4.26)

dT 3(z~s~) S'
"M. Grill and J. W. Stout, J. Chem. Phys. 18, 1455 (1950).
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TAaLE I. Thermodynamical quantities of antiferrornagnets
calculated by the spin-wave theory.

mation Eq. (4.21) is replaced by

Linear chain Quadratic layer NaC1-type CsC1-type (4.26)
Ep

(N/2)zj J jS

Ez
Nzj JjS

ST
Nk

Cz
Nk

Msp

Mco/S

Mew

M00/S

Ng2ppp
XII

S+0.363'

2—mg3

S+/+(1/2~)
)(log2a

(2a)-&8

4.808,

7.212
8&

14.424

33/2—m'8'
15

33/24
~sgp

45

33/P4

15

4m~
g4

15

16—m 283
45

—m 283
16
15

S —0.197a S —0.078" S—0.075b

—log—8

—log—82

g2
2

3kg3

gp
2
3

4
|tp

3

S+0.158' S+0.097" 5+0.073b

with a cut-off wave number X„. Equation (4.26) pre-
dicts the behavior of x„ for kT s

j
J

~

S. Of course, this
kind of treatment cannot be trusted too much, but it
indicates that the increase of y» will be slower than
proportionality to T' as the temperature goes higher.
Such a trend has also been observed for MnF2."

The temperature dependence of the quantities listed
in Table I is derived on the assumption that 2(z j

J
j K) ~S

))kT. At low temperatures, where kT+2(s~ JjK)~S,
all quantities, except 0", are expressed in terms of
functions G„, defined by

8g II

N gyps

8PTll

Ng2pp2

1 1—log-
7l 2rx

finite 0.396b

3'/2 1 4
gs — 82

1r (2')'k 7r .(2~)k

I'(v+-', ) ~ (28')"
G„,(8') = Q K.(e/8'),

r(-', ) ~-i el+"

where 0' means

(4.27)

a Calculated by Anderson.
b Calculated by the present author.

so that the Curie point T, is correlated with the slope
of the plot p~ —p„versls T', by the equation

(4.28)

and E„means the Bessel functions of the second kind
with imaginary arguments. For example, we have

8 (S+1)' 1 d(x~~ xd
T

27 S xi dT'

if the Van Vleck formula'

T,=-,', (si Jj/k)S(S+1)

(4.27)

E=EO+SsjJ jSA~2n+'(K/sj Jj)&~n+"

X fGD, $(D—1)(8 )+Go, $(D~o(8 )},
F=EO+Xsj J jSA)D '2n+'

X (K/sj JI)" "'Go. :&D+n(8') &,

Mar = ——,'A'gpo(1+ u)A (2n '

is assumed. The data of Fig. 1 gives sj J~/k=21. 2'K
and T,=62.'K, while the specific heat anomaly has
been observed at 66.5'K. (If the corrected formula for
x~, Eq. (6.17), is used instead of (3.10), one obtains
sj Jj/k=24. 2'K and T,=71'K.) According to Stout"
the experimental data on the FeF2 crystal gives
T,=113'K calculated by Eq. (4.27). Experimentally
the Curie point of this crystal is not known accurately,
but from the magnetic data it is guessed to be around
80'K. These quantitative comparisons, however, are
not to be emphasized too much, because the crystal
structures and probably the interactions of the magnetic
ions in these crystals are different from the simple
models we have assumed in this paper.

Equation (4.25) is valid for the temperature range
where kT«sj JjS. At higher temperatures, our simple
treatment will be unsatisfactory because the higher
terms of the original Hamiltonian will become im-

portant. However, if we neglect such complications and
assume that the frequency spectrum of the spin waves
is approximated by something like the Debye model of
lattice vibrations, we expect that +11 will be proportional
to T in the higher temperature regions. In this approxi-

'~ Private communication.

X (K/s I
JI)" "Go. &&n—»(8')

'&g'I O'A iD '2-'(K/sl Jl) -"G
2, .(n+n(8')/8'. -

At very low temperatures, Eq. (4.27) is approximated
by

G„.(8') -'I'( +-') (28') "+& exp( —1/8'),

which gives exponential decreases for all the quantities.
Ar" cannot be expressed by the function (4.27), but it
behaves in the same way at very low temperatures.

5. DISCUSSIONS ON THE NATURE OF
THE DIVERGENCE

Many of the quantities listed in Table I will diverge
in the limit of vanishing anisotropy. These divergences
are very important, because some of them are usually
interpreted as proof that particular types of lattices
cannot be ordered. In Table I one can see at once
that the divergent character (as n~0) increases as one
goes downward in a column and leftward in a line.

The situation is almost the same also in the case of
the spin-wave theory of ferromagnets, where M,
diverges for D=1 and 2, and its fluctuation diverges
for all cases. It seems that there is no essential diR'erence
between the two, and the spin-wave theory can be
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applied to antiferromagnetic cases with almost the
same rigor as to ferromagnetic cases, though the
approximation is certainly somewhat worse for the
former.

The divergence of the fluctuations needs to be more
carefully examined. As a matter of fact, they are of the
order of S+~ (D= 1, 2, 3), X being the total number of
spins under consideration. "This estimation is obtained
from Eq. (4.19) by the approximation

) kT y' 1 14
I/

) [
2 g PI (5.1)

Es~ J~S) (2~)' (l,'+ +ln')'

where L, is the length of the crystal (which is supposed
for simplicity to be a cube) in a proper unit, and the
sum is over integral values of l&, lD, except l&=
= l~ =O. The same result is obtained also for ferro-
magnetics, where the fluctuation vanishes at T=O.

The extremely large fluctuations for one- and two-
dimensional cases may be regarded as strong indications
that any ordering, either ferromagnetic or antiferro-
magnetic, is impossible in these cases, in agreement
with the customary interpretation of the divergence of
M, .

For three-dimensional lattices, the spin-wave theory
gave finite magnetizations. Their fluctuations are of
the order of X+', which is sufficiently small to define
sharp distributions. However, these fluctuations are
abnormal in the sense that they are larger than 0(Ã),
which should be expected if the magnetizations can
really be regarded as thermodynamical variables. Of
course, any small anisotropy can change them to
normal. But, this seems an important point of the
spin-wave theory, so that we shall discuss it a little
further.

With regard to this point, one may take one of the
following points of view:

(a) The abnormal fluctuations are physically signifi-
cant, and they are probably related to the free rotation
of magnetization vectors. Therefore it is necessary to
take account of anisotropy in order to obtain results
which are consistent with the thermodynamic point of
view. If we do this, the customary spin-wave theory
will give good approximations to reality.

(b) The fluctuations should be normal, even in the
absence of any anisotropy, so that rigorous calculations
will remove the difficulty of abnormal fluctuations if
we could take into consideration the higher terms in
the Hamiltonian which are omitted in the customary
formulation of the spin-wave theory.

If one takes the viewpoint (a), he can derive all the
thermodynamical quantities of ferromagnets and anti-
ferromagnets without any divergence difficulty if an
anisotropy is assumed, although the results apply only
to very low temperatures. The calculation of Holstein
and PrimakoG' is an example, which gave the suscepti-

"This fact was pointed out to the author by P. W. Anderson.
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FIG. 1. Molal magnetic anisotropy p*—y„of MnF2.
Experimental data by Grill and Stout.

f This point will be discussed in detail in a following paper from
the viewpoint of variational principle.

bility (which is proportional to the fluctuation of the
magnetization) of ferromagnets taking into account the
dipolar interactions.

However, the anisotropy energy is usually supposed
to be so small that it can be treated by a sort of pertur-
bation method. In other words, the spins are aligned
by the exchange forces, and the resultant magnetization
vector is rotating in the field of the anisotropic force
and of the external forces. As a matter of fact, the
anisotropy field is a free energy field rather than a
simple potential-energy field. All the same, this picture
assumes that the magnetization vector is a well-defined
quantity with a normal fluctuation. Therefore it seems
to be inconsistent with the viewpoint (a) and must be
justified, if possible, from the viewpoint (b).

At present we are not ready to decide between these
two viewpoints, because, in order to do this, we have
to find some mathematical device to deal with the
troublesome nonquadratic terms which represent the
interaction between the spin waves. j' Unfortunately, the
usual perturbation method does not work well for this

purpose, although it can give useful results in some
cases.

It might be worth while to note here the following
remarks. If no anisotropy is present, the spin wave of
infinite wavelength has a quantum of energy equal to
zero, a fact which corresponds to the free rotation of all

spins in phase. Consequently the number of quanta
belonging to this oscillator is primarily indefinite. This
indeterminism, however, has been removed in the
usual spin-wave theory, in which the sums over a
wave number of the oscillators are calculated assuming
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the quantum number of the spin wave with infinite
wavelength always to be zero, so that the sums are
replaced by the integrals. (Otherwise we should obtain,
for instance, any value of the magnetization ranging
from M, to —~.) Therefore the divergence in the
spin-wave theory has nothing to do with the free
rotation of the magnetization vectors. Thus it seems
probable that the abnormal Quctuations of three-
dimensional spin lattices should be attributed to the
approximate nature of the spin-wave method.

Evidently the approximation (1.13) makes it possible
for any spin wave to assume any large number of
quanta, so that the distribution probability of M, will
have too large a tail towards —~, which may result
in an overestimation of the Quctuations. This is also
responsible for the failure of the perturbation method,
as will be seen in the next section.

The assumption, that e&=0 for X=O, may possibly
play an important role in any extension of the spin-wave
theory to include the nonquadratic terms in the Hamil-
tonian. In such a theory, the spin waves are no longer
independent, and it may happen that the inhibition
introduced by this assumption will change the situation
essentially and give convergent results which are quite
normal thermodynamically, even if no anisotropy is
assumed. Thus, refined calculations on this assumption
may give magnetizations equal to zero for D=1 and
presumably for D=2, finite magnetizations for D=3,
and normal fluctuations for all cases.

These considerations seem to throw some doubt on
the validity of the results obtained by the spin-wave
theory assuming a finite anisotropy. The fluctuations
of the magnetizations can be very diferent from their
rigorous values, at least when the actual anisotropy is
small.

Our simple results show that even the one-dimen-
sional lattice is antiferromagnetic if the anisotropy is
su%ciently large. The same is true also for the ferro-
magnetic case. This is, of course, very improbable,
because a linear chain can be neither ferromagnetic nor
antiferromagnetic if the spins are replaced by a semi-
classical Ising model, which corresponds to the quan-
tum-mechanical model where the anisotropy is ex-
tremely large. The apparent failure of the spin-wave
theory in this case can easily be traced. This is also
caused by the omission of higher order terms, the most
important term in this case being the last term of
Eq. (1.26).

According to the spin-wave theory, a two-dimen-
sional lattice is ordered at very low temperatures if a
finite anisotropy is present. Although this is not
unreasonable, we cannot have much confidence in it.
Similarly for the one-dimensional case, the last term
of Eq. (1.26) will diminish the tendency of ordering.
On the other hand, other higher terms may result in
rapid convergence of the magnetizations and the
fluctuation. Thus the problem of two-dimensional
ordering seems still to be an open question.

As we have seen in the above, we have many questions
left for the future which should be solved before we
can find how far the spin-wave theory can give trust-
worthy results. At present we only assume that the
convergent results of the spin-wave theory may be
physically significant and will be good approximations
if they are continuous in the anisotropy parameter.

6. SECOND APPROXIMATIONS

In the preceding section, we have emphasized the
importance of higher terms, in the Hamiltonian, which
are omitted in the customary formulation of spin-wave
theories. They should be included in any satisfactory
improvement of the theories. However, it turns out
that this cannot be done usually with the perturbation
method. Leaving detailed investigations about this
point to some other occasion, we shall examine here,
some of the results obtained by the application of
perturbation theory to our problem. In such applica-
tions we suer very often from divergence difficulties,
which limit the usefulness of the method. This comes
from the fact that our unperturbed Hamiltonian (1.12)
is not good enough to give unperturbed wave functions
sufficiently concentrated in a region which corresponds
to small numbers of spin deviations. Therefore we feel

that we need a more refined approach than the ordinary
perturbation methods. This is also true even for ferro-

magnetic cases if one wants to improve the spin-wave

theory to apply a little higher temperature.
However, the ordinary perturbation method can

give convergent results in some cases, which may be
supposed physically significant. So it seems worth

while to try higher approximations in this frame. In
the following we shall confine ourselves to discussions

of the energy and the perpendicular susceptibility z~.
The classical treatment of spins. in the limit of S~~

will be called the zeroth approximation. The first

approximation is the approach by the spin-wave theory
on the basis of the simpliimd Hamiltonian (1.20).
Taking account of some of the higher terms omitted in

the first approximation and applying the first-order

perturbation theory, we may obtain the second approx-
imation, provided. that the results are convergent. This
successive approximation is an expansion in powers of
1/S, but it cannot be applied always, because it often

happens that the results are divergent. Therefore it
has only limited applications depending on the dimen-

sionality and also on the nature of the physical quantity
in question.

Our perturbation Hamiltonian is obtained from

Eq. (1.12), the fourth-order terms of which are

H, '=f~) J(SQ&,I &(n;a;bI+aejb~+a;*N, bj+a, b~*mI)

(6.1)

Now, let us introduce the Fourier components of the
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creation and annihilation operators by TABLE II. Ground-state energies of antiferromagnets.

ay= (2/jV)'*pa, e*"'= ', (X—,i,+X 2), ),

ai,*——(2/S) i+a,*e '"—& = '(X-,i,*+X2i,*)
(6.2)

b&, (2/——Ã)'*+bye ""—'=','(X—ii, X—2i),

b*=(2/V)lg b*e'"=-,'(X *—X *),

Lattice

Linear chain
Quadratic layer
NaCl-type
CsCl-type

~zero/(Nz f J ( S/2)

S+0.363+0.033S '
S+0.158+0.0062S '
S+0.097+0.0024S '
S+0.073+0.0013S '

where X~)„etc., mean

Xii ifli+2pli Xi&*=pig —2Pii, etc. , (6.3)

C= (2/&)Evi(aiba&
= (2/&)Zxi(a~*4*), (6.11)

with q's and p's defined by Eq. (1.23). In. terms of these
Fourier components Eq. (6.1) is written as

H„'=fi ~
J

~
SSQQQ +[a),*a„a„b„+a„bi,*b„b„

X+»=p+ v p

+a *a *a b *+a *b *b *b ]e'"p

—(I/&) I
~

l ZZE Za, *a„b„*b„e"' -(6.4.)
X+v=p+» p

for which we have the relation

(Ho.„)+-,2xs
~
s

~

S'
A+C=

2$sf J[S
If we assume

fi —1/4——S

(6.12)

(6.13)

The unperturbed Hamiltonian H' is that of Eq. (1.20),
with which the averages of operators are defined by

(A) = trace[exp( —H'/kT) A]/
traceLexp( —H'/kT)]. (6.5)

For our calculations the following averages are useful:

(ai*u),)=(bi*»& = 4(pi~'+ pii'+ q i'+ p ),
'—2)

(a~*bi) = (ada*) =0,

(ai') =(bi') =(ai*')=(»*'&=o

(ad»& =(u&,*bi*)= 4(ply plX g2X'+ p2i').

(6.6a)

(6.6b)
'

(6.6c)

(6.6d)

Now, to the first order of H, ', the partition function
can be written as

e ~~" =trace[exp( H /kT)(1 H—, '/kT)5—
= [trace(exp( —H'/kT))](1 —(H, ')/kT), (6.7)

and the free energy as

F/kT= logLt—race(exp( H'/kT))] (—H, ')/kT —(6.8).

in Eq. (6.9) and insert the expressions of Eo and Fr
given in Table I, we obtain the energy in the second
approximation as

E= ——2Xs
i
J

i
S(S+co+-',co'S-')

+1Vs
i
I

i
S(1+22DcoS ')cion+', -(6.14)

where co and c& are easily found from Table I. The
corrected formulas for the ground-state energies are
shown in Table II. One can see that the first approxima-
tion obtained from the Anderson's spin-wave theory is
very good as far as the zero-point energies are concerned.
It should be remarked that if we abandon the assump-
tion (6.13) using instead, for instance, the polynomial
expression of fs(n), Eq. (1.14), the last term of Eq.
(6.9) diverges always for the one-dimensional case and
for the two-dimensional case except at absolute zero,
unless a certain anisotropy is assumed.

Finally we shall examine the perpendicular suscepti-
bility g~ a little further than the first approximation.
In this case Eq. (3.4) should be replaced by

M =M'+M',
where

M '=gyp(SS)~qio

The derivation of (6.8) from (6.7) is far from satis-
factory from the mathematical point of view, but
nevertheless Eq. (6.8) is rigorous in the first order of
H, '. Noticing that all products of two operators, such
as usa„, ahab„, b),b„, aq*o,„, and so on, have averages
equal to zero if the wave number X and p are diGerent,
we find easily that

M,'= gpo(2S)'fiI Q, (n,a,+a, *n,)
+22(nA+ba*n2)] (6 15)

so that the partition function in the presence of external
field IJ is written as(H..') = —-', Ã&~ J~ (A+C)'+S

~

J
~
(1+4fiS)AC, (6.9)

which is correct to O(1V). In Eq. (6.9), A and C are
defined by

trace/exp{ —(H' H,M '+H' H,M,)/k T—)]-
= traceLexp{ —(H' HM ')/kT) ]—

{1 (H')/kT+(H, M, ')/—kT)A = (2/1V)gi(up*a), )
=(2P')Z (»*b &

=S/M„—M,)/M, (6.10) to the first order of H' and M,'. In terms of the Fourier
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components (6.2), Eq. (6.15) is written as

M.'= —',ggo(2S) &f~(2/iV) lggg[aq*a„a„
h, =p+ v

+a„*a„*agb),*b„b„+b„~b„*byj. (6.16)

Now, the external field H causes the shift of equi-
librium position of the oscillator 10 by the amount e,
Eq. (3.8). Considering this, we easily see that

(~*')= lf gi o(4S/&)'2{(ao+ao*)Z(a~*a~)
+(bo+bo*)Z(b), *b))),

H (M )= 2fygpoH (ScV)'Ao
=4y, s~ J~Ao'

and that the part of H, ' Eq. (6.4), which depends on
the external field H, is given by

(H,„')= —os
i
J

i (1 4fiS) (A—+C)c'+

Thus the correction F' to the free energy is obtained as

P= ——,'«~S~ {(1+4fS)A+(1—4f,S)C}.o

which is simplified to

p= —
s~ J ~Coo

if the assumption (6.13) is made. Hence, with use of

Eqs. (6.10), (6.11), (6.12), and Table I, we arrive at the
corrected expression of

x = g~o(1 —co'S ' —cg'S '0'+cgS—'tt4) (6.17)

where the constants are

co' ——0.127, cr' ——3~/2, c~——34'/l5 for NaCl-type,

alld

co'=0.112, c~'=2/3, cq=4or'/15 for CsCl-type.

The result (6.17) is of some interest. Experimentally,
Griffel and Stout" have shown for MnF~ that y~ de-
creases slowly at low temperatures with increasing tern-

perature, while theoretical investigations seem to sug-

gest that the susceptibility at the Curie point will be
somewhat lower than the value predicted by Van Vleck
theory. Equation (6.17) shows, in agreement with this,
that x~ is very near to the value given by the Van
Vleck theory at absolute zero, and that it decreases
with increasing temperature.
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