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TABLE I. Data regarding narrow angle pairs.

Event

Mean scattermg
angle in degrees

ngle between per 100 microns
tracks in Track Track
degrees Ck Cm

Energy of electrons in Mev
Cg Ca Total

Pr~ 0.30+0.06 0.78 0.14 32 ~8 173+25 205 +39
Pr2 6.3 +0.3 0.21 0.30 118&24 83 +17 201 +25
Prg 2.4 &0.5 1.25 2.78 20 +3 9+2 29 +3
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ECENTLY the nature of the Born expansions' for the case
of a nonrelativistic particle scattered by a static potential

has been clarified by Jost and Pais. ' We have supplemented this
work by establishing, for central potentials, estimates for the
radii of convergence for various energy ranges and any angular
momentum.

We consider the radial Schrodinger equation

+k2 P{~)=) V(r)y(~),
d' l(l+1)

of 4 microns from the star if the mean life is 10 '4 sec or longer. '
Examination of the two collisions described above indicates that
I'r j occurred less than 1 micron and I'r2 less than 1/2 micron from
the centers of their respective stars, which, however, would not be
incompatible with a mean life of the order of 10 '5 sec. The angle
between the electrons would be small since in the above cases the
total energy of the neutral pion is about equal to its momentum
times velocity of light. Process (ii} occurs in about 3/4 of the pion-
proton collisions, and this is again an upper limit for pion collisions
in the emulsion. Since Dalitz' has calculated that 1 out of 80
neutral pions should decay into two electrons and a gamma-ray,
it would be expected that at most about 1 pion collision out of 100
in the emulsion would be associated with a pair of fast electrons.

While electron pairs produced through process (i) would lead to
close angular correlation of the tracks, the expected frequency is
about 20 times less than measured. On the other hand, although
through process (ii) the expected frequency of pairs is of the right
order of magnitude, the mean life of the neutral pion would have
to be of the order of 10 "sec or less.
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St—1—=e~'"~—1 occurs in the three-dimensional scattering ampli-
tude; S~ is a scattering matrix element. The iteration of the in-
tegral equation equivalent to {1)and (2) leads to a power series
in ) for tang&, and similarly (1) and (2') yield a series for St.

Expansion of tang~. '—For a given V(r) let Xz be that value of

~ h~ up to which this expansion converges. One can then show
from the integral equation that for all potentials

k=0: Pz r V r dr&~2l+1;

All k: ) rf, r I V(r)
~
dr & t~,

l 0 1 2 3 large

1 2.344 3.339 4.198 1 157.(2l+1)5

(3)

8) pl=0:, 0, (6)

if V(r) does not change sign {otherwise the inequality may go the
other way!); and for all potentials

Bhyl&1:, &0, (7)

i.e., ) p decreases as the centrifugal barrier is being overcome.
For large l,

BXp

a(k'), s I V(r,) I'

At high energies and for any l

Xr f V(r)dr =srk+O(k),

(8)

(9)

provided the integral is neither zero nor infinite; for singular
potentials with lim„or

~
V(r) ~

=P,

Xz P =~k/logk+0(k/logk). (10)

Expansion of St=—e '"':—Calling the radius of convergence ) s,
we find

k=0: Xsf,"r( V(r) (dr=Xrf, "r( V(r) (Idr &21+1;

All k: Xsf, r[V(r)[dr&~sg,

(3')

l 0 1 2 3
si 1 2.047 2.783 3.416

large
(4I)=0.86(2l+1)&

Again the numbers are optimal. Equation (5) holds also for ) s,
but no inequality corresponding to (6) was found. For

These estimates are optimal in the sense that the right-hand sides
cannot be replaced by larger numbers. The equality signs are
approached as V(r)—+8(r—u}.

For any axed potential (3) and (4) become very conservative
for large l. The following asymptotic expression for large l is then
useful. Let r'( V(r)

~
have its maximum value at ro. Then

gVtl( )&(&+0+ & — )V(~+&)l' (R
ro V(ro) V(~ )

to within terms of order &D(l+1)j& which contain the energy
dependence. At low energies, (5) has an error of only 10—15 per-
cent for the usual potentials, even for l = 1.

As for the behavior of ) p at low energies, one can show that

where lim, A~ V(r) ~
& ~ and lim, ~'V(r)=0. The various Born

expansions of the solution of (1}diRer by the choice of boundary
conditions. 3 The following two are commonly used:

17r l7r
P(0) =0, P(r)~sin kr ——+tang~ cos kr —— for r~~; (2)

l7r St—1 . lm
$(0}=0,P(r)~sin kr ——+ . expi kp —— for r~~. (2')

2 2i 2

so that (7) and (8) hold also for Xs.
At high energies

) s/k~~, (9/)

provided I J's"V(r)dr~ & ~.
A number of properties of Born expansions have been derived,

some of which have been previously observed. 4
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(1) The expansion for tangr converges until the phase shift
corresponding to either + or —

~X~ V(r) becomes + or —s/2;
but, when ko« l+1Lo= typical dimension of V(r) g, the smallness
of

~ gt ~
compared with s./2 is not a criterion for rapid convergence

of the Born approximations.
{2) For any l, the existence of bound states implies failure of

the Born approximations at zero energy and vice versa. However,
even in the absence of bound states the Born series may diverge
at some higher energy.

(3) For /&~ 1, ) z and P z frrst decrease with increasing energy,
before frnally increasing. Both increase rapidly with /, like l(3+1).

(4) At high energies, q remains almost proportional to X up to
large values of g, so that it is very effective to expand g= tan '
(tang).

(5) Xz and Xz may differ substantially, Thus, for the n —p 'S
potential, the series for tang converges at 20 Mev and above,
while that for e""only converges above =100 Mev.

(6) For e—p scattering, the failure of the three-dimensional
Born expansion at low energies is due entirely to the S-wave, the
P-scattering being already convergent.

A detailed account, including il1ustrative examples, will be
published in the near future.

It is a pleasure to express my gratitude to Professor Niels Bohr
for the opportunity to work at his institute. I would also like to
thank Dr. Res Jost for several very helpful remarks.
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FIG. 1. Curve I: entropy S versus temperature T; curve II:
specific heat C& versus temperature T.

respectively, given by:
S 5 ~F3/p(g)

2 Fr/p(g)
g) {1a)

Tahar. H I. Calculated entropy and specific heat as functions
of the temperature.

Temp T
('K)

Entropy S Specific heat C&
(cal mole 1, deg i) (cal mole i, deg i)

20
10
8
7
6
5
4
3
2
1

0.24
0.48
0.60
0.68
0,79
0.94
1.15
1.47
2.01
2.96

0.50
0.98
1.20
1.36
1.56
1.82
2.18
2.68
3.38
4.36

0.48
0.96
1.16
1.28
1.44
1.64
1.86
2.12
2.38
2.68
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&HE formulas for the temperature dependence of viscosity,
speci6c heat, and thermal conductivity of liquid He' were

given by Singwi and Kothari' and later by other investigators, ' '
on the assumption that the elementary excitations of He' are of
the Fermi-Dirac type. This viewpoint has been confirmed by the
experiments of Weinstock, Osborne, and Abraham4 on the tem-
perature variation of viscosity of pure liquid He'. We, here, at-
tempt to explain the entropy of liquid He', as calculated by Abra-
ham et at. ,' from their vapor pressure measurements, We have also
calculated the specific heat of He' for which no experimental data
are yet available.

The degeneracy temperature of liquid He' is about 5'K. In
the temperature range, so far investigated experimentally, He' is
partially degenerate and, therefore, one has to use the exact
rather than the asymptotic formulas for the thermodynamic
quantities. For a system of particles, obeying F—D statistics, it
can easily be shown that the entropy and the specific heat are,

and
SjE=4.93(kTjap},

C,jR=4.93(kTjap),

(1b}

{2b)

where ep, the Fermi energy, is given by

eo
—(3/~) 2I3/g2 @

2(s/ gras/ s (3)

p is the density of liquid He' and m is the mass of an Hee atom.
Using (1a) and (2a) we have calculated the entropy and the

specific heat of liquid He' for various temperatures and the results
are given in Table I and also shown graphically in Fig. 1. The
density~ of liquid He' was taken as 0.08 gjcc at O'K. For a given
value of g, the temperature was calculated from the relation

l(epj&T)"'=F i (g),

Lace Eqs. (1—11), reference 6g. We have also plotted in Fig. 1

the entropy values given by Abraham et al. ,' to which the nuclear
spin entropy E log2 has been added. It will be seen from Fig. 1

that the experimental curve for entropy, in the entire temperature
range from 1'K to 2.5 K, lies very close to the theoretical curve,
calculated on the basis of an ideal F—D gas. It is not surprising
that liquid He' behaves more like an ideal F—D gas than like a
liquid because of its high zero-point energy.

No experimental data are available below 1'K. The experi-
mental curve, however, shows a strong tendency to approach a
constant value as T~O; the extrapolatal value of the entropy is
1.8 cal mole ', deg ', at O'K. This has led Abraham and co-

and
C„15-', F3/o(g) 9 Fr/g{g)

E. 4 Fr/2{g) 4 d—F (.)
where FI,(g) are the well-known F—D functions and g is the
degeneracy parameter. Using the asymptotic expansions of Fk(g)
for large values of g (i.e., kT((ep), as given by McDougall and
Stoner, ' it can easily be shown that


