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FIG. 1. Power spectra of temperature fluctuations.

The theory of contact noise that we are proposing is based on
the idea that temperature Quctuations in the "neighborhood" of
the contact are the source of the contact noise.

In order to illustrate this idea we consider a P—S junction in,
say, germanium and assume that the "neighborhood" whose
temperature controls the current extends a distance l each side of
the center of the junction. Later we use a weighting factor to
decrease the influence of regions further away from the junction
in a continuous manner. The assumption of a finite uniform "neigh-
borhood" is considerably simpler to treat mathematically and
illustrates the features of the theory.

Considering a Quctuation AT in the temperature of the "neigh-
borhood, " the current is:

i=8((T)) exp{—E/Lk(T)(1+AT/(T))]}; (2)

Lwe neglect in this note temperature Quctuation effects in
B((T))=EL1—exp( —eV/k(T))$ —they can be shown to be small
compared to the effects in exp( —E/kT)].

Expanding the exponential we have:

hi =i—(i)= (i)Ed T/(k(T)'). (3)
We can write down the total fluctuations in the current, using the
general result that the temperature Quctuations of a body of
thermal capacity C in contact with a heat reservoir are given by
the expression

(~T'&= k&T)'/C. (4)

For our problem C=CvAl, where Cv is the specific heat of the
material, and A is the cross-sectional area of the junction. Then:

(ni') (i)'Ee/(k(=T)'CvA/). (5)

This result is in qualitative agreement with certain character-
istics of contact noise: (1) The noise power is proportional to the
square of the average current, (2) the noise is not strongly tem-
perature dependent, (3) point contact rectifiers and transistors
are noiser than broad area devices.

To investigate the power spectrum of the noise we 6rst 6nd the
correlation function of the current and then the power spectrum:

(~i(0)t'ai(t) ) = P(i)sE /(ki(T)4) ](nT(0)6 T(t) ),
G;(f) = P(i)'E'/(k'(T)4)]sr(f),

Sr(f) =4J (cos2irft)(ttT(0)nT(t}}dt. (6)

The power spectrum of T is that of a diffusion mechanism since
heat Qow is basically a diffusion process. A one-dimensional heat

Qow seems appropriate since heat Qow to and .from the "neigh-
borhood" will occur primarily within the sample.

The power spectrum of the one-dimensional diffusion mecha-
nism has been obtained by McFarlane' and Miller' in regard to a
theory of contact noise based on density Quctuations of ions near
the contact. The corresponding expression for the power spectrum
of the temperature Quctuations is:

k(T)2
Sr(x) = {1—exp( —x&) Lcosx&+sinx&]), (7)

CvA/&&

where x=iu/ceo, ieo=2D/fe, D=E/Cv, and E is the coefficient of
heat Qow. The spectrum is plotted in Fig. 1.

An important characteristic of this theory is that the turnover
frequency cop is not strongly temperature dependent. The param-
eter l is involved in cop and also in the magnitude of the noise
LEq. (7)] making an internal check of the theory possible.

Weighing the effect of a local temperature Quctuation AT(y) at
a distance y from the center of the junction by an exponential
factor exp( —y/h) the power spectrum is:

k(T)' 1

CrAk2x x&j1+2x+2x&]' (8)

where x=co/cop, orp=2D/h', and we have used mathematical
results of Miller. ' ST2(x) and the characteristic 1/f spectrum of
coritact noise are plotted on Fig. 1 and examination shows that
ST2 approximates a 1/f law within +3 db over nearly five decades.

A more detailed account of this theory is under preparation
for publication.
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~HE method, developed by Riesz, of solving the hyperbolic
equation by the analytical continuation of an integral

which is an analytic function of an arbitrary parameter a has been
applied to different problems in electrodynamics by various au-
thors. ' 4 Fremberg' uses a definition for the Riesz potential which
is a generalization of the Maxwell potential in the n-plane. The
equivalence of this de6nition and the X-limiting process has been
established by Ma. ' Auluck and Kothari4 use a modi6ed definition
for the Riesz potential and have shown that it is a generalization
of the Wentzel potential in the ck.-plane. The purpose of the present
note is to show that in any problem the use of the modified defini-
tion of Auluck and Kothari is equivalent to assuming a finite
rest mass f~ the photon and finally letting it tend to zero. This
method of assuming a 6nite rest mass for the photon has been
widely used in present day electrodynamics to avoid certain infra-
red divergences. There the rest mass is introduced arbitrarily.
This unphysical assumption can, it seems, be justified by the fact
that one would get the same results using consistently the ana-
lytical continuation method. However, in any problem it is
simpler to introduce the mass directly.

We define the metric tensor g„„as gpp
——1, g» ——g» ——g» ———1;

g„„=0(r(4/v). The velocity of light is taken as unity. The scalar
product of two four-vectors'A„and B„is denoted by JABj.The
(positive) length of the space part of A„ is written as ~A ~.

The Riesz potential at any point x due to a point electron mov-
ing with a velocity 8„is defined as LEqs. (6) and (11) of I]

A„e(e}= fI(a)e/2ss J J k ~ sinLk, x s']8„'d'kdr', —(1)
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where

H( )= 2

i'(~/2) &[i—(~/2) 7
r is the proper time of the electron, and the domain of
tion, D, is I kkj~~ 0, kp&0. It can be shown that A„{x)
the following relations:

g a(x) A a+s(x)

BA„(x)/8x„=—eS {x—s),
where

XP(x) =H(n) J k s sin[k, x+4k.

Now consider the function

integra-
satisfies

(2)

(3)

(4)
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N order to facilitate quantitative analysis of complex' or con-
- - tinuous' p-ray spectra by means of the NaI scintillation tech-
nique, we have calculated the detailed line shape for several mono-
chromatic p-radiations. This shape will always lie between the
following extreme cases:

(1) Primary epee(: Out of ep quanta of energy p (expressed in
mc2 units) falling on a crystal of thickness L, a number npI given by

(+~/+o)=(~ /~){1—e " ) (1a)

will undergo, photoelectric absorption. p,„and p denote photo-
electric and total absorption coefhcients, both of which may be
taken from Victoreen's tables. ' On the other hand the number of
primary Compton processes is calculated using the Klein-Nishina
formula which in its original form4 gives the scattering cross sec-
tion.as a 'function of scattering angle 8.After some transformations

XP(x) =P(a) k
—s sin[kxjd4k.

D

Changing the variables of integration form kp, ki, k2, kq to k, ki, k2,
k3 where k (ko' —

I
k

I
)& and integrating over k&, k2, ks we have'

-(*)= (-)J' k=&.(*)+-i BU

where
&(x)=(&/lxl){&(xo—Ixl) —&(xo+Ixl)) (5a)

aIld

f
Jo{k(xo'—lxl )&) for xo) lxl,

U= 0 for Ixl)xo) —lxl, (sb)
—Jo{k(xos—

I
xls)&) for xo( —lxl.

Thus from (5) we see that so far as the variation of S (x) with
respect to x is concerned, it behaves like a D-function for a par-
ticle of mass k. On analytically continuing X)~(x) to +=0, it re-
duces to

Sp(x) =~(x),
i.e., the effect of analytically continuing S (x) to n=0 is to let k
tend to zero.

This shows that the Riesz potential A„(x) defined by (1)
refers to an infinite number of particles of different masses k.
Only k=0 remains when A„(x) is analytically continued to o.=0.

I would like to express my thanks to Mr. J. Hamilton for his
interest in the work. I am also thankful to the Atomic Energy
Commission of the Government of India for the award of a
scholarship.
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.'=~. + {B~./B~)d+
0

Bnc2' = BeBn,/y'2 Sin8M;

and from (1a), (1b):

(5)

(6)

Npi' Npg+ f——(p„'/p') (sl./sa) de (7)

y p, '2y'+1 Be~
BncI'= Bnc2'+ Be 2 —,=, —dg)

8I P' 2yI2 B8

where npI, 2'=number of pulses with full energy, &=y, and Brtci, 2'

=number of pulses with energies e ~ &+Be, for (6),

s =y'(1 —cos8) /[1+y(i —cos8)]& 2ps/(2 y+ 1);
for the second term in (8), e arbitrary within 0 ~& e &~4'/(4y+ 1).
The limits of the integral in (8) are determined by

costi = 1 or 3—e/y{y —e) depending on
COS82= 1—e/y{y —e} Ol —1 e~ 2v'/(2m+ 1),

for (5) and {7),respectively; (8) and (6) represent upper and lower
limits for the modified photopeaks and Compton distributions,
respectively. After computing the limits (5)+(6) and (7)+(8) for
all y-ray energies we may use them —instead of the crude assump-
tions (1) and (2)—in the treatment of secondary absorption. This
procedure leads to higher order approximations which converge
towards the true line shape. As an example, the "true" curves for
y=1 and for several crystal sizes are shown in Fig. 1 where also
the effect of a light pipe, consisting of Lucite and extending from
behind the crystal to infinity, is indicated (dotted lines). The curve

we get the number of recoil electrons as a function of their energy
e (in mc2 units):

c ~p2&Z g ~{y+1)2—y(e2+2y} bc

where 7'p2EZ= 0.232 cm ' for NaI(Tl). Since we shall confine our
considerations to p-ray energies between 0.1 and 1 Mev, the total
primary effect consists of npi pulses corresponding in amplitude
to the full quantum energy and the n;distribution with amplitudes
between zero and e, =2'/{2p+1), according to Eqs. {1a) and
(1b). This simple procedure approximates the true distribution
for geometric conditions where contributions from the absorption
of secondary quanta may be neglected (i.e., for small crystals).

(2) CompLete secondury absorption: Instead of a Compton distri-
bution, a single "photo peak" of

(2)

pulses would result from an overestimation of secondary and
higher order effects (approximation for very large crystals).

In order to calculate'the true line shape we note that the number
of secondary quanta, scattered into angles 8'. ~ 0+M and escap-
ing from the crystal, is given by an expression of the form

Bge ~p2+Z P 2 —+—,—sin28 G(8, y) sin8BP, (3)
I/i V V 7

where y'= y/[1+y(1 —cosd)] =energy oi scattered quanta.
Similarly, the number of secondary quanta which are absorbed
within the crystal is

Bn mr 'EZ y' 2 y'—+—,—sin26 H(8, y} sinBM) (4)
+p p V V 'V

where G and H are geometric factors related by

G+H=1 —e " .
For the case of a cylindrical crystal (radius E, length L), irradiated
on its axis by a well-collimated beam of p-rays, we have expressed
G and H explicitly by 8, p and p'=p, '{0,p)=total absorption
coeKcient for secondary p-rays.

If we apply the above-mentioned extreme assumptions (1) and
(2) to the treatment of secondary quanta, we obtain two limits for
the secondary contributions. Thus we get from (2) the following
modified line shape:


