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Theory of Grain Boundary Diffusion*
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The previously proposed dependence of the structure of grain boundaries upon the angle of disorientation
of the two grains is used as a basis of a quantitative consideration of diffusion along grain boundaries and in
particular of the apparent activation energies. At small angles in the dislocation range the diffusion is con-
trolled by volume diffusion mechanism. At high angles near 45' the model of a uniform grain boundary is
applicable. In the intermediate range an array of rod-like areas of distorted lattice leads to low or even nega-
tive apparent activation energies. The theory is in good agreement with experiment.

~ N the basis of an experimental study of grain
boundary diffusion Achter and the author have

suggested' the following sequence of structures of a
grain boundary. ' At small angles of disorientation 8 of
the two grains the grain boundary can be described as
an array of single dislocations as proposed by Burgers'
and quantitatively discussed by Read and Shockley. '
With increasing 0 the dislocations increase rapidly in
density and collect in bunches which are properly
described as areas of highly distorted lattice rather than
in terms of individual dislocations. The critical angle
Og at which this occurs depends upon grain orientation,
crystal structure, elastic characteristics of the material,
etc. For copper, with grains having one cubic direction
in common, the angle 8& is in the proximity of 15 de-
grees which for a face-centered cubic lattice corresponds
to an average distance between dislocations of about
two lattice constants. The rod-like regions of highly dis-
torted crystalline lattice are separated by relatively
undistorted areas. With further increase in 0 their
density increases and finally at 88 they coalesce into
Hat areas perhaps several tens or hundreds of atoms
broad. This corresponds to the "island" model pro-
posed by Mott. ' Figure 1(a) illustrates schematically
the structure of the grain boundary for the three differ-
ent ranges of orientation of the grains.

This structure of grain boundaries explains in a quali-
tative manner the absence of a preferential, rapid grain
boundary di6'usion at small angles where the average
number of neighbors and the space available for the

diffusing atom in the grain boundary are not much
diferent from the conditions inside of the grain charac-
teristic of volume diffusion. In that connection it seems
certain that the various discrepancies in experimental
volume di6'usion data' cannot be blamed on diffusion
along mosaic block boundaries since there the disorienta-
tion angle is much smaller than one degree, Only high
angle grain boundaries could act as "short circuits. "
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Grain boundary diffusion becomes observable at an
angle 8' I-Fig. 1(b)], when the rods of bunched-up
dislocations provide a sufhcient volume of disordered
crystal and the Aux of the di6using material is big
enough to compensate su%.ciently for its loss from the
grain boundary by volume diffusion into the two neigh-
boring grains. The maximum grain boundary diffusion
is reached at 45 degrees. As pointed out elsewhere' this
structure of grain boundaries is also in agreement with
the numerous measurements' of grain boundary energy
LFig. 1(c)] and with the observed anisotropy of diffu-
sion in a given boundary. 7 The purpose of this paper is
to deduce from this picture a quantitative description
of the grain boundary diftusion process and in particular
to evaluate the activation energies and their dependence
on orientation. We assume that the highly distorted
areas possess a diBusion coefficient and an activation
energy independent of orientation. The variation of the
depth of diBusion and of the apparent activation energy
with angle will follow from the inhuence of orientation
of the grains upon the structure of the grain boundary
itself.

THE DIFFUSION EQUATIOÃ

As yet no general solution of the diffusion equation
for diffusion along grain boundaries has been obtained.
Fisher' de'rived an approximate solution assuming that
(a) the grain boundary is a zone of uniform width 8

across which the concentration does not vary and (b)
the material di&using along a grain boundary (direc-
tion y) is being lost into the two grains by volume
diffusion in a direction perpendicular to the grain
boundary only (direction x). The second assumption
eliminates the possibility of calculating the shape of the
well-known "cusp" for small y, i.e., in the proximity of
the intersection of the grain boundary with the original
interface, since there the concentration gradient (and
the direction of diffusion) is approximately perpendicu-
lar to the outline of the cusp. This may seriously acct
the various attempts to estimate the ratio of the volume

6 See, for instance, Dunn, Daniels, and Bolton, Trans. Am. Inst.
Mining Met. Engrs. 188, 1245 (1950) or K. T. Aust and B.
Chalmers, Proc. Roy. Soc. (London) Z04, 359 (1950).

7 M. R. Achter and R. Smoluchowski, Phys. Rev. 83, 163 (1951).
J. C. Fisher, J. Appl. Phys. 22, 74 (1951).
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diffusion coefficient to the grain boundary diffusion
coefficient from the angle of the cusp. ' Besides this
theoretical difficulty there is also the question of an
unambiguous determination of the cusp angle as well
as the problem of anisotropy of etching, which foiled
the original efforts in that direction on the copper-
silver system. '

Fisher's approximation is satisfactory whenever the
grain boundary diffusion coefficient D& is much greater
than the volume diffusion coefficient Dy. It can be
easily shown that it is also self-consistent since the calcu-
lated concentration gradient in the grain and the
direction normal to the grain boundary make an angle

8/yii, where y& is the average depth of penetration
along the grain boundary. " For experimental reasons,

y& is usually greater than 10 ' cm while 6 is of the order
10—' cm.

model

of g.b.

Penetration
along g.b.

Fnergy

of g. b.

6
y
LL
K
~.2a ~8
(2)

T) +T2+TP

T5
T2 j /8

/g C
C

g//

t f (a)
)p/

(bl'

(c)

(a) Uniform Grain Boundary

The assumption that the grain boundary is a uniform
slab of material of high diffusivity is applicable only
at 8)8s, where the distance f between the areas of
misfit is small compared to their size b as shown in

Fig. 1(a). The average concentration C(y) in a grain
boundary at a distance y from the original interface is
then equal to C(y)b/(5+f), where C(y) is the concen-
tration in the region of misfit. The latter can be ob-
tained from the equation

Bc/Bt =Diect'c/By'+ (2/8)Di (Bc/Bx). 0=
in the grain boundary and the equation

Apparent
activation

energy

(d)

+5o

Fro. 1. Structure and properties of grain boundaries as a function
of the angle of disorientation.

both y& and xz are measurable it is probably the best
solution now available.

etc/R= Dyct'c/ctx' (2) (b) Widely Spaced Rods of Misfit

in the grains. Fisher has shown that this can be done in
an analytical manner because his original assumptions
mentioned above lead to the following additional
simpliflcations: (c) In calculating the volume diffusion
into the grains the concentration in the grain boundary
can be assumed constant and equal to its value at time
t and (d) it can be assumed that Bc/Bt=0 in the grain
boundary at time t. The solution is then of the form cic 8'c

t Bc)
,+2l —

I

ctti ByP (Bri) i =1
(6)

If the grain boundary consisted of an array of very
widely spaced rods of misfit (such as shown in region 2
of Fig. 1(a), for large 1.), then we could consider diffu-
sion along an isolated rod, diameter 2a, and neglect the
influence of neighboring rods. Instead of Eqs. (1) and
(2) we would have then

which with the boundary condition C=1 at y=0 gives

C=exp( —2tD&ty/m'9'D&ttl) erfc(x/2. D&ttt) (4).
in the rod, and

Bc 1 8 ( Bc i
wi ri ari 5 itri)

(7)

It is easily seen that condition (d) is extremely strong
and makes a solution in this form not applicable when
D~ is zero since then (4) should go over into

C=erfc(y/2D&lt*').

However, for most experimental conditions for which

' A. D. Le Claire, Phil. Mag. (7), 42, 468 (1951).
"Similar to xi=2(Dyt)" for volume diffusion.

outside of the rod, in which

r& r/a, t& tDv/a' and yi——=——y/(a'D~/Di )*' (8)

are dimensionless. The simplifying assumptions and the
boundary conditions are analogous to those for the
uniform grain boundary. Equation (7) is transformed
by C= v exp( —a' t&) into a Bessel equation of zero order,
which for the boundary conditions C=O at r&&1 for
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tI=O and C= 1 at r~= 1 for all t'j gives"

2
C(ri, ti) = 1+— exp( —u'ti)

0

Jo(uri) Vo(u) —I'o(uri) Jo(u) du
X (9)

Jo'(u)+ I'o'(u)

where Jo and I'0 are Bessel functions of first and second
kind, respectively. Similarly to (3) we put

C=g(yi, ti)4(rl tl), (10)

in which P(r&, ti) =C(ri, ti) as given by (9). Condition
(d) is expressed now as

8'c/By i'+28c/Br, =0 at ri 1, (11)——

which with (9) and (10) gives

g2@ 00

—(Sy/m') ~' exp( —u'ti)
0

dg
X (Jo'(u)+ Vo'(u)) '—=0 (12)

as an equation for P. Since ti is of the order (xz/u)'
which in most experiments is very large (10'—10'o), we
can use the corresponding series expansion" of the
integral in (12) and obtain

O'P/ByP 4y[(log—4ti 2y)—
—y (log4t, —2y) '+ ]=0, (13)

where p is Euler's constant 0.577 . Retaining only
the first term we have

Q=exp[ —2yi (log4t, —2y) &],
or finally

C= exp{—(2yDr&/aDsi)
X [log (4Drt/a') 2y] '*)P(ri, —ti). (14)

If in (12) we expand the integral in a series" valid
for small tI, we obtain

O'P/ByP &[2(~t&) '+1 —', (t&/ir)~+ ]=—0—, (1&)

and
y= exp{—y&[2(irti)

—l+1— ]l), (16)

which, retaining only the first term and putting 8 for a
in relations (8), are identical with Fisher s equations;
in particular (16) becomes the first factor of (4). This is
satisfactory since small 3& corresponds to a large a
which should approximate a uniform, flat boundary.

(c) Intermediate Case

It is clear that the assumption of a negligible influence
of neighboring rods on diffusion is not tenable when the
distance between rods L is small compared to the aver-

"H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Sohds
(Clarendon Press, Oxford, 1947).

THE APPARENT ACTIVATION ENERGY

I& is reasonable to suppose that the diffusion coeffi-
cients in the grain boundary material and in the volume
of the grain obey the usual exponential law at least in
the relatively narrow range-of temperatures in which
measurements of diffusion along individual grain
boundaries are feasible. We have thus

and
Ds Dso exp( —Qs/RT——)

Dy =Dro exp( —Qr/RT)

With increasing temperature both D~ and Dy increase;
however, since Qy)Qs, the increase of Dr is more
rapid. This has the following important consequence:
With increasing temperature the rate of loss of the
diffusing material from the grain boundary into the two
grains increases more rapidly than the increase of its
flux in the grain boundary itself. The apparent activa-

age depth of volume diffusion away from the rods.
Then the concentration of the diffusing material in the
areas between the rods increases so rapidly that soon
the majority of the flux from the rods is in the direction
perpendicular to the grain boundary rather than radial.
This concentration ridge between rods will be built up
by a volume diffusion process since in the grain bound-
ary the dislocations will then be perpendicular to the
direction of diffusion. The amount of this volume pene-
tration depends of course on the concentration at the
grain boundary and will be large for small y and small
for large y. The character of grain boundary diffusion
will therefore change from that of a uniform boundary,
near the original interface, to that typical of rod diffu-
sion for large y. It follows also that for a particular y
with increasing time the diffusion will approach that of
a uniform boundary. A complete solution of the diffu-
sion equation in the case of such an array of parallel,
equally spaced rods is obtainable but is very compli-
cated. It seemed therefore more advisable to obtain an
approximate solution which would lend itself to an
intuitive interpretation.

The solution is obtained by putting for the gradient
(&c/&r&)r, =i in Eq. (11) a linear combination of the
gradients for a single rod and for a uniform boundary.
We obtain then from Eqs. (13) and (15)

8'g/ByP 2&[2—q(log4t& —2y) '+(1—q)(irt, ) l]=0. (17)

On the basis of the preceding discussion the parameter q
should be, in general, a function of p(y), however, as it
will appear later, a constant q (i.e. , some sort of an
average over y) leads to satisfactory results. We have
thus from (17)

&=exp{—yi[4q (log4ti —2y)-'+2(1 —q)(ort&)
—**]'), (18)

where q varies from 0 for a uniform boundary to 1 for a
single rod. A theoretical interpretation of the parameter
q is given in a later section.



THEORY OF GRAI N BOUN DA R Y DIFFUSION 485

yv' ——kt exp( —Qv/RT), (21)

where k is a constant. For a "uniform" grain boundary
or "slabs" at high 8, i.e., when the islands are wide and
thin, we put x=0 in (4) and the exponent equal to a
constant. We have then, using (19),

y&' ——kt*'exp[ —(Q&——',Qv)/RT]. (22)

tion energy for grain boundary diffusion Q&, i.e., the
activation energy of the flux along the grain boundary
is therefore lower than Qs and may even become nega-
tive. This, as we will see, depends upon the structure of
the grain boundary as a function of the angle 8.

The only experimental data which are suitable for
comparison with theory were obtained by observing the
depth of penetration along individual boundaries" at
various temperatures. The experimental technique indi-
cates the limit yi, beyond which the concentration is
lower than a certain well reproducible, though only
approximately known, critical value. The apparent
activation energy is then conveniently defined by

yr' f(t, T) —e—xp( —Qg/RT), (20)

where f(t, T) is a slowly varying function of T or inde-
pendent of it. For volume diffusion we have, of course,

concentration gradient at a convex surface is greater
than at a flat surface. It follows that the loss of the
diGusing material from the grain boundary into the
grains will be more rapid for an array of rods than for a
uniform grain boundary, and thus an increase of tem-
perature will be more eGective in lowering the concen-
tration and the apparent activation energy at a bound-
ary made up of rods than at one made up of flat slabs.
If Qv) 2Q&, there will be only negative apparent acti-
vation energies, except of course, at small angles where

only the usual volume diffusion occurs. Even for
Qv(2Q& negative apparent activation energies may
occur at low T near Og. It should be noted, however,
that og) eq, and that below Og no characteristic grain
boundary diGusion is observable.

Negative apparent activation energies in diffusion
processes have been found in other instances. Barrer"
studying the flow of gases through zeolites which pro-
vide a whole network of capillary channels of molecular
size found that in certain cases an increase in tempera-
ture actually reduced the flux. This is explained as an
overcompensation of the increase of mobility of gas
molecules in the channels by a decrease of the inter-
stitial density and thus by a decrease of the concentra-

For a grain boundary described in terms of widely
separated rods we put r~=r/a=1 in (14) (thus P(r~, t~)
= 1) and equate the exponent to a constant. This gives

Angle

TABLE I. Apparent activation energies.

Structure

y~'= k[log(4Dvt/a') —2y] exp[ —(Qs —Qv)/RT], (23)

in which the influence of temperature on the first
factor is negligible compared to the exponential.
Finally in the intermediate case we have from (18)

yr2 = kt'D~Dv *[log(4Dvt/a') 2y]—
X {2qm.'(Dv~)'+(1 —q)@[log(4Dv~/a') —2y]) ', (24)

which cannot be put in form (20) valid at all tempera-
tures. - However, grain boundary diGusion experiments
usually can be made only over a rather narrow range of
temperatures, and thus in proximity of a particular
temperature T' an approximate expression is obtain-
able from (24),

yr'=(yr')'exp{[(QB gQv)+qA(Qa —Qv)]
X[R(1+qA)] '(1/T' —1/T) ), (25)

where
A = (4m.Dv't) la—'[log (4Dv't/a') —2y] '

and the prime indicates values at T'.
Equations (21), (22), (23), and (25) give thus the

apparent activation energies expressed in terms of

Q~ and Qv, Table I, for various ranges of 0 correspond-
ing to grain boundaries made up of individual disloca-
tions, rods, and slabs of distorted crystal lattice. The
low apparent activation energy for an array of rods and
especially for a single rod is due to the fact that the

~R. Flanagan and R. Smoluchowski, Bull. Am. Phys. Soc.
27, 23 (1952) and J. Appl. Phys. (to be published).

0&8&8g Dislocations
8~8g Single rods

Oz&taj&88 Array of rods
Op&8&45' Slabs

QI
QB Qv

t (QB 2Qv)+qA (QB—Qv) )(1+qA)
QB-kQv

"R.M. Barrer, Trans. Faraday Soc. 45, 358 (1949).

tion gradient of sorbate molecules. In grain boundaries
this decrease is due to an increased loss into the neigh-
boring grains.

COMPARISON WITH EXPERIMENT

As mentioned before, experimental data suitable for
comparison with theory have been recently obtained"
on grain boundary diffusion of zinc in copper. They are
reproduced schematically in Fig. 1(b) in which the
depth of penetration along grain boundaries is plotted
against angle 8 for various temperatures assuming that
the times of diGusion were so adjusted as to give the
same depth of penetration at 45'. Using Eqs. (21)—(25)
we can calculate the experimental apparent activation
energies. For small 0, that is the region of simple volume
diffusion, one obtains Q~=Qv=34, 000 cal/mole. At
45' the ratio of the penetration depths Eq. (22) gives

Q~ =Qs —-', Qv
——7500 cal/mole or Qs ——24,500 cal/mole.

In the intermediate range, that is for Og&0&0g where
the rodlike structure predominates, we obtain q as a
function of 0 from the ratio of penetrations as given by
Eq. (24). The effective diameter of the rod was put equal
to 10 ' cm. From these experimental values of q one
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TABLE II.Apparent activation energy Qz, distance between rods L,
and parameter q for various angles of disorientation.

Angle 8

q(exp) X 20'
Qg(exp) cal/mole
L(exp) A
L(th) A
q(th) X 10'
Qg(th) cal/mole

25 30' 3So 40 45'

14 4.4 0.2 0 0
1960 4050 7210 7500 7500
16 8.5 5.2 slab
10 6.8 5.1 slab
12.5 4.5 0.2 0 0
2160 4000 7200 7500 7500

can calculate now (with T' =600'C) the apparent
activation energies from the corresponding formula in
Table I. The results are given in Table II. It appears
thus that in accord with expectations the apparent
activation energy begins to drop as soon as there is not
enough distorted material available along the grain
boundary to form more or less continuous slabs. This
occurs around 35 degrees. The apparent activation
energy is measurable until it drops to such low values
at 8=0g that the volume diffusion overshadows any
preferential grain boundary penetration. It is important
to note that q is of the order 10 ' which agrees with the
assumption that the concentration between the rods is
high and that a small contribution of the rod-like
diffusion is sufficient to lower appreciably the apparent
activation energies.

Number
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30 f 40 45
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L 6 = slab @width0

FIG. 2. Density of dislocations and of rods of distorted crystal
lattice in grain boundaries as a function of the angle of disorienta-
tion.

THEORETICAL CALCULATION OF THE APPARENT
ACTIVATION ENERGIES

It should be pointed out that the experimental values
of the apparent activation energies in Table II are ob-
tained without assuming any constants (apart from a
plausible value for the effective radius of the rods) or
making any specific assumption about a probable rela-
tion between q and other quantities. Such a relationship,
however, is necessary to complete the theory. From the

previously discussed roles of L and of the average depth
of penetration it seems natural to put

q= E (L(8)—Lo) (Dv't) (26)

where L(8) is the average distance between rods as a
function of 8, Lo is the critical distance at which the
rods coalesce to form slabs and K' is a proportionality
factor. The prime indicates, as previously, the values
of E and of the diffusion coefficient at some intermedi-
ate temperature T' within the range of temperatures
over which the apparent activation energies are being
determined. In view of the dependence of q on T' rather
than on T, the latter does not enter in the derivation
of the apparent activation energy in Eq. (25). Lo is

probably of the order of a few angstroms while L(9) can
be determined from the known expression' for the
density of dislocations. For a face-centered lattice and
one common cubic direction this density is given ap-
proximately by

(27)p= (4/a) sin-', 8.

As mentioned previously, at 0&=15' the average dis-
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I
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FIG. 3. Experimental and theoretical apparent activation en-
ergies for diffusion of zinc in grain boundaries of copper as a
function of the angle of disorientation.

tance between dislocations is about two lattice con-
stants, and so we can assume that every additional
dislocation produces a rod. This is illustrated in Fig. 2

where the number of dislocations and rods per 100
lattice constants is plotted against angle 8. In this
figure the critical distance Lo has been put equal to 5A,
the slab width suggested by Fisher, ' with the result
that from about 35' on the grain boundaries consist
only of slabs. One could evaluate L(0) taking into ac-
count lattice strains and a certain degree of randomness
of the spacing of dislocations, but the results do not
seem to warrant the much more complicated assump-
tions.

It is of interest to check the validity of Eq. (26),
which ties in the apparent activation energy with the
known density of dislocations along a grain boundary.
First of all, since L is the order of 10 ' cm and (Dv'I)&

of the order 10 ', it is clear that whatever specific
assumptions we make about Lo, Eq. (26) gives the
right order of magnitude of j and thus the constant E'
is of the order unity. This is important since it indicates
that the model underlying the theoretical formulas and
the approximate solution of the diffusion equation for an
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array of rods are satisfactory within the limits of the
available experimental material. The very small values
of q obtained from experiment make the value of its
upper limit rather unimportant and it is sufficient that
for L of the order of 10 ' cm, q is of the order of one.
If we put E'=2, then the experimental values for L
shown in Table II are in good agreement with the
theoretical L calculated on the basis of Eq. (27). Con-
sequently the same applies to the calculated values of

q and Qg. The latter are compared with experiment in

Fig. 3. Of course the surprisingly good agreement with
experiment does not indicate that the specific values
assumed for the critical distances between dislocations
and between rods or the diameter of the latter are
uniquely correct. Rather it indicates that with reason-
able values for these quantities the suggested structure
of grain boundaries is in accord with experimental
observations.

In discussing the intermediate case it was pointed
out that the character of the diffusion will depend upon
time due to the increasing concentration between the
rods. As evident from Eq. (26) and Table I the ap-
parent activation energy will gradually increase with

increasing time. However, as experiment shows, this
gradual local approach to a uniform grain boundary
does not overshadow the basic role of the rod-like struc-
ture and the resulting striking variation of Qg with 0.
It is clear that the early idea that a grain boundary
varies in a gradual manner from an array of dis-

locations at small 8 to a slab of highly distorted ma-
terial at high 0, with a gradual decrease of the activation
energy from Qr to Qs, is in disagreement with experi-
mental data here discussed.

The author wishes to express his appreciation to Dr.
F. Adler and Dr. E. G. Olds for help and discussion of
some of the mathematical problems.

Note added in proof; C. S. Smith in his discussion to the paper
by H. Brooks in the 1951 A.S.M. Seminar on Metal Interfaces
points out that the difference between low angle and high angle
grain boundaries is easily seen in soap bubble models shown on

p. 167 of the above reference. In his paper Brooks indicates
schematically, in Fig. 4b, the area of plastic deformation sur-

rounding a dislocation. Formation of a rod would correspond to
merging of such areas, of neighboring dislocations, with a con-

current formation of vacancies. The stability of a regular array
of such rods is now being investigated. The author is indebted
to Dr. F. Seitz for a discussion of these matters.
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Slow Neutron Crystal Spectrometry: The Total Cross Sections of Co, Er, Hf, Ni", Ni",
Ho, and Fission Smf

S. BERNsTEIN) L. B. BQRsT)* C. P. STANFQRD) T. E. STEPHENsoN) AND J. B. DIAL
Oak Ridge Nationa/ Laboratory, Oak Ridge, Tennessee

(Received April 11, 1952)

A focusing spectrometer using a variable curvature quartz crystal has been developed for measuring
total cross sections versus energy of small samples of rare elements, separated isotopes, and radioactive
isotopes in the energy region 0.03 ev to about 1.5 ev. Samples having macroscopic cross sections from
0.1 to 1.0 square millimeters have been used as absorbers. The main features of the new instrument are
described, and performance curves are given. The instrument was first used to show that a sample of rare
earth fission product material has a resonance at an energy corresponding to the known resonance of Sm" .
Test runs were made on normal cobalt, whose total cross section was found to fit the formula, 0.(barns)
=5.0+6.1(E in ev)&. A resonance at about 1 ev, attributed in the literature to zirconium, was found to
belong to hafnium. Erbium was found to have a neutron resonance at about 0.5 ev. Ni' was found to be the
isotope primarily responsible for the anomalously high scattering cross section of normal nickel, confirming
results from neutron diffraction studies made simultaneously by other observers. Results are given also
for Ni '. Analysis of the holmium measurements give a scattering cross section that is strongly energy
dependent. Paramagnetic scattering is suggested as a possible explanation of the variation.

I. INTRODUCTION

OR the past several years we have been interested
in the measurement of total cross sections of very

small samples of elements rare in the highly pure state
and of separated stable isotopes. We have been in-

terested also in the possibility of measuring the cross

f Most of the results reported here in detail were presented
briefly at the 288th Meeting of the American Physical Society
and appeared in abstract form in the minutes of the meeting,
Phys. Rev. 75, 1302 (1949).

*Now at Department of Physics, University of Utah, Salt
Lake City, Utah.

sections of radioactive isotopes. For these, of course,
only microscopic quantities of sample can be made
available. In order to achieve acceptable values of
transmission the sample and the neutron beam must
necessarily be of very small cross-sectional area. Also,
because of the intense radiatiolIs emitted by the sample,
adequate shielding of personnel during the long periods
of observation becomes of paramount importance. For
this program we have adapted the focusing spectro-
graph described below, which has been in use for the
past several years. This report covers some of the meas-
urements made with it during this period.


