472

JULIUS L.

JACKSON

For large times the expression in parentheses approaches a é-function at E,= E,—hw. In addition, there remains
the integral over the rest of the energy range, wherein one must take the principle value at the singularity

E,=E,—hw. The result is

3imVow exp(iowt) demp (En)p(En—110) f(En— 1) |{En— 1) | Q| Em) |

f(En)P(Em)P(En) (Em—En) l <En [ Ql Em> I 2

F3(Vo/R) explic) f f dEndE, '

Combining the results of the integrals one finally gets

Q)= — "V, sinwt

E.—E,+kw

e f (BB |(Etfis] Q| B | 2p(EtFiw)— | (E— o] Q| E) | 2p(E— i) JAE

+Vo coswt{Zw f f B D(En)p(En) En— E) | (| Q| E) | Y [(En— B (o) 1AE Ao |.

The expression multiplying — V) sinw? is the conduc-
tance, in agreement with reference 1 and the term
multiplying V, coswt is the susceptance.

It may be noted that the negative sign preceding the
n-phase response is to be expected, as ¢ will tend to

decrease in order to reduce the value of the perturbing
energy term V()Q(- - qr*+ pr- ).

The extension of the fluctuation-dissipation theorem
to several variables will be given in a subsequent paper
by H. B. Callen, M. Barasch, and J. L. Jackson.
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The problem of finding the propagating solutions of the Schridinger equation in periodic lattices is
formulated as a variational principle. This may be used as a starting point to establish the general properties
of bands. Furthermore it is shown that by introducing various approximations into the variational principle,
the chief existing approximation methods can all be derived from it. Improvements of these methods are
suggested. Numerical illustrations are presented and the possibilities of the variational method for more
accurate calculations of the energy bands of solids are discussed.

1. INTRODUCTION

N studying the motion of electrons in a crystal, one
adopts as a starting point a picture analogous to
the Hartree model for atoms. Thus to a first approxi-
mation each electron is considered as moving inde-
pendently in the potential produced by the nuclei and
the charge distribution of all the other electrons. Since
the nuclear lattice imposes its regularity also on the
electronic charge distribution, this potential has the
same periodicity as the lattice.

In general, the wave equation in such a periodic
potential cannot be solved exactly. For this reason
various approximate methods have been devised which
apply especially to this type of potential. The varia-
tional method, however, which has been so widely
employed for the solution of the Schrédinger equation

* Supported in part by the ONR.
t Postdoctoral N.R.C. Fellow, 1950-1951.

in other physical situations, has found no extensive
application to the case of periodic lattices. To our
knowledge, only the work of Slepian,! to which we shall
come back in Sec. 2, represents a notable exception.

In the present paper a more general approach than
that of Slepian will be presented which serves a fourfold
purpose:

(1) It may be used as a starting point for a demon-
stration of the general properties of bands.

(2) It represents the analogon, for periodic poten-
tials, of the variational principles governing bound
state and scattering problems.

(3) It unifies the chief approximation methods used
up to now for the periodic case. All of these may be
shown to be derivable from the variational principle
by introducing appropriate restrictions or approxi-
mations.

1 D. Slepian, thesis, Harvard University (1949).
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(4) It provides a new tool for the approximate
solution of the Schridinger equation in periodic lattices
which suggests improvements of existing methods of
calculation and may be hoped to serve as a basis for
future developments.

In Part I of the present paper the variational principle
is developed and applied in detail to one-dimensional
lattices. The extension to three dimensions is carried
out in Part IT which deals also with the relationship of
the existing approximation methods to the present one.
Simple numerical calculations are presented in both
parts, but applications to the energy bands of actual
solids have not yet been made.

I. ONE-DIMENSIONAL LATTICES

2. Derivation and Discussion of the
Variational Principle

In a one-dimensional lattice the Schrédinger equation
takes the form

Hy=E), H=—(d/d")+V(x), (2.1)

where the potential V(x) is periodic, with a period
denoted by 2a:

V(zx+a)=V(x—a). (2.2)

We look for so-called propagating solutions of (2.1).
By definition these have the quasi-periodic property

Y(xt+a)=e"Y(x—a), (2.3)

where % is some real number, which without loss of
generality may be chosen between —/2¢ and +7/2a.

The quasi-periodic property (2.3) may be replaced
by the boundary conditions

Y(a)=e*Y(—a),
V(@))=e*y'(—a).

1t is quite clear that these equations follow from (2.3)
and one may also verify without difficulty that con-
versely (2.3) follows from (2.4a) and (2.4b). Therefore
we can restrict ourselves to a solution of the boundary
value problem (2.1), (2.4) in the interval (—a, a).

To establish an equivalent variational principle it is
natural to study the functional

(2.4a)
(2.4b)

I= f Y (H - E)pds;

(2.5)

for such functionals are known to lead to stationary
expressions for the energy levels of bound states as well
as for the phase shifts of scattering problems.>? In
evaluating the first variation of I we use the Schrédinger
equation (2.1) which is satisfied by both ¢ and ¥* and

2 L. Hulthén, Arkiv Mat. Astr. Fys. 35A, No. 25 (1948).
3 W. Kohn, Phys. Rev. 74, 1763 (1948).
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obtain - .
a=[ (o v )
= Loy — o9/ Je,. (26)

Thus we see that just as in the case of scattering
problems, I is not stationary with respect to arbitrary
variations of ¥ but that on taking the first variation
boundary terms are left over.?

Slepian! has based his work on the observation that
if &y satisfies the same periodic boundary conditions
(2.4) as ¢, the boundary terms vanish through cancel-
lation of the contributions from the two limits of
integration. He therefore limits his trial functions to
those which satisfy the boundary conditions (2.4) and
uses the variational principle 61(y, E)=0 to determine
E and ¢ as function of &.

We shall now develop a more general variational
principle in which the admissible trial functions are not
subject to the boundary conditions. This is a practical
advantage since, apart from plane waves, it is not easy
to find simple functions which satisfy these conditions.
Furthermore we shall see later (Sec. 6) how the methods
of Wigner-Seitz-Bardeen and Slater can be deduced
from the general form of the variational principle.

We aim to write the boundary terms in (2.6) as the
first variation of a quantity, — Ky say, which involves
the wave function only at the boundary. This can be
done by using the boundary conditions (2.4) satisfied
by ¢ and the corresponding boundary conditions satis-
fied by ¢*. Thus, from (2.6) and (2.4) one obtains

SI=[y*(a)od(a) —¢*(—a)d¥(—a)]
W@ () —¥*(—a)sy'(—a)]
={¥*(a)[o¥(a)— ¢ (—a)e**]
—¥*(@)Lo¢ (a)— 3¢ (—a)e*i*e]}
=3{y*(a)[¥(a) —¥(—a)e***]
—V* @Y (0)— ¢/ (—a)e*]}

=—0Kj, 2.7

where K; can also be written as

Ky=—y¥(a)e* Y (a)e~t*e—(—a)ei**]

HH @Y @y (—a)ete]. (2.)
Thus we have the variational principle §(I4+K;)=0
which, however, suffers from the blemish of not being
symmetrical in the points ¢ and —a. However, a

derivation exactly similar to the above gives the
alternative result

where
Ky=—y*(—=a)e*[Y(0)e=*—y(—a)e<]
+HPH(— )eme [y (@)e—ho—y/ (—a)ei™].  (2.10)

Hence we can write down the following symmetrical
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variational principle:
JW, k, E)=1+%(K,+ K,)=stationary. (2.11)

For the correct ¢, &, and E, J clearly has the value 0.

We have shown that the solution of the boundary
value problem (2.1), (2.4) satisfies the variational
principle (2.11). We shall now prove, conversely, that
a function satisfying the variational principle is also a
solution of the boundary value problem. This will
establish the complete equivalence of (2.11) with (2.1)
and (2.4).

We consider first a variation §¢ which is zero except
near an arbitrary point &’ in the interior of the interval
(—a, @). Then 6K;=08K,=0 and we find from (2.11)

0=0J=06l

- f (80H(H— )yt 0*(H— E) oy} dx

- f (0*(H— E)p+ 8y (H— E)y*}de

-G

—2Re f " SyM(H— By, 2.12)

where we have performed an integration by parts and
discarded the boundary terms because of the assumed
vanishing of 6y at the boundary. By choosing é¢ to be
real and imaginary in turn, we find that both the real
and imaginary parts of (H—E)y vanish at every
interior point &’. This proves (2.1).

Next we consider an arbitrary variation 6¢. Using
the already established Eq. (2.1) we find

8= [ ()™ (x) — 8/ ()Y *(x) 2. (2.13)
When this is combined with 8%(K;+K3) and conveni-
ently grouped, one obtains
8T =Re[ (8¢(a)e—*s+ 5y (— a)et**) (y*' (a)eite
— t//*’(— a)e—ika) — (5¢'(a)3_ika+ 5¢'(_ a)e“‘“)

X @*(@)er*—y*(—a)e=*)]. (2.14)

W. KOHN

Since & and 6y’ are entirely arbitrary, it is possible to
make the first factor of the first term vanish, while
giving the first factor of the second term real and
imaginary values in turn. The condition 8/=0 then
shows that the real and imaginary parts of y*(a)ei*s
—y*(—a)e~* vanish, which establishes the boundary
condition (2.4a). Similarly one can show that y must
satisfy the other boundary condition (2.4b) which
completes our proof.

It should be noted that the functional J is real for
arbitrary ¢. For

a dZ d2
ImI=3(I—1TI%) =%f (\ﬁ--lp*— *——\b)dx
—a\ da? dx?
=3[ — ] (2.15)
and this may be seen to cancel Im3(K;+K). It follows
that E, evaluated from the equation J=0, will correctly
be real, no matter what ¢ is used in the construction
of J.
Since the imaginary part of J vanishes identically in
¥, (2.11) may be written in the equivalent form

T, b, E)_=_Re[ f O H— By

W @ty (—alent)|

=stationary, (2.16)

which is more compact and convenient for practical
applications.

Finally it should be remarked that approximate
values of E obtained from the variational principle
(2.11) or (2.16) do not in general represent upper or
lower bounds to the true energy, as may be seen from
the numerical example worked out in Sec. 4.

3. General Properties of Bands Deduced from the
Variational Principle

In periodic lattices every value of £ together with
the Schrédinger equation constitutes a boundary value
problem with an energy spectrum E,(k). Basing his
investigations on the differential equation (2.1),
Kramers* has shown that the E,(k) curves have the
general features indicated in Fig. 1. It is of some
interest to see how these features may also be deduced
from the variational principle.

We begin with two very simple propositions:

Periodicity

If (k, E) is a point on the E,(k)-curves, so is
(k+27/2a, E). Proof : Let ¢ be the wave function corre-
sponding to (k, E). Then

0=0J(¢, k, E)y=06J (Y, k+27/2a, E),
4H. A. Kramers, Physica 2, 483 (1935).

(3.1)
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since J, Eq. (2.16), is invariant under the transforma-
tion k—k+27/2a. Hence ¢ is also a solution corre-
sponding to (k+2m/2a, E).

Symmetry

If (%, E) is a point on the (k, E) curves, so is (—k, E).
Proof: Again let ¢ correspond to (%, E). Then

0= 5]('//: k; E) = 6‘](‘[/*) _'k; E); (32)

since J is invariant under the transformation y—y*,
k——k. Hence ¢* is a solution corresponding to (—&, E).

Next we turn to the most interesting property,
namely, allowed and forbidden energy ranges.

Allowed and Forbidden Energy Ranges

Propagating wave functions exist only in those so-
called allowed energy ranges in which a certain in-
equality is satisfied. (Energy ranges in which no
propagating solutions exist are called forbidden.)

Proof: We consider a given E and examine under
what conditions there are propagating solutions corre-
sponding to this value of E. Now every solution of the
Schrodinger equation (2.1) must be a linear combination
of a pair of two linearly independent solutions ¢; and
@2 which we choose real for convenience:

Ci= a,+zb, (33)
We shall try to determine % and ¢;, ¢; from the condition
8J (Y, k, E)=0, (3.4a)

where we consider only variations of the coefficients ¢;
and ¢y, i.e.,

1//=01¢1+62¢2,

6ll/= 561(01+ 662(,02. (3.4:b)

If there is no real & for which (3.4) can be satisfied,
then evidently there exist no propagating solutions
corresponding to the given E, which is therefore
forbidden.

On the other hand, if (3.4) can be satisfied with a real
k, then E is allowed. This statement, however, requires
special justification since (3.4) shows the stationary
character of J only under the limited variations (3.4b).

Suppose then that a real £ and corresponding c; have
been determined from (3.4). Then 8 is given by (2.14),
where only the differential equation (2.1) has been
assumed which is satisfied by our y. Let us denote the
four parentheses in (2.14) by 81, B; and &, Bs, respec-
tively. We may now choose a &y of the type (3.4b)
which makes 8;=0. If it also makes §;=0 then this &y
satisfies not only the Schrodinger equation (2.1) but
also periodic boundary conditions of the type (2.4)
with #'=k-+m/2a, which are represented by the equa-
tions 8;=0, 8;=0. Thus E is allowed in this case. If,
however, 8,0 the condition 6J=0 implies B2=0
which is just the boundary condition (2.4b). Similarly,
unless there is a 8¢ for which both §; and &, are zero,
we can prove (2.4b). Thus we see that if (3.4) is satisfied

475

with a real £, Eis allowed, and there exists a propagating
solution corresponding either to % or to k+/2a.

The problem of ascertaining under which conditions
(3.4) leads to real %’s is quite straightforward. We form
the quantity J, Eq. (2.16), with the function (3.3)
which by construction satisfies the Schrédinger equation
(2.1). Hence

J=Re((—a)y* (a)e**— Y (a)y*' (—a)e~**). (3.5)

The conditions 8J/da;=9J/3b;=0 lead to four homo-
geneous linear equations for the @; and b; which are
compatible only if the determinant of the coefficients
vanishes. This condition is found to be

tan?22ka= (Ey Ess— E12?)/F12, (3.6)

where

Eij=[od—a) o/ (0)— ¢ia) o/ (—a) ]+ [i=]
Fij=[ei—a)o/(@)+eia)e/(—a)]-[i=4] (3.7)

(the symbol 7= indicates an interchange of 7 and 7).
We see that (3.6) leads to real #’s if and only if

EyEos—E1220, (3.8

which is the required condition for the allowed energies.
It is easy to verify that this condition is equivalent to
Kramers’ conditions.5

4. Practical Use of the Variational Method

As in the case of bound state and scattering problems
the variational method may be used to obtain approxi-
mate solutions of the boundary value problem (2.1)
and (2.4).

In the first place, if an approximate wave function
¢ for (2.1), (2.4) has been obtained in some independent
way (by analogy, ingenious guess-work, etc.), this
function may be substituted into the stationary
equation

J (e, k, E)=0, 4.1)

which relates- E and & with high accuracy, the error
being of the order of (error of ¢)2.

Secondly, (2.16) can be used for the systematic
construction of the solution, most conveniently by the
method of Rayleigh and Ritz.® We shall not discuss
this well known method in detail here, but only remark
on some points specific to the present problem.

One takes as an approximate solution

¥y=2 cipi, ci=real, 4.2)

i=1

where, to obtain good answers, the ¢; must be judi-
ciously chosen. One now substitutes this ¥ in'(2.16) and
satisfies the stationary property approximately by

5 See reference 4, conditions (2) and (3), pp. 484-485.

8 W. Ritz, J. reine angew. Math. 135, 1 (1909) ; for application
to wave mechanics, see, e.g., L. Pauling and E. B. Wilson, In#ro-
duction to Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1935).
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TaBLE I. Numerical results for E(k) for Kronig-Penney potential.

Number of trial functions 2ka =0 2ka=m/2 2ka=m
Lowest band
1 0.25 0.25 3.00
2 0.24 1.00 2.47
3 0.24 0.87 2.47
Exact functions 0.23 0.84 2.47
Second band
2 11.20 3.01
3 9.88 8.43 2.96
4 6.33
5 5.85
Exact functions 9.87 5.80 2.94
demanding that
aJ/0c;=0, i=1,2,+--m, (4.3)

which gives # linear homogeneous equations for the c;.
The corresponding compatibility equation has the form

An(k, E)=0 (4.4)

and defines an approximate (real) E-spectrum for a
given k or approximate &’s for a given E. The stationary
property of (4.4) implies that the error of (4.4) is of
the order of (8¢)2 If the ¢; are a set of differentiable
functions, complete in the sense that any continuous
function on (—a, @) can be arbitrarily approximated
by a suitable linear combination, then as »—«, Eq.
(4.4) represents the complete band structure of the
lattice. Once (4.4) is solved one can substitute a %k and
the corresponding E in (4.3) and solve for the ¢;, thus
obtaining an approximate wave function.

It should again be remarked that in contrast to the
usual case of bound state problems the lowest, second-
lowest, etc., values of E calculated from (4.4) for a
given k do not necessarily represent upper bounds to
the true eigenvalues E;, E,, etc. (see the second entry
of 0.25 in Table I). This is due to the fact that in
(2.16) we admit variations of ¥ which do not satisfy
the boundary conditions.

As a concrete illustration we consider the simple case
originally discussed by Kronig and Penney? where the
potential has the form

V(x)=V i 8(x—2na).

n=-—w

4.5)

F1c. 2. Conjugate
boundary points.

?R. de L. Kronigland W. G. Penney, Proc. Roy. Soc. (London)
130, 499 (1931).

W. KOHN

We set V=1 and a=1and use trial functions of the form
Yr(x) = (cotcox®™+ - - ) Fi(cixtcand+-- ). (4.6)

The ¢; are real, for whenever V(x)=V(—x), then
Yie(—x)=y¥_i(x)=y¢r*(x) so that Reyr=even, Imy;
=odd. It is now quite easy to express J as a quadratic
form in the c; and to determine E as a function of & from
the usual secular equation coming from the conditions
8J/dc;=0. The approximate results obtained for the
lowest two bands with an increasing number of trial
functions as well as the exact values of E are given in
Table I. (For 2ka=0 or =, the true wave functions are
either even or odd, so that we have used only even or
odd trial functions.)

The convergence may be considered satisfactory. It
is relatively slowest at 2ke=1/2, since the correspond-
ing wave functions are complex and therefore require
a larger number of parameters for accurate fitting.

II. THREE-DIMENSIONAL LATTICES
5. The Variational Principle

The ideas of the preceding paragraphs can be easily
generalized to three dimensions. Here one surrounds
each nucleus by identically shaped polyhedra, as
illustrated schematically in Fig. 2. Selecting anyone of
these for our further considerations, we note that to
every boundary point r there corresponds a conjugate
point r’; also on the boundary, such that r'—r is a
fundamental translation vector «.. It will be seen that
<, is constant on each face and that =, = —«,.

We now state the boundary value problem which we
wish to formulate as a variational principle:

[—V+ V(@) —-EW@=0

for all r inside the polyhedron, (5.1)
Y(r') =exp(iken)y(r)
for all r on the surface of the polyhedron, (5.2a)
(") /on=—exp(ike,) oy (r)/on
for all r on the surface of the polyhedron. (5.2b)

Here k is the wave vector and 9/d» denotes differ-
entiation along the outward normal at the point in
question. The minus sign in (5.2b) is due to the fact
that the outward normals at » and 7’ have opposite
directions.

To obtain an equivalent variational principle, we
consider the functional

I= f W= V- V(1) — Elpdo, (5.3)

where Q denotes the interior of the polyhedron. Its
first variation can, with the aid of (5.1), be written as
an integral over the bounding surface S of the poly-

hedron:
a <]
8= f ( y—yF— z//*—&l/) ds. (5.4)
8 on on
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By proceeding in analogy with our treatment of the one-
dimensional problem (Sec. 2), with pairs of conjugate
faces corresponding to our previous end points =g,
we could transform the right-hand side of (5.4) into
the first variation of a surface integral. This would
lead to the form of the variational principle corre-
sponding to (2.11). However, instead of repeating this
rather lengthy process a second time we shall derive
directly the form of the variational principle corre-
sponding to (2.16).

For this purpose, we consider the real part of I,
which we aim to write as the first variation of a surface
integral. Beginning with the first term on the right-
hand side of (5.4) we make the following transforma-
tions:

Re j; alﬁ(r);;‘;b* (r)dS

—Re f 0 st ds

san

3
—Re fs ) aS

¢
~Re f — L y@ar) exp(ikeddS,  (5.5)
S on

where the last step involves the boundary condition
(5.2b). The second term of (5.4) can, in virtue of
(5.2a), be written as

d
Re fs — S

d
=Re f ——(r)y*(") exp(tke)dS. (5.6)
S on
Combining (5.5) and (5.6) we thus obtain
9
d(Rel)=— B[Ref—\//(r)wl/*(r’) exp(ike,)dS]. (5.7
on

The desired variational principle can now be written
in the following form:

T, b, E)zRe[ f V=V V— E)do
Q

g

which may be compared with (2.16). Clearly, for the
correct ¢, k, and E, the functional J vanishes.

The proof that a solution of (5.8) also solves the
boundary value problem (5.1), (5.2) is exactly analogous

Y*(r') exp(ikc,)dS] =stationary, (5.8)
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to that given for one dimension and therefore need not
be repeated here.

Finally we may note two special forms of (5.8). If
the admitted trial functions all satisfy the boundary
conditions (5.2), we have

I= f V¥(— V24V —E)Ydw=stationary  (5.9)
Q

(see reference 1), while if the trial functions satisfy the
wave equation (5.1) we obtain

Y (r)
K= Rej:g .

6. The Approximate Methods of Wigner-Seitz-
Bardeen, Kuhn-Van Vleck, and Slater

v*(t’) exp(ke,) =stationary. (5.10)

It is a gratifying feature of the variational approach
that it serves as common basis for the various approxi-
mation procedures which have been used in the past.
In addition, the variational formulation suggests ways
in which these methods may be further developed.

The Method of Wigner-Seilz-Bardeen®®

In their classical work on metallic sodium and
lithijum Wigner and Seitz? in order to simplify their
calculations, replaced the actual polyhedron, in which
the boundary value problem (5.1) and (5.2) was to be
solved, by a sphere of equal volume. Thus they ad-
dressed themselves to the solution of the following
simpler problem,

(=VHV—E}(r)=0, r<r,, 6.1)
() =cEyY(—r), r=r, (6.2a)
(r)/or=—e 2k 3y(~x)/dr, r=r, (6.2b)

where r=[r| and 7, is the radius of the equivalent
sphere. Even these simplified equations could be only
approximately solved. A particularly attractive method
was given by Bardeen® who obtained a solution of (6.1),
(6.2) in the form of a power series in k. Bardeen’s original
derivation is somewhat lengthy and can be simplified
with the aid of the variational theory which also suggests
further developments. .

The problem (6.1), (6.2) is equivalent to the varia-
tional problem

(¢, &, E)=Re[ f V(= V-V —E}dw
2,

) .
+ f i@ V¥ (—1) e—2ikrdS] =stationary, (6.3) )

8, Or

where the subscript s refers to the equivalent sphere.

8 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933) ; E. Wigner,
Phys. Rev. 46, 1002 (1934) ; F. Seitz, Phys. Rev. 47, 400 (1935).
9 J. Bardeen, J. Chem. Phys. 6, 367 (1938).
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This is in complete analogy with our previous varia-
tional principle (5.8).

Since V(r) has spherical symmetry, the direction of
k is immaterial and we may for convenience choose it
along the z axis. The solution of (6.3) has axial sym-
metry and hence, for a given E may be expanded in
spherical harmonics as

¥=aoRo(r; E)+iarR\(r; E) P1(cosh)
+asRs(r; E) Pa(cosf)+ - - -.

Here 6 is the polar angle and the successive terms are
the solutions of the Schrodinger equation (6.1) corre-
sponding to angular momenta 0, 1, 2, etc. If V is
given, these solutions can be easily calculated by
numerical methods.

For k=0, the solution of (6.1) and (6.2) is spherically
symmetrical and must satisfy the boundary condition

[0Ro(r; E)/ 7 Jrer, =0, (6.5)

(6.4)

which determines the ground-state energy E=E,.

Next we calculate E for small values of 2. Symmetry
considerations show that if ey~1, then a1~%k, as~Fk?
etc., that the a; are real and that

E=Et+ Esk*+Egki4----. (6.6)

Hence a wave function correct to order % inclusive is
¢=00R0(T; Eo)+ik61R1(1’; Eo)P]_(COSB), (6.7)

where the ¢; and R; are independent of %. Substitution
of this function into the variational principle (6.3)
must give E correct to order k% Now when we reject
terms of higher order, we find that

4:7!' &Rl
J=F| —c?E: | Ro*dw+2coci—r 3R
Q 3 ar
4:71' 6R1
- 612——7’32R1—], (68)
3 ar

where the common argument E=E, has been sup-
pressed and in the second and third terms r=r, is
understood. The corresponding determinantal equation,

4’"’ aRl
—Ezf Rogdw —-fﬁRo—
Qs 3 a7
=0,  (6.9)
47!' K 6R1 4
—r3R—
3 ar 3 or

gives at once Bardeen’s result

Ry?
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The coefficients E4, Es, etc., in (6.6) can be calculated
in an analogous way.1?

Finally, it may be remarked that trial-functions up
to a certain angular momentum, of the form (6.4), can
be used in the variational principle (6.3), without
expansion in powers of k. It should be observed that
the volume integral in (6.3) vanishes for these functions.
Since the Ri(7,; E) may be normalized to 1, it is clear
that the result of making (6.3) stationary with respect
to variations of the ¢; in (6.4) can depend only on the
logarithmic derivatives of the R; at the surface. We
illustrate this by considering, for simplicity, only .S and
P functions corresponding to energy E; this gives

0R, IR, AR,
Js = 27['[(102“—R0]o+ dodl(R0—+R1—)Il
a7 o7 or
OR,
- aﬁ——R,Iz], (6.11)
ar
where

Iy= f e~ 2ikrs c0s0 gingdf=sin(2kr,)/ (krs),
0

(6.12)
1 9

2¢ 3(kr,)

In—!

The corresponding compatibility equation can be
written as follows:

L(R1)/L(Ro)+L(Ro)/L(Ry) =4I I,/I*—2, (6.13)
where we have used the notation
AR (r; E)/or
LR)y=——
i r=rg (6.14)

for the logarithmic derivative at r=r,. Equation (6.13)
has the form f(E)=g(k), whose solution gives the
required dependence of E on k.

The Method of Kuhn and Van Vieck™

In the spherical approximation, the energy of the
ground state of metallic electrons is defined by Eq.
(6.5), which may also be written as L(R,)=0. Kuhn
and Van Vleck have now made the interesting observa-
tion that the experimental term values of the valence
electron in the metallic atom allow one to obtain L as
a function of E by means of inter- and extrapolation.
Thus they are able to find the energy E, where L=0,
without requiring a knowledge of the potential or the
wave function inside the ion.

In the expression (6.10) for E,, {(0R:/d7)/Ri}E=E,
can similarly be found by extrapolation. The square
bracket which has the value 1 for a constant wave

1 R. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950);
R. Silverman, Phys. Rev. 85, 227 (1952).
T, S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).
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function, differs only slightly from 1 for the alkalis
and can be rather accurately estimated without re-
quiring a very exact knowledge of V(#). Apart from
this slight incompleteness, both E, and E, are thus
directly obtained from the atomic spectra.

Let us now discuss these ideas from the point of
view of the variational principle (6.3). We note that if
we admit only trial functions of the type (6.4) which
satisfy the Schrodinger equation (5.1), the volume
integral in (6.3) vanishes and we have, corresponding
to (5.10), the variational principle

ay(r)

Ss Or

K= (6.15)

Y*(—r)e2ikr cosb=gtationary.

Thus the values and radial derivatives of the R; are
required only at the boundary r=v,. Since as remarked
before one may arbitrarily normalize the functions
such that R(r.; E)=1, the only quantities really
needed in (6.15) are the logarithmic derivatives L(R;),
and these are at least in principle obtainable from the
atomic spectra.

Why then does an integral over the interior occur in
Eq. (6.10) used by Kuhn and Van Vleck? To resolve
this apparent contradiction we expand (6.13), in which
only logarithmic derivatives at the boundary occur, in
powers of k. This gives

d
Ey=—3r2L(Ry) / [E;EL(R")]E-E » (616)

which involves only surface quantities and which is
equivalent with (6.9) if the equation

d
4#732[——L(Ro):| =~fRo2dw/R02 (6.17)
dE E 2

=Ey

holds. The truth of this equation follows by Green’s
theorem from the Schrédinger equation

(=V*4+-V—E)Ry(r; E)=0, (6.18)

which is satisfied identically in E, and its derivative
with respect to E. Thus we see that the volume integral
occurring in (6.9) can in fact be expressed as a boundary
term. It remains to be seen, however, whether
(d/dE)L(R,) can be obtained with sufficient accuracy
from the atomic spectra to make the calculation of E.
from (6.16) practical.

It will be obvious how the method of Kuhn and Van
Vleck can be extended by means of (6.15) to include also
higher angular momenta. It should again be remarked
that the expansion in powers of % can be avoided by
introducing the exact solutions of the Schriddinger
equation into (6.15) [see Eq. (6.13)].

Another possible extension should also be noted,
which consists of the removal of the spherical approxi-
mation used by Kuhn and Van Vleck. We return to the
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boundary value problem (5.1) and (5.2) in the actual
polyhedron and consider the solution ¢ corresponding to
a certain k and E. Within the inscribed sphere of
the polyhedron, y can be expanded in a series of spherical
harmonics,

V=212 m Ctm¥tm, (6.19)

where each ¢, is a solution of the Schrodinger equation
(5.1) corresponding to the energy E. There is no
guarantee that this series will also converge in the
space between the inscribed sphere and the boundary
of the polyhedron. However, one may hope that the
true wave function can at least be well approximated
by a series of this kind in the entire polyhedron.!

For a given energy, let us then take a finite series of
the type (6.19) as approximation to the true wave
function. Since each term satisfies the Schrédinger
equation, the appropriate variational principle is (5.10),
which requires the wave functions v, » and their normal
derivatives only at the boundary of the polyhedron.

Calling the radial part of ¥, R;, the procedure of
Kuhn and Van 'Vleck will give us the logarithmic
derivative of R; at a point »=a such that the sphere
r<a contains essentially the entire metal ion. This
method further presupposes that this sphere lies inside
the polyhedron. For »>a, the potential is hydrogenic
so that there R; is that radial hydrogenic function
whose logarithmic derivative at r=a has the given
value. In this way R; and hence also ¥; »=R,Y ;™ are
obtained at and near the surface of the polyhedron
entirely from information derived from the atomic
spectra.

Using these ¥4, » in (5.10) leads to homogeneous linear
equations for the coefficients ¢; » which are compatible
only for certain vectors k. Thus the desired relationship
between % and E is established.

The Method of Slater'®

Much information about the band structure of metals
has been obtained by means of a method due to Slater
which, unlike that of Wigner and Seitz, takes into
account the actual (nonspherical) shape of the crystal
polyhedra. )

Briefly, the idea of this method is as follows: Since
the potential in each cell may be taken to be spherical,
the Schrédinger equation (3.1) has, for a given E, the
spherical solutions ¥; (). Once the potential is known,
these functions are easily obtained by numerical
integration of the radial equation.

As approximate solution ¢ of the boundary value
problem (5.1), (5.2), Slater uses a linear combination,
of the type (6.19), of a finite number of ¥ ». This ¢
satisfies the Schrodinger equation (5.1) exactly and
can be made to comply with the boundary conditions

2Tt is reassuring that for the plane wave solutions, corre-
sponding to V=0, the expansion (6.19) is valid everywhere.
18 J, C. Slater, Phys. Rev. 45, 794 (1934).
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<3

8 Cl

(5.2) at a finite number of conjugate points:
Y(r/)=exp(ike)yY(r)
(r/)/dn=—exp(tke,)dY(r,)/on,

there z; is the translation vector at the point r;.

Each pair of conjugate boundary points leads to two
complex linear equations, involving the unknown vector
k, for the coefficients ¢; .. Now if the total number of
independent real linear equations is less than the num-
ber of real coefficients in (6.21), these equations can be
satisfied for all k, if greater they canrot be satisfied for
any k. However, if the number of equations equals the
number of unknown coefficients, a solution will exist if
and only if the determinant of the set of equations
vanishes. This condition has the form of an equation
restricting the vector k to lie on a surface in k space,
which may be taken to be an approximation to the
correct k surface belonging to the given E.

The fact that Slater’s method leads to a compatibility
equation strongly suggests that it may be derivable
from our variational principle (5.8). This will now be
shown.

We use as trial function corresponding to energy E,
the expression (6.19), which satisfies the Schrédinger
equation so that the relevant form of the variational
principle is again (5.10). This leads to the equation

Fic. 3. Unit cell of
a body centered cubic
lattice.

B

(6.20a)
(6.20b)

ad
0= = —_— *(p
dK=Re L [an&[/(r)xlz )
9
+—y(r) 61//(1")] exp(ikz,)dS
on
a3 I}
- [wm[;;p*my*(r') exp(ikeo]

3
FH40) [0 H(E) explle] ]ds, (6.21)

where in passing to the last line we have added two
terms which cancel one another in virtue of Green’s
theorem and the Schrodinger equation satisfied by 6y
and ¢* If we substitute for ¢* from (6.19) and use
o0Y=20ci,m¥1,m We get a set of linear equations leading
to a compatibility equation which defines a surface in
k space corresponding to the given E.

W. KOHN

This is not quite Slater’s surface. The latter is
obtained only after making the further approximation
of replacing (6.21) by

o 3
0=ReZoe.-{&//(ri)[—ﬂ//*(rf)-i-——tﬁ*(n’) exp(ikc,-)]
i on on

d
#0900 [V (0) explke)] } (6.21')

where the «; are numerical weight-factors and the r;
are the points at which Slater satisfies the boundary
conditions. For it is clear that Slater’s solutions, which
satisfy (6.20) also satisfy the approximate variational
principle (6.21').

Now the transition from (6.21) to (6.21’) is just the
usual procedure of numerical integration, where the
integrand is evaluated at a finite number of points and
summed with appropriate weight-factors. It should be
noted, however, that in (6.21"), which is equivalent to
Slater’s procedure, the number of points used in the
numerical integration is limited by the number of trial
functions, whereas to take full advantage of the accu-
racy offered by (5.10) or the equivalent (6.21), enough
points should be taken to make the error of the numer-
ical integration negligible.

In the next section we shall, in a numerical example,
examine the difference between the results obtained by
Slater’s method and the more accurate variational
principle (5.10).

7. The Variational Method as a New Tool for the
Calculation of Energy Bands

From a practical point. of view the variational
principle (5.8) can be regarded as a framework, within
which judiciously selected wave functions are to be
employed.

At present, it may be said that a completely satis-
factory way of determining the solutions of the Schrod-
inger equation in three-dimensional periodic lattices
is not yet known. The methods of Wigner-Seitz-Bardeen
and Kuhn-Van Vleck approximate the actual poly-
hedron by a spherical cell, which must be expected to
lead to appreciable errors near the top of the zones.
On the other hand, the method of Slater which takes
the actual shape of the polyhedron into account has
been found to be rather slowly convergent.* Further-
more, it assumes implicitly that due to the spherical
symmetry of the potential, the wave function can be
expanded in spherical harmonics inside the entire
polyhedron. However, we have already noted that such
an expansion may not converge outside the inscribed
sphere of the polyhedron.

In addition, since all the above mentioned methods
use expansions in spherical harmonics, they are very

4 W. Shockley, Phys. Rev. 52, 866 (1937).
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slowly convergent and hence not practical for high-
lying bands. For this reason other ways of approxi-
mating the wave function should be investigated.

For problems of this kind the variational principle
(5.8) may be expected to be a useful aid but no such
analysis is attempted in the present paper. We shall
merely describe a very simple, exploratory application
of the variational method to a three-dimensional
problem.

We consider a body-centered cubic lattice, of funda-
mental cube edge=2, whose cell is shown in Fig. 3.
We take the potential to vanish everywhere, in which
case the solutions of the boundary value problem
(5.1), (4.2) are known to be plane waves with E=k2.
In this case one knows further that an expansion in
spherical harmonics is possible. Following Shockley,“
we shall first check the accuracy of Slater’s method
against the exact result by using as approximate func-
tion a linear combination of the .S and P solutions of
the wave equation. Next we shall use the same trial
functions in the variational principle (5.10), which is
the special form of (5.8) for trial functions which satisfy
the wave equation. This will give us an opportunity to
compare our results both with those obtained by
Slater’s method and with the exact results.

We shall look for E as a function of k&, where for
simplicity we take & to lie along the line BB’ of Fig. 3.
We chose this line as polar axis and write

ll/= Cojo(E%r)+1:Clj1(E%7’) COSO,

where symmetry considerations show that ¢y and ¢;
can be taken as real.

Following the method of Slater, we can satisfy the
boundary conditions (6.20) with the function (7.1) at
any pair of conjugate points (and all other pairs which
for symmetry reasons are equivalent to it), but only
for a particular value of k. This gives us a relationship
between E and k. If the pair of points is chosen as 44/,
located at the centers of two conjugate hexagons in
Fig. 3, one obtains the curve labeled 44’. For small ,
this is seen to be in good agreement with the exact
relation, E= 2% but for & near the zone boundary, the
error becomes quite serious. If the pair of points is
chosen less favorably, namely, as BB’ or CC’, Fig. 4
shows that the results are quite meaningless.

The same wave function (7.1), substituted in the
variational principle (5.10) gives the curve labeled

(7.1)
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F16. 4. The variational and Slater’s method compared for the
case of an “empty” lattice.

“Variational.” This is seen to be a significant improve-
ment over the best curve obtained by Slater’s method.
Furthermore, the arbitrariness which, in Slater’s
approach, is connected with the choice of boundary
points is here avoided. It should be remarked, however,
that for the same trial function the application of the
variational principle which involves the evaluation of
the surface integrals in (5.10) is more laborious than
Slater’s method. In the latter the surface integrals are
effectively replaced by the sum of the integrands at the
usually small number of chosen boundary points (see
Sec. 6).

CONCLUSION

We have attempted, in this paper, to survey the
possibilities offered by the variational method for the
solution of the Schrédinger equation in periodic lattices.
It is hoped that with the aid of this method, which has
been so useful in many other fields of wave mechanics,
more accurate calculations of the band structures of
solids will become possible.
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