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The response of a dissipative system to a generahzed driving force is calculated and an expression for the
admittance is obtained. The expression for the conductance is in agreement with the expression obtained
by Callen and Welton and a new expression for the out-of-phase component of the admittance is obtained.

~ N a recent. paper by Callen and %elton' a "Quctua-
~ ~ tion-dissipation" theorem is derived. This theorem
relates the spontaneous equilibrium Quctuations in a
thermodynamic system to the parameter (the "re-
sistance") which characterizes the irreversible response
of the system to a driving force, and constitutes a
generalization of the Nyquist electrical noise theorem. '
The authors consider a system with a Hamiltonian
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theory, one obtains for the coefIIcients
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Here Ha( qi pl) is the Hamiltonian of the unper-
turbed system. The term V(t)Q( qI, p~ ) is the
interaction between the unperturbed system and an
externally applied generalized driving force, V(t) The.
function Q( qz. pI, ) depends only upon the
canonical coordinates of the system.

The authors show that a system will be dissipative
Rlld llIlcal' (Rnd will tllcl'cforc bc dcscr1babic by Rll

admittance function) if it possesses a dense energy
eigenvalue spectrum and if the applied perturbations.
are small. Under these assumptions the real part of the
admittance function, g(Ia)(=E(Ia)/IZ(Ia) I') is calcu-
lated in terms of the expression for the power dissipated
in the Presence of a driving force, V(t) = Va sinIat.

Here, a direct calculation will be made of the com-
plex admittance function by explicit consideration of
the response of the dr'iven system. The expression for the
conductance, g(ca), obtained by Callen and Welton is
thereby corroborated and a new expression for the out-
of-phase component of the admittance of dissipative
systems is obtained.

Following the notation of reference 1, the average
value of Q is calculated in the presence of a driving
force, VosinIat. To do this, the expectation of Q is
calculated for a state C „, which is the perturbed state
corresponding to the eigenstate, tt „exp(iE t/b), of the
unperturbed Hamiltonian. The average value of Q
for the system is obtained by averaging over all states,
weighting each in accordance with the canonical dis-
tribution function [here designated by f(E )j.

The perturbed states are written

The expectation of Q in the state 4 „ is then
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+ (higher order terms). (4)

Using Q= (i/It)(QH —HQ), the first term in the above
is seen to be zero and the 6rst-order contribution is
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The final expression for the average value of Q for the
syst, em ls

where p(E ) is the density of states per unit energy and

f(E„) is the statistical weighting factor. Further; the
sillll ovcl' ts 111 Eq. (5) ls I'cplRccd by Rll 111'tcgl'Rl over
the energy spectrum. The 6rst integral in the resulting
expression is then

C =f exp(iE„t/h)+P„b„(t)g„exp(iE t/k). (2)

Following the procedure of first-order perturbation
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For large times the expression in parentheses approaches a 8-function at E =E —leo. In addition, there remains
the integral over the rest of the energy range, wherein one must take the principle value at the singularity
E„=E —Acr. The result is
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Combining the results of the integrals one finally gets
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The expression multiplying —Vo since) is the conduc-
tance, in agreement with reference 1 and the term
multiplying Vo cosset is the susceptance.

It may be noted that the negative sign preceding the
n-phase response is to be expected, as Q will tend to

decrease in order to reduce the value of the perturbing
energy term V(t)Q( qq pq ).

The extension of the Quctuation-dissipation theorem
to several variables will be given in a subsequent paper
by H. B. Callen, M. IIarasch, and J. L. Jackson.
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The problem of finding the propagating solutions of the Schrodinger equation in periodic lattices is
formulated as a variational principle. This may be used as a starting point to establish the general properties
of bands. Furthermore it is shown that by introducing various approximations into the variational principle,
the chief existing approximation methods can all be derived from it. Improvements of these methods are
suggested. Numerical illustrations are presented and the possibilities of the variational method for more
accurate calculations of the energy bands of solids are discussed.

1. INTRODUCTION
' 'N studying the motion of electrons in a crystal, one
~ . adopts as a starting point a picture analogous to
the Hartree model for atoms. Thus to a first approxi-
mation each electron is considered as moving inde-
pendently in the potential produced by the nuclei and
the charge distribution of all the other electrons. Since
the nuclear lattice imposes its regularity also on the
electronic charge distribution, this potential has the
same periodicity as the lattice.

In general, the wave equation in such a periodic
potential cannot be solved exactly. For this reason
various approximate methods have been devised which

apply especially to this type of potential. The varia-
tional method, however, which has been so widely
employed for the solution of the Schrodinger equation
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in other physical situations, has found no extensive
application to the case of periodic lattices. To our
knowledge, only the work of Slepian, ' to which we shall
come back in Sec.- 2, represents a notable exception.

In the present paper a more general approach than
that of Slepian will. be presented which serves a fourfold
purpose:

(1) It may be used as a starting point for a demon-
stration of the general properties of bands.

(2) It represents the analogon, for periodic poten-
tials, of the variational principles governing bound
state and scattering problems.

(3) It uni6es the chief approximation methods used
up to now for the periodic case. All of these may be
shown to be derivable from the variational principle
by introducing appropriate restrictions or approxi-
mations.

' D. Slepian, thesis, Harvard University (1949).


