
PH YSICAL REVIEW VOLUME 87, NUMBER 1 JULY i, f952

The Polyneutron Theory of the Origin of the Elements
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Assuming as an early stage in the expansion of the universe a homogeneous Quid of nuclear density and
low temperature, it is shown that, for reasonable values of the constants, this will, on expansion, leave the
matter in the form of droplets of the same properties as those found in the Mayer-Teller "polyneutron"
theory. However, this model leads necessarily to an abundance curve in which the amount of heavy elements
is at least comparable to that of the light elements, contrary to experience.

INTRODUCTION
" 'N 1948 Mayer and Teller' discussed a new mechanism
~ - for the origin of heavy elements.

'

In their theory
the starting point is a condensed body of matter of
density of the order of nuclear density, which they call
"polyneutron. " Its mass was assumed to be less than
that of an ordinary star to avoid gravitational consider-
ations. BrieQy the Mayer-Teller mechanism is the
following: Inside a polyneutron a small proportion
(about 10 ') of the neutrons will transform into protons,
until the gain of energy due to the reduction of the
kinetic energy of the neutrons and the increased binding
energy are balanced by the kinetic energy of the
p-electrons. In equilibrium the maximum kinetic energy
of the electrons is about 9 Mev. Near the surface, the
electrons will extend beyond the surface of the nuclear
matter until the resulting electrostatic field prevents
further extension. This extension of the electrons re-
duces the energy near the surface and results in a
negative contribution to the surface tension, which may
exceed the positive surface tension of the nuclear matter
by itself and thus will lead to instability. Due to this
surface instability large droplets of nuclear matter
break ofI', which will increase their charge later by
further P-decay and then undergo fission, giving rise to
smaller secondary droplets. These evaporate neutrons
and undergo further P-decay, until finally they stabilize
into heavy elements.

This theory has had some measure of success in

predicting the observed isotopic abundances of heavy
elements. It provides an alternative to the theory of
Gamow, Alpher, and Herman. ' The theory does not
deal with the light elements.

In order to derive these results Mayer and Teller had
to make certain assumptions about the binding energy
of neutron-rich nuclear matter and about the magnitude
of its surface tension. They proposed no mechanism for
the formation of the original polyneutron. In view of
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its instability, it is clearly not easy to imagine a mecha-
nism for its formation.

In this paper we shall discuss a model in which it is
assumed that the expansion of the universe can be
traced back to a stage when the whole universe was
filled uniformly with matter of nuclear density. As
such a system expands, it will at one stage have the
matter in the form of polyneutrons, as postulated by
Mayer and Teller, and their arguments can be taken
over directly for the subsequent history. We shall see,
however, that our model cannot account for the fact
that the heavy elements constitute only a small portion
of the matter in the present universe.

I. DISCUSSION OF THE MODEL

We consider a universe initially at very high density.
At that stage its expansion is likely to be very rapid.
We cannot write any precise equations since the large
value of the energy-momentum density may somewhat
alter the usual equations of the expanding universe and
also because at such extreme conditions new factors
may come in. It is likely, however, that near the time
when the density is equal to the equilibrium density of
nuclear matter the rate of expansion is too rapid to
allow p-decay to maintain the proportion of protons to
neutrons in equilibrium.

The actual ratio of protons to neutrons must there-
fore depend on the previous history, but two typical
cases are of interest: (a) that the matter originally
consisted only of neutrons and that no appreciable
number of protons were formed prior to the stage we
consider; (b) that in the earlier stages when the higher
densities would have made faster P-decay possible and
favored a finite proton-neutron ratio, some protons
were actually formed. In that case, we would reach
equilibrium density with more than the equilibrium
number of protons.

One might suspect that extended matter of such high
density would be unstable in the sense of tending to
collapse under its own gravity if its homogeneous
distribution is disturbed. This point has been investi-
gated by Wroe, ' and it was found that there was no
tendency towards such a catastrophic collapse.

As the expansion proceeds beyond the equilibrium
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density for that particular mixture of neutrons and
protons present at that time, the energy per particle
will increase with increasing volume, thus giving rise to
a tension.

Nuclear matter in a state of tension must be unstable,
since the energy can be reduced by forming cavities.
However, the formation of a small cavity requires
energy and hence the process will involve the passage
through a potential barrier. In Sec. II we shall discuss
the properties of this barrier and show that the number
of cavities formed will depend on the rate of expansion,
but that within a wide range of conditions their mean
distance will be sufficiently small to expect non-uni-
formities on a cosmic scale. The further development
is then different for cases (a) and (b) defined above.
In (a) when there are only neutrons present, the surface
tension is positive, and the cavities will grow in a
regular way, leaving the nuclear Quid ultimately in the
form of large lumps which will separate, but will be
stable until P-decay has raised the proton (and electron)
concentration inside them to a value which makes the
surface tension negative. From then on, the develop-
ment follows the mechanism discussed by Mayer and
Teller. In case (b) the presence of protons may make
the surface tension negative from the start, and then
the cavities will immediately form in complicated shapes
and the whole matter will break up into a kind of foam,
the ultimate outcome being droplets of the same kind
and size as those resulting from the break-up of a
polyneutron.

It is, however, essential for this picture that all the
matter in the universe has passed through the high
density stage, from which the heavy elements can be
obtained by the process already discussed, whereas the
light elements can be formed only from the evaporation
neutrons and the protons into which they will decay.
This process will be discussed in Sec. III, and it will be
seen that the amount of evaporation is small so that
the heavy elements would constitute most of the matter,
whereas in fact they constitute something like one
part in a million.

It follows, therefore, that the polyneutron model is
tenable only if one assumes that only a small part of
the matter in the universe has condensed into poly-
neutrons, but no model has so far been proposed which
would explain their origin.

II. FORMATION OF CAVITIES

Assume nuclear matter at a speci6c volume exceeding
the equilibrium value, so that there is a tension T. In'
order to form a spherical cavity of radius a we have to
create a new surface of area 4vru' and the increase in
nuclear surface energy will be

4xa'0,

where 0 is the nuclear surface tension. On the other
hand, we gain, by releasing the tension, the energy

—(4x./3) u'T. (2)

In case (a), where we deal only with neutrons, there is
no further term. In case (b), we have to allow for the
electronic contribution to the surface tension, which is
negative. For a small cavity, the reduction of energy is

—(4/3) ~u'P,

where I' is the pressure of a relativistic degenerate
electron gas. Inserting for I', the contribution to the
energy becomes

—(a/ck)'(E04/9ir), (3)

where Eo is the Fermi energy which for the equilibrium
mixture is 9 Mev, according to Mayer and Teller. The
net effect is to increase the tension by 1.2&&10"dynes/
cm'. We shall be interested in much larger tensions,
and the electronic effect is therefore negligible for the
formation of cavities; hence we need not distinguish
the two cases at this stage.

The theory of the formation of a small cavity is
given in the appendix, and the probability per unit
volume and unit time is

w=b '(20/pP)' exp( —kT '")

[see Eqs. (A20) and (A21)] where k is given by

k =33604p~/k.

(4)

2 p2oq & )T'i'q
. I

exp(-kT '")
7 KpP) &kT )

(6)

provided the exponent. is large. In (6) T and T refer
to time t~. The mean distance between cavities at time
t~ will then be

L [W(ti)]—l. (7)

The formation of cavities will continue until enough
have formed to relieve the tension everywhere. It is
important to make sure that this will not happen too
early, since a large 1. would mean that after further
expansion the matter would be in large pieces, with

large gaps in between. If the scale were large enough
to result in an appreciable curvature of space, the
further development might lead to an universe quite
unlike the one we know. However, the release of tension
will spread only with a velocity which is practically
equal to the velocity C of sound in the nuclear Quid,

so an upper limit to I. is obtained from the condition

C(t,—tp) L,

where t, is the time defined by (7) and 4 the time when

the tension first appears.

/ is the distance between nucleons, and b is a length
somewhat larger than / [see Eq. (A21)]. p is the density.
The probability of a cavity being formed in a unit
volume up to time t j is then

ty

w(ti)= ~ w(t)ch
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AT '~' exp(AT 'i') =2X104'14, (13)

(14)

The solution of these equations is

T 10' dynes/cm', I 2X 10' cm. (16)

This shows that the cavities are certainly copious
enough to prevent any inhomogeneity on a cosmological
scale. With the above value of T, we see from (11) that
po —p —,Opo, which justifies the use of (11), which is
valid only for small expansions. The exponent of (4)
becomes 136, which is large enough to justify our
asymptotic formula (6). The radius, for which the
energy of the cavity is just zero, is

30/T~1.2X10 " cm, (17)

or about four times larger than l. Hence the uncertainty
implied in (A21) is not important. On the other hand,
the incipient cavities are so small compared to their
mean distance that the compression w'ave starting from
each will be very weak before it has covered distance L.
This justiies our approximation assuming that these
expansion waves run with sound velocity. In fact, it is
evident that these compression waves will be far too
weak to relieve the tension completely, so that the
formation of new cavities will continue much further
than the point determined by our estimate. In the
same direction goes the assumption, implied in (8),
that the time available for the compression waves is
fhe whole time for which a tension existed, whereas in
tact most of the cavities will have formed just before
the instant we consider. We conclude, therefore, that
the hypothesis of a uniform breaking up of the nuclear
Quid is reasonable, and that it would be compatible

4 See the second part of reference 2.

Let us assume for orientation that the equations of
general relativity held good at the time under discus-
sion. Since in our model the temperature is low, the
expansion would be governed by the material pressure
only. In that case the density of matter is related to
time by4

pP=SX 10' g sec'/cm'. (9)

Taking the equilibrium density po as 10" g/cm' this
gives

10 'sec. (10)

If the tension is not too large, we may use the relation

&=C'(Po ~),

and hence from (9)

7= —C'p = 2C'po/t.

Using the values 0 =4X 10"dynes/cm', po= 10"g/cm',
C= 3X10' cm/sec, b~l =3X 10 "cm, Eqs. (7) and (8)
become

even with a considerably slower rate of expansion than
that corresponding to (9).

or
p,ii„——SX10'/P,

p,ii„——0.8 g/cm' for 3=10' seconds.

Hence the average density of matter in our model at
the time of the breakup of the polyneutron is roughly
equal to that of water.

We shall now make a rough estimate, in our model,
of the temperature which would develop as a result of
the nonequilibrium processes. The surface instability
of the polyneutron leads to the evaporation of droplets,
the energy of formation of which has been calculated
by Mayer and Teller as a function of the size of the
droplets. According to these authors droplets whose
total charge is less than 37 are not formed since their
energy of formation comes out to be negative. As a
particular case we shall consider a droplet of charge
Z=100. The energy of formation, from the formula of
Mayer and Teller, of such a droplet, is roughly 400 Mev.
The temperature T corresponding to an excitation U
of a nucleus of mass number A is given by

V =RAT',

where both U and T are in units of Mev and E is
about 0.1. Assuming that half the energy of formation
appears as the excitation energy of the droplet and
substituting the numerical values of U and A(~10")
for the droplet under consideration, we have

T 0.01 Mev.

III. LIGHT ELEMENTS

Starting from a cold neutron Quid we have seen how
polyneutrons could be formed. We shall now attempt
to make an estimate of the actual physical state of
matter, i.e., the average temperature and density in the
model at the time of the formation of heavy elements,
and whether the model can give the right abundance
distribution of elements.

We assume that the lifetime of a neutron against
P-decay inside the polyneutron is roughly the same as
that of a free neutron, i.e., 10' seconds. In fact, the life-
time in the beginning is much shorter than this but in-
creases later on as the Fermi energy of the electrons
increases with the increase of the electron concentration.
The equilibrium concentration corresponding to the
proton neutron ratio of 10 ' would be attained in a time
roughly of the order of 10' seconds. Assuming that the
zero of the time scale concides with the time of the start-
ing of the expansion, it would take approximately 10'
seconds before the break-up of the polyneutron starts.
It would not be unreasonable to assume that the equa-
tions of general relativity are qualitatively correct at
this stage of the expansion and later. We then 6nd for
the density of matter the formula
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The excitation energy would chief lead to neutron
evaporation. The number E of neutrons evaporated is
roughly given by

N= AT'/Ee, (19)

where E& is the average binding energy of a neutron
inside the droplet. In deducing formula (19) the cooling
of the droplet, as a result of neutron evaporation, is
neglected. Substituting for AT' from (18) and for Eii
the value 1 Mev in (19), we have

X=10',

which is a negligible fraction of the total neutron
content of the droplet. Each evaporated neutron has,
approximately, a kinetic energy of 10 ' Mev.

The droplet is still very neutron rich. The lifetime of
a neutron in such a nucleus is roughly of the order of
0.1 sec. The P-decay of the droplet would proceed until
enough charge has accumulated to exceed the limit for
fission. This limit is given by the well-known formula

(Z'/A) i; ——45, (20)

/Ze) ' 1 45 e'A&
2X10' Mev, (21)

E2) 2R 8 15X10"
using (20). Even if we assume that the whole of the
fission energy goes to excite the fragments, the excita-
tion energy would evaporate roughly 10' neutrons,
i.e., 2 percent of the total neutron content. The average
kinetic energy of the evaporated neutrons is roughly
10 ' Mev, which also gives the value of the temperature
in our assembly. At the time of the formation of heavy
elements our model gives the following physical

- conditions:

T 10 ' Mev, p 1 g/cm'.

The fission fragments are still neutron rich and would
undergo P-decay until the limit for fission is reached
again. In this way a few fissions would take place before
the resulting fragments stabilize into known heavy
nuclei. It is clear, however, from the above picture that
the total mass of matter which remains in the form of
heavy nuclei is much greater than the total mass of the
available free neutrons which may later combine to
form light elements. Thus our model gives a large
abundance of heavy nuclei over the light ones. It
therefore fails to account for the abundance of the
light elements. We have been unable to find any simple
modification of the scheme (e.g. , by assuming a high

or numerically Z~104 for 2=107. In other wordsthe
droplet undergoes fission when nearly 0.1 percent of
the neutrons have changed into protons.

One can make an estimate of the energy released
in the fission process. This energy would roughly be
equal to the Coulomb energy of repulsion of two
daughter droplets when in contact. The fission energy
is therefore

initial temperature) which would lead to the right
abundance of the light elements while still preserving
the conditions for the Mayer-Teller mechanism of the
formation of the heavy ones.
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APPENDIX

In order to calculate the probability of formation of
a cavity, we need to know, for our purpose, an approxi-
mate wave function for the radial motion of the cavity. '
We make use of the B.W.K. method to solve the
Schrodinger equation.

From classical hydrodynamics the kinetic energy of
a hole expanding in an incompressible liquid of density
p is given by

El,;„=2m.pR'R', (A1)

where R is the radial velocity and R the radius of the
hole. The potential energy is

V= 4m.R'0 —(4/3) ~R'T.

The Hamiltonian of the system is

H=(P/8irpR3)+ V,

where P, the radial momentum, is given by

P=dEi, ; /dR=4spR'R. .

Symmetrizing (A3) we have

1 (1 1qa=
~

P2+-P2 ~+ V. —
16sp (R' R')

(A2)

(A3a)

(A3b)

A = 5'/16m. p. (A7)

~ The problem of the eigenvalues of a hole has been considered
by Auluck and Kothari (Proc. Cambridge Phil. Soc. 41, 180,
1945) when the tension term is absent.

The Schrodinger equation is

1 O'P(R) it." d' ( 1
+

f

—~(R) f

16irp R' dR' 16sp dR' ER'

+(E—V)P(R) =0. (A4)

We solve Kq. (A4) by using the B.W.K. method. Let
the solution in the erst approximation be

(A5)

Substituting (A5) in (A4) and retaining terms of the
appropriate order, we have

y'= +LR3(V—E)/2A)&, (A6)

where the prime denotes the first derivative with
respect to R, and
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Since for our purpose we are not interested in 6nding
the exac't value of the constant 8, which one can do by
the appropriate fitting of the solutions in different

Substituting (A8) in (A4) and again retaining terms of regions, we make use of a dimensional argument to get
the appropriate order, we have an approximate value. Near E=O

x'= --'.~"/e'+3/2R,

which gives on integration

x= ——,
' log&'+-', logR.

Hence, in the region where U) R the solution of Eq. (4)
1s

P=aR (y')-— e&,
(n"'R") '

since pg 0'~n'E'~'. Therefore

I y I

2-a2R-:/~-:. (A14)

f=BR&(y') 'e—
where 8 is a constant and p is given by

R' ( 4~
I

4xR'~ R*'T —
I

—dR-
2aE 3 )

(A9) The macroscopic approximation which we have used
will fail for radii comparable with /, the mean nucleon
distance. If we had solved the exact equation for the
lowest state of an incipient cavity, the solution would
have extended over distances of the order /. Hence we
may take as normalization condition

(~= t'RI —p IdR,
ER

where
n=4xo/2A, P=4mT/6A. -

(RP) (RPi '

+I(n) Ea)

Integrating (A10), we have

p& (n)4 15 ( a
@z,—y.=—

I

—
I

—tan-
I

24 &P) 8 ERP

RP q
-'*15 5 p RP i -'

+I 1-
I

—+-I~) 8 4( +) S= (20/pP)'e '&&a" (A19)

Hence the probability of formation of a particular
cavity per unit time is.

u =(2o/pP)'e '&&a» (A20)

R L (A15)
(A10)

From (A14) and (A15) we get

8' (n/p) '*. (A16)

From Eq. (A4) the expression for the current is given by

S= (h/8xpR') ($*8$/BR $8/*/BR)— (A1'7)
or

S= (h/8xp)B e (A18)

which, on substituting the value of 8' from (A16) and
using (A11) and (A7), becomes

where Ej is the value of E at which the integrand is
zero, i.e., Ri=30/T, or

where Q(R&) is given by 168(0"/A) (p&/Tr~').

We are interested in the rate of formation of cavities

p fn) '(15~ 5) per unit volume; for this we have to multiply (A20) by
yz, —y, =—

I
—

I I +— I. (A12) a weight factor which is of the dimension of an inverse
24(P) 0 16 8) volume. Its inverse evidently cannot be less than the

volume for a nucleon nor greater than the volume of a
Substituting the values of ~, P from (A11) in (A12) and cavity when it has become energetically stable. We
using (A7), we have therefore multiply (A20) by b ', where

5x)Tp~ *(3oq'( ~q 0'pl
I I

—
I I

1+- I=168 (A»)
8h( o. ) (T) E 2) kT"

6«30/T,

and thus obtain Eq. (4) of the text.

(A21)


