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The Scattering of Protons from Carbon*
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Using the impulse approximation, a formula has been derived which gives the energy spectra of protons
scattered from carbon in terms of the nuclear momentum distribution. Estimates of the errors involved in
this formula give values of 5—10 percent for a 340-Mev bombarding energy. A comparison is made with the
experimental data of Cladis, and it is concluded that a Gaussian momentum distribution gives a good fit to
his results.

~~OI LISIONS of fast nucleons with nuclei can be~ understood on the basis of a model proposed by
Serber' which treats such encounters as being made up
of a series of nucleon-nucleon interactions. In particular,
if the target nucleus is small and the bombarding energy
high (long mean free path), this theory predicts that
an incoming particle will ordinarily only scatter once
in traversing the nucleus and, therefore, that the
over-all collision will have many of the features of a
free nucleon-nucleon interaction. The differences be-
tween this so-called "quasi-elastic scattering" and true
nucleon-nucleon scattering are then determined by the
binding of the struck particle and thus can be used to
obtain information about nuclear structure, especially
about the nuclear momentum distribution. Or, knowing
the momentum distribution, one could use data on the
interaction of nucleons with nuclei to study funda-
mental processes involving them.

In the present paper we treat the particular problem
of the quasi-elastic scattering of protons from carbon.
This reaction has recently been studied experimentally
by Cladis' who found that the scattering is, indeed,
very much like that of free nucleons. Thus, the hy-
pothesis of a two-particle collision is verified and can
be used as a basis for understanding high energy colli-
sions. Our aim in this work will be to use this point of
view to obtain formulas giving the shapes and widths
of the energy spectra of scattered protons in terms of a
single momentum distribution of particles in the carbon
nucleus. Comparison of these formulas with Cladis' re-
sults will then enable us to obtain an expression for the
momentum distribution and, finally, will permit a
judgment as to the degree of correctness of this type
of approach to problems involving energetic collisions.

The mathematical technique for handling a scatter-
ing problem of the type we are considering is the im-

pulse approximation, first formulated by Fermi' and
elaborated by Chew. 4 This method takes advantage of

the briefness of nucleon-nucleon interactions as com-
pared to nuclear periods, assuming that during the
collision the nucleus is "frozen" in the sense that no
momentum is exchanged between the two interacting
particles and the rest of the nuclear system. The colli-
sion, therefore, can be looked upon as an ordinary two-
body scattering with the exception that the target
particle is moving at the time of impact. Thus, the
amplitude for scattering from the particle labeled rI in
the nucleus is
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where &0 is the ground state of carbon with the portion
referring to particle one written in momentum space,
a(pfok)g, ' gfp, sf' ) the amplitude for scattering of free
nucleons of momenta p, k and spins (isotopic and real)
$„$, into the state labeled by «, s and fp', $&', and pI
a wave function of the residual nucleus. Of course, the
total amplitude involves a sum of scattered waves from
all the particles within the nucleus; hence the cross
section contains interference terms between waves
scattered from different nucleons. However, these are
small for angles of scattering greater than about
twenty degrees since they then involve high Fourier
components of the ground-state wave function. 5 Thus,
it is sufficient for our purposes to calculate A;, square
it, and then sum over the different particles within the
nucleus. Furthermore, since we are principally interested
in the energy spectrum of the outgoing particles, we
also sum over all final states consistent with a mo-
mentum q for the scattered proton. The cross section
is then
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*This work was performed under the auspices of the AEC.
' R. Serber, Phys. Rev. 72, 1114 (1947).

John Cladis, thesis, University of California (1952); Cladis,
Hess, and Moyer, Phys. Rev. 87, 425 (1952).

3 E. Fermi, Ricerca sci. VII-II, 13 (1936).
4 G. F. Chew, Phys. Rev. 80, 196 (1950).
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For further discussion of this point see J. Heideman, Phys.
Rev. 80, 171 (1950) and E. M. Henley, thesis, University of Cali-
fornia (1951).
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Because of the two-particle nature of the interaction
the 6nal states Qr that contribute to the cross section
are clustered in a fairly narrow energy band. This means
wc cRn replace Ey ln thc 8-function by some avcrRgc
value Eq and perform the sum over f explicitly by the
closure principle. 6 The result is
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angle of lr, from p —q. The integrations can now be
done immediately to give
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where the factor 2klp —ql is a Jacobean which is intro-
duced by thc lntcgratlon over thc deltR-function. The
limits on the 6nal integration over k are given by the
condition lcos8i,

l
~&1 which, combined with Eq. , (5'),

gives the following equation to determine them:

(2pq cos8—2q' —(2M/h') B r—k')' —4k'
l y —q l

'. p)

where B,r Eo+——Er—. Neglecting the cross terms aris-
ing from different orientations of $i, ' we can rewrite this
formula as
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The integral J'&0(q+s —p, ri, rii)'dr is the mo-
mentum distribution, which henceforth will be desig-
nated by E(if+ s—p). Furthermore, it is reasonable to
suppose that lal' is dependent only upon the mo-
mentum transfer p —q, which permits us to take it
outside the integral. Therefore, letting

lal'=
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vl' and ll+s —y=k,
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Since X(k) is dependent only upon the magnitude of
k, and not upon its direction, the angular integrations
can be performed without putting in an explicit ex-
pression for the momentum distribution. To do them,
expand the 5-function to
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where in the last line we have made use of the fact
that (M/h')B ~ and q

—p cos8 are small for quasi-
elastic scatterings (q —p cos8 would be zero for free
nucleon scattering). The upper limit on k is very large
compared to all nuclear momenta so it can be replaced
by in6nity. Denoting the lower limit by k g, where

k . '= $q' —pq cos8+(M/h')B gj'/

i
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the 6nal expression for the cross section is
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Because of the similarity between quasi-elastic scatter™
ing and that of free nucleons, the values of q for which
d 0'/ifQdE is lal'gc llc ilcal' p cos8. Tlills, 111 tllc slowly
varying parts of the above expression it is a good
approximation to replace q by p cos8 for, as will be
seen later, the small errors made by this replacement
are no larger than those inherent in the method of
deriving formula {10).Thus k;„' becomes simply

8l 2Pq cos8—2q' —k' —(2M/h')B, r—2k (y—lf)j (5')
Lp' sin'8+MB;y/h'1, (11)

(8 is the angle of scattering), and measure 8i,„ the polar

0 This analysis closely parallels that given by G. I. Chew and
M. L. Goldberger, Phys. Rev. 77, 470 I,'j.950).

~ Strictly speaking, this is only correct if there are no tensor or
spin-orbit forces operating in the carbon nucleus.

wlllch, if MB;y/h is ncghglblc, reduces to tile even
simpler formula

k;,= {q—p cos8) cot8.
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Before these formulas can be used to obtain X(k)
we must decide what to substitute for

~
V

~

'. If q= p cos8
(the free scattering value) then

~
V

~

' is directly propor-
tional to either the n —p or p —p cross section, de-

pending upon whether the particle scattered from is a
neutron or a proton. In the applications, therefore, we
will replace

~

V~' by the appropriate free nucleon cross
sections. This procedure is actually quite good because,
at the angles and energies at which we will work, the
e—p and p —p cross sections are changing slowly and
the spectra are fairly sharp. However, the formula is
left in the form (10) to make exphcit the fact that the
formalism can equally well handle a case where the
basic matrix element is changing rapidly.

To investigate the errors inherent in formula (10)
two types of approach were used. The first consisted in
solving a simple problem for which the matrix ele-
ments are known, and then comparing the result with
that obtained by using Eq. (10). The problem chosen
is that of the scattering of an energetic particle from
another bound harmonically to a center of force (the
incoming particle assumed not to interact with the oscil-
lator potential). This is about the simplest system
imaginable which represents, even crudely, the inter-
action of a fast nucleon with a neutron or proton in a
nucleus. The results of this calculation are illuminating;

they show that energy spectra obtained by the two
methods are quite similar, di6ering only in terms of the
order k'/p', where k is the momentum of the harmoni-

cally bound particle at time of collision and p that of
the bombarding particle (here the bombarding energy is

high so that k2/p'«1). In particular, the positions of
the maxima in the two spectra differ by ko'/4p, cosg,
where 8 is again the angle of scattering and ko' ——2M~/k'.
This means a percentage error of ko'/4po' costt.

The other estimate of the error in (10) was found by
rederiving this equation in a way which, though more

cumbersome and not as physically meaningful as the
one we used previously, permits a rough evaluat1on of
some of the factors neglected in obtaining it.' This new

derivation is carried out by taking the current of
scattered particles

(here both 1to and fr are wave functions of C", and k~

is the wave number of the outgoing proton given by
k'k„'/2M= k'p'/2M+Eo Z„), replacing —Z„by the

For an elaboration of this method see P. A. Wol6, thesis,
University of California (I951).

Hamiltonian H, of the carbon nucleus (since it operates
on P„), and then expanding exp(ik„ro) into a power
series in II,. The first three terms in this expansion can
be evaluated exactly by swinging II, over to operate
on (VP,)*, using the closure principle to do the sum
over n, and then evaluating the resulting integrals by
Fourier analyzing both $0 and V. The result is the
integral over q of a formula which is just the same as
(10) except that in this case there is no term repre-
senting the excitation formerly lumped into 8;f, Fur-
thclInorc thc fouI'th tclGl 1n thc sc11cs, wh1ch ls Inuch
too complicated to calculate exactly, can be roughly
evaluated and gives an estimate on the error in formula
(10) again of the order of k'/p'.

For the scattering of protons from carbon k' ranges
up to values corresponding to energies over 30 Mev so
that, with the bombarding energy of 340 Mev used by
Cladis, we should expect the spectra, we predict to be
in error by as much as 10 percent in the wings of the
curves where large k values are involved. Therefore, in

picking a momentum distribution to fit the data it
must always be remembered that the theory can only
diRerentiate between those giving spectra that diRer

by 10 percent or more.
In connection with the estimates of error made here

one final point is worth mentioning. As was stated, the
first three terms in the series expansion described above
lead directly to formula (10) after simple manipula-
tions. On the other hand, the fourth term in this ex-

pansion cannot be calculated at all precisely, since it is
of quite a diferent type from the previous three, rc-
quiring detailed knowledge of H, and $0 for its evalua-
tion. The conclusion which might be drawn from this
fact is that to improve the' impulse approximation one

m,ust have much more detailed information about nu-

clear structure than that given merely by a momentum
distribution and, therefore, that a formula such as (10)
is the best that can be obtained with the present
knowledge about the constitution of nuclei.

Before using Eq. (10) to determirie the momentum

distribution, there are two small points about this for-
mula that must be considered. The first of these has
to do with the fact that the nucleon-nucleon collision,
instead of occurring in free space, actually takes place
inside the nucleus which is a region of a negative po-
-tential. Therefore the wave numbers that go into Eqs.
(1)-(12) should be those appropriate to nuclear matter
rather than vacuum. To illustrate how this cGcct works
let us consider the interaction of a fast proton with a
stationary nucleon in the nuclear well. Letting primed
quantities denote wave numbers inside the well, un-

primed those outside, and D the depth of the well, we

find the following equations relating the final to the
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incident energy:

q'=P' cos8 (8=scattering angle),

Es„g——h'q'/2M = (h'q"/2M) —D
= (h'p" cos'8/2M) —D

= (h2p' cos'8/2M) —D sin'8
=EI«,q,„,cos'8 —D sin'8. (14)

6 FERMI DISTRIBUTION

G. GAUSSIAN OISTRIBUTION

I

8 ~ 30'

Thus, in first approximation, the effect of the nuclear
well is to move all proton energy spectra to a lower
energy by an amount D sin'0. This effect will be taken
into account in the calculations by assuming that
formula (10) applies to wave numbers inside the well

and then correcting initial and final energies by the
well depth. The values of D used were the slightly
energy-dependent ones calculated by Roberts and
Jastrow. ' However, for the angles at which we worked
a constant D of 30 Mev gives almost the same results.

The second point concerns the quantity 8;~ which
has tacitly been assumed to be a constant, independent
of the scattering angle. In the case of pick-up deuterons
this assumption was correct, for Chew and Goldberger'
found that by subtracting a fixed 25 Mev from the
energy of the outgoing deuteron they obtained good
agreement with experiment. Actually, however, the
formalism given in Sec. II is inadequate for treating
excitation eGects, and it is not surprising that in the
present case it turns out that we would have to
choose 8;I angularly dependent to make formula (10)
fit Cladis' data. If we did this, though, we would be
going at the problem just backwards for, as Chew and
Goldberger emphasize, the experiments show that the
excitation is constant and that we should modify (10)
instead of making 8;~ a function of the scattering angle.
Unfortunately, we have not found a way of carrying
out this modification, nor has it been possible to con-
struct a model, simple enough to solve, which would

give quantitative insight as to how this excitation and
binding energy is removed from that available to the
scattered nucleons. Hence, in treating the data the 8;~
term will be dropped entirely from formula (10). All

the curves will then be misplaced somewhat on the
energy scale, but we will still be able to compare their
shapes with experiment since a correct calculation of the
binding and excitation effects would probably shift the
spectra without radically altering their shape.

V.

In comparing (10) with experiment there are a
number of empirically obtained expressions for lV(k)
that we may use. For instance, Chew and Goldberger'
in their paper on the formation of pick-up deuterons
in carbon use a distribution of the form

1V(k) = gn.n„/(n~'+ k')', with h'n„'/2M = 18 Mev.

9 R. Jastrow and J. Roberts (unpublished).

Fro. 1. Energy spectrum of protons scattered from carbon
at 30' (experimental points are those of Cladis).

Similarly, Henley and Huddlestone" in papers on meson
production in carbon have used a Gaussian distribution,

S(k) = (8 /7r')nexp( —k'/n'), with h, 'n'/2M= 16 Mev.

Finally, there is the theoretically obtained Fermi dis-
tribution of a degenerate nucleon gas. Figures 1 and 2
give the comparison of the spectra, obtained by sub-
stituting these three momentum distributions into for-
mula (10), with Cladis' experimental data. In each case
the theoretical curve has been shifted down in energy
as explained in the previous section. Furthermore, there
is included a correction for the multiple scattering
(assumed to be mainly double) of the proton within the
carbon nucleus. The form of these spectra is calculated
using the Monte Carlo method" to evaluate a compli-
cated multiple integral that arises, and then the ratio
of singly to multiply scattered protons is estimated
by using values of nuclear radius and mean free path
given by Fernbach. " Typical shapes of these double
collision spectra, which contribute about fifty percent
of all scattered protons, are illustrated in Fig. (3).
Fortunately, inclusion of these curves has a negligible
effect on the forms of the quasi-elastic curves provided
we restrict ourselves to the high energy side of the
spectra. Thus, by using the upper half of the energy
distributions, we are able to draw reliable conclusions
about the momentum distribution in spite of the fact
that the multiple collision spectra cannot be calculated
accurately. Finally, it should be mentioned that the
theoretical curves in Figs. 1 and 2 have been normalized.
This should not be taken to mean that the theory does
not predict total cross sections well for it does. How-
ever, because of the uncertainty in the multiple collision
spectra it is very hard to estimate the relative con-
tribution of the quasi-elastic peak as compared to the
long tail of lower energy protons. From the point of

"E.M. Henley and R. H. Huddlestone, Phys. Rev. 82, 754
(1951);also see reference 6.

"M. L. Goldberger, Phys. Rev. 74, 1269 (1948), gives details
of the application of this method to nucleon-nucleus collisions."S.Fernbach, thesis, University of California (1951).
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Fro. 2. Energy spectrum of protons scattered from carbon
at 40' (experimental points are those of Cladis).

view of the theory, this means that, although we do
not know the height of the quasi-elastic peak too well,
its shape is determined and permits a study of mo-
mentum distributions.

From Figs. 1 and 2 it is clear that the only one of the
three momentum distributions that is suitable is the
Gaussian. This is in agreement with the work of Henley
and Huddlestone who found, as we do, that the Chew-
Goldberger and Fermi distributions have, respectively,
too many and too few high momentum components.
Moreover, further calculations done with values of o.'
corresponding to 12 and 20 Mev show that in neither
of these cases can the theoretical spectra be reconciled
with Cladis' data. Thus, the theory, if correct, seems
to be quite sensitive to the type of distribution used.
Of course, agreement at two angles does not verify the

200 300

E (MEV)

Fjo. 3. Typical double collision spectra for 8=30' and 40'.

theory, and it will take considerably more extensive
data before a really critical test is obtained. What is
needed are accurate spectra for a number of angles.
With these one could determine 1V(k), as was done here,
from the spectrum at one angle and check it, and the
whole theory as well, by examining the ht at other
angles. However, until such data are available, it is
interesting to see that the spectra at two angles can be
understood in terms of a simple model and that this
ht already fixes the momentum distribution to a very
considerable extent.

In conclusion, the author wuuld like to express his
thanks to Dr. Cladis for many stimulating conversa-
tions and to Professor Robert Serber, whose guidance
and encouragement contributed materially to the
writing of this paper.


