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An attempt is made to explain nuclear saturation by means of a nonlinear pseudoscalar meson field.
The same nonlinearity as that introduced by Schiff for the scalar case is employed; the treatment follows
similar lines, using classical field theory. The total source strength is calculated for an isolated nucleon at
rest, and an expression for the two-nucleon interaction in free space is obtained. It is shown that both of
these are infinite, so that a cutoff must be introduced. For the two-nucleon problem the variation method
is used with a simple trial function, which is the superposition of the single-nucleon meson field amplitudes;
this should be a good approximation for large separation of the nucleons. Then the nonlinear terms of the
two-particle interaction are shown to be separable from the linear ones, and are repulsive. The nonlinear
terms can also be separated in the many-body problem, but they are not necessarily positive definite here,
and hence need not lead to saturation. A nuclear model, based on a lattice structure with stationary nucleons

is discussed qualitatively.

I. INTRODUCTION

HERE have been several attempts to explain

nuclear saturation consistent with known two-
body interactions. Schiff recently proposed a nonlinear
meson theory of nuclear forcest? to explain both
saturation and the shell structure of nuclei on the basis
of many-body forces. Two methods by which a non-
linearity may be introduced into  the usual meson
theories were discussed. The more promising of these
methods, at least from the point of view of classical
field theory, appeared to be the addition of a nonlinear
term to the free meson wave equation. This case was
studied in detail in (S) for a neutral scalar meson. The
nonlinearity introduced into the Hamiltonian density
was a positive one, proportional to ¢, where ¢ is the
meson field amplitude. This term corresponds physi-
cally to a point-contact repulsion between mesons.
The results seemed sufficiently promising that the
investigation of a neutral pseudoscalar meson has now
been undertaken along similar lines. The reason for
this choice is that all recent evidence indicates that
m-mesons are pseudoscalar.®~® The neutral meson is
studied because of its inherent simplicity. The whole
work is only intended to be of an exploratory nature,
but the results are significantly different from the
scalar case.

We start with a Lagrangian for the meson field and
meson-nucleon coupling and derive a field equation by
the usual variation procedure. With this equation as a
basis, the problem of an isolated nucleon at rest is
discussed. The two-nucleon interaction in free space is
treated, and a generalization is attempted for the
interior of a heavy nucleus. In no instance have detailed
calculations been made, since the nature of this study
does not justify the lengthy computations that would

1 L. I Schiff, Phys. Rev. 84, 1 (1951), referred to here as (S).
2 L. 1. Schiff, Phys. Rev. 84, 10 (1951).

3 K. M. Watson and K. A. Brueckner, Phys. Rev. 83, 1 (1951).
4 Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951).

5 R. E. Marshak, Revs. Modern Phys. 23, 137 (1951).

be required. General inferences, however, are made
whenever possible.

II. FORMULATION

The Lagrangian for a pseudoscalar meson with
pseudovector coupling to a nonrelativistic nucleon is
(units of A=c=1 are used)

1= [Thoe/atp— (v 9r—G(6)
— fx, Do vo/uldr. (1)

Here ¢ is the meson field amplitude, f is the source
density, ¢ is twice the nucleon spin, u is the meson
rest mass, and G(¢) is a nonlinear term which ap-
proaches 3u?¢* for weak fields. After a partial integra-
tion, dropping the surface term, we get

I= f [3(09/ 00— 1(V )i~ G(&)+ ¥ - (o) /udr, (2)

and the wave equation becomes
Ap—8¢/0P—G'(¢)= =V - (fo)/ u, ©)

where the prime indicates differentiation with respect
to the argument. If = is the momentum canonically
conjugate to ¢, the Hamiltonian can be written as

H= f [3nH (Vo) +G(8)— v - (o) /uldr. (&)

In order to obtain saturation, G(¢) should be chosen
such that ¢ increases less rapidly than lineraly with f.!
Since ¢ depends only on V- (fe), no direct requirement
is imposed on G(¢). However, for f=0, that is for a
free meson, the wave equation is exactly the same as
that of the scalar meson. Thus, it is assumed in analogy
with (S) that G(¢) is

G(¢) =31 ¢*+1a’¢", ©®)

where « is a constant to be determined by comparison
of the calculated and experimental nuclear energies.
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As for the scalar meson, the ¢* term can be interpreted
as a-point-contact repulsion between mesons.

The free meson solutions are the same as those in
(S) because the wave equations are alike. No further
discussion is therefore necessary. The desirability of a
variation principle for the solution of the meson field
amplitude has also been indicated in (S). It can be
shown, by a completely analogous procedure, that the
negative of the Lagrangian also gives an upper limit
to the energy here.

III. ISOLATED NUCLEON AT REST

The treatment of the pseudoscalar meson field as a
classical one is complicated by the introduction of the
spin. The usual definition, taken over from the limiting
case of quantum mechanics is® {o., 0,} =—20,, to-
gether with cyclic permutations, where { } represents
the classical Poisson bracket. In the case of an isolated
nucleon at rest, the simplest solution is to treat ¢ as a
fixed and constant vector of unit length, oriented along
the z axis. Then ¢ will not necessarily be spherically
symmetric; for simplicity, however, it is assumed that
the angular dependence of ¢ can be separated. The
meson field amplitude then becomes

6(r)=R(r)©(0) =[x(r)/r]O(0), (6)

and the wave equation (3) can be written as

x" (r) ot

7 73 sinf

=L 9, 0)= _f(aﬁﬂrﬁ ff). (7)

" u dr r 96

The separation of variables in Eq. (6) is possible if
O©=cosf and the source density is the physically
plausible f(r)=P(r)4Q(r) cos®d, where P(r) and Q(r)
are independent functions. For this case, Eq. (7)
separates as follows:

3
—{sinf©(0)1-G'(¢)
a8
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and if an integration is performed, this becomes
X3
QO=au f ;;dr'.,
©)

’ 3

LX) x X X
P+Q=—p —|———p.2f—~dr’—-a2f——dr’ .

7 r? v 7’3

The integration constants are zero, since f(r) must
approach zero for large radial distances.

8W. Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946), p. 15.

If G(¢) is taken to be 1u2¢>+a?¢”/n, where # is not
equal to 2, the angular separation indicated in Eq. (6)
is not possible except for #=4, unless a source density
is used that is much more complicated and has many
more terms than are used here.

It is of interest to study the requirements imposed
on the meson field strength and on the spatial extent
of the source density necessary to obtain a finite total
source strength, g. This is given by

¢= [ fdr=tx [ TP+O-10T (10

Substitution of Eq. (9) into Eq. (10) shows that the
integral is well behaved everywhere except possibly at
the upper and lower limits. Since most sources fall off
sufficiently rapidly at large distances, we need only
consider the divergences at vanishingly small radii. If
x(0) is finite, then g in Eq. (10) is well behaved. This
requirement is less stringent than that for the scalar
case, where x(7) must at least be proportional to 7 for
small radii.

The behavior of the meson field amplitude at small
r depends on the spatial extent of the source. The
broader the source, the less singular is x(0). For the
narrow source chosen here x(0) is not finite, and a
cutoff must be'introduced in evaluating the total source
strength. Because the treatment used is nonrelativistic
and neglects nucleon recoil, it is not unreasonable to
introduce a cutoff for the source density at the nucleon
Compton wavelength., When »<1/M, where M is the
nucleon mass, f is taken to be a constant equal to the
value it has at the cut-off radius.

For a distributed source, it is simpler to start with a
given meson field amplitude. The narrowest source is
obtained if the linear field theory function ¢ is used:

o1(0)=(A4/w)e- v (e#/7), (11)
(A= )= —4ndo-V5(r)/, (12)

where 4 is an arbitrary constant to be determined. A
substitution into Eq. (9) and an integration gives

ad\? 2 6u 2w
P=A4 { 4m(r)+ (-—) e-w[ +—t—
u 3505 3504 358

dr’
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13u®  41ut 3ub Oubedrr pe—dur’
- - +—+ f
1402 140r 280 10

9“67 27#71’263’” Vol
— f dr’] |>
280 280 7’
2 2 3 4
Q=A{(fi4—) e-aw[i+ e e
i T Trt 3524 140/2 1407

3“5 9“61, 27[.477'263’” e—3ur’
—_— f dr’] l .

(13)

280 280 280 ’



44 E. M. HENLEY

The total source strength is

o= f fO)dr=ard (143776247,  (14)

where the cutoff mentioned previously has been intro-
duced in evaluating all but the §-function integral. The
divergence in g is 1/7%, so that the exact value of the
cut-off radius and the cut-off procedure will have a
relatively large effect. The nucleon self-energy is in-
finite and is not evaluated here.

IV. TWO-NUCLEON INTERACTION IN FREE SPACE

For the two-nucleon problem the meson-nucleon
coupling is taken as

P12
——012" Vfl2"‘——[0'1 V fi(r—r1)
u “

+o2-Vfi(r—15)], (15)

with fi(r)=P(r)+Q(r) cos’d. No assumption is made
about the relative direction of the nucleon spins, but
the sources are taken to be sufficiently far apart that
the variational trial function, ¢12"= ¢1(r—11)+ 1 (r—13)
=¢1+¢s, with ¢:1(r) given by Eq. (11), represents the
meson field to a good approximation, and no minimi-
zation with respect to an arbitrarily introduced pa-
rameter is carried out. From Eq. (4), the Hamiltonian
is given by

H'= f[%(v¢12”)2‘|‘0(¢12”) — (¢p12%/ w)o12: V f121d7, (16)

and the interaction energy is Hinter’=H"—2H;, where
H, is the single nucleon self-energy. This energy is
subtracted before the integration is performed. The
result is

Hinter” = f[V¢1 . V¢2+ #2¢1¢2

+ o2(pPpot p1p’+ S %bs?)
— (¢1/ w02V fo— (¢o/w)er-V fildr.  (17)

We use the wave equation (3), the relation (12), and a
partial integration to obtain

Hineer'= (4% )0 Vou-¥ (% R)+ 32 f oo

A? 3 3u u? e HE
=~[512(—+—+—)6—“R+%01'02#2 J
R R R R

2

%a2f¢12¢22d7-, (18)

where R=r;—r; and Si;;=(01-Ros-R/R2—ay-04/3).

The first term of Eq. (18) (in square brackets) is the
usual linear interaction energy. The second term, which
arises from the introduction of the nonlinearity, is
positive definite, and is therefore always repulsive. It
might be noted that the integral to be evaluated in
Eq. (18) is logarithmically divergent, so that a cutoff
must again be introduced. The expression obtained for
the interaction energy is only valid for large nucleon
separation due to the assumption made for ¢;s°.

V. NUCLEAR MODEL

A generalization of the two-body problem is that of
nuclear matter. In these preliminary considerations a
model for the interior of a nucleus, treating all nucleons
alike and neglecting edge effects, is discussed qualita-
tively.

A simple model for nuclear matter is obtained by
assuming that the nucleon sources are distributed in
such a way that the source density is approximately
constant. However, the nucleon spin must also be
specified. One of the primary difficulties of any classical
nuclear model, using pseudoscalar mesons, is the
treatment of this nucleon spin density.

Of the models considered, the most promising one for
the interior of the nucleus is a lattice. Stationary, but
interacting nucleons are assumed to be at the centers
of the basic lattice structures, which are taken to be
cubes.

Since the nucleus is treated classically, the nucleons
align their spins so as to give a minimum resultant
potential energy.” If the nonlinearity is neglected
momentarily, because maximum binding energy, within
saturation, is desired for the linear case, then each
lattice cube contains a point source. The effective
nucleon source density is taken to be 3_; oy Vfi(r—r;).
The total potential energy is then

A2 e—uR
H= X H=— T ¥ 0¥ 7(

i<j § u?i<i g

with R=|r;—r1;|. If only interactions between nearest
neighbors are considered, it is found that one of the
configurations which gives a minimum potential energy
is that shown in Fig. 1. This lattice, consisting of
alternating layers of nucleon spins up and down, has
intuitive appeal, as it is known that there exists a
correlation in the spatial distribution of particles of
opposite spin, due to the Pauli exclusion principle.
The potential energy per nucleon for this model is

purely attractive. It is
5. 514 6p. 3.357u2
Hinger/nucleon= -———( —+ ), (19)
T a

where a is the lattice spacing. This is equal to (47/3)r,
if the volume of each cube is 477:3/3, where 7, is the
nucleon spacing in the nucleus.

7 R. Serber and S. M. Dancoff, Phys. Rev. 63, 143 (1943).
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We want the re-introduction of the nonlinearity to
cause saturation. The potential energy, with this term
included must therefore be less than that due to the
linear terms alone. The initial trial function for the
meson field is taken as ¢y=2_; ¢p1(t—1.)=_; ¢;, where
¢1(r) is defined by Eq. (11). This function can only be
expected to be a good approximation for at least
moderately large a. With this choice of ¢x the interac-
tion energy is

W= Hy— 5 Hom [ L9561+ 31 007
+3e2 (i ) =L/ 05 Vi
=32 V) =3 dP— 1P it
—2Zi(¢/wei- v fi}dr.

The integration is to be carried out over a single cube,
considering only forces between adjacent nucleons. Use
of Eq. (3), Eq. (12), and a partial integration (¢;=0
on the surface of each basic cube) gives

A2 e-—nR
HNinter=%ZZ_ﬂi'vcj'v( )
istj § u? R

+2y v =5 [ Gorsr

4 it ik kAL 1
46020+ dipibrdr)dr,

with R=|r;—r;|. The exact evaluation of the last
integral is lengthy, but a simple calculation shows that
for the particular model chosen the logarithmic diver-
gence cancels in the limit of vanishingly small 7, by
reasons of symmetry. Physically this implies that any
slight disturbance from exact symmetry causes the
potential energy to become infinite. The integral in
Eq. (20) must be larger than zero, independent of the
particular model chosen, in order to satisfy the satura-
tion requirement. The integrand is, however, not
necessarily positive definite, since it can be rewritten as

> X XX 6{[bi(ditdite)
i<i i<k k<l 1
+ b (it 1)+ drdi P —2¢ipipri} .

If ¢;+oit+¢:=0, and ¢; is large and positive, this
expression is easily seen to be negative. A sufficient
condition for the integrand to be positive definite is
that all meson field amplitudes have the same sign
wherever they overlap,® or that four-body interactions
can be neglected. For the symmetry shown in Fig. 1,
the integral of Eq. (20) is positive because all meson
fields have the same sign wherever the overlap is large.
Once the potential energy is found, the parameters «
and A can be evaluated as in (S). That is, E= Hinter
+kinetic energy is minimized with respect to 7. This

(20)

8 Hardy, Littlewood, and Polya, Inegualities (Cambridge
University Press, London, 1934), p. 51.
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Fi1c. 1. Lattice model of nuclear matter. The arrows indicate the
projections of the individual nucleon spins,

gives a relation between 7o, Emin, @, and 4. Since the
experimental values of 7o and Emia are known, there
are two relations from which the two parameters o
and 4 can theoretically be obtained.

VI. CONCLUSIONS

A nonlinear meson theory analogous to that of Schiff
has been investigated for neutral pseudoscalar mesons.
The theory was noted to differ from the scalar one! in
several important respects. Whereas the angular -de-
pendence of the pseudoscalar meson field requires the
same nonlinearity as that introduced in (S) to allow
separation of the wave equation, the theory does not
require a cutoff if the radial dependence of the field
amplitude is the same as that used for the scalar case,
ie., e=#/r. However, the choice of such a radial de-
pendence results in a rather broad source. On the other
hand, if the single nucleon meson field is chosen to be
the same as for the linear pseudoscalar meson, the
source is much narrower, but the strong singularity at
the origin necessitates a cutoff to be introduced not
only in evaluating the total source strength, but also
the potential energy of two or more nucleons. Only one
of the integrals with divergent features has been evalu-
ated, because it was felt that these difficulties are real
ones and should be eliminated before any further work
is carried out with such a theory. Variational expressions
for the two-nucleon interaction and for the potential
energy of nuclear matter have, however, been found.
The latter has been based on a lattice structure for
the interior of the nucleus, and a simple variational
form for the meson field amplitude. A consistent treat-
ment would require the quantization of the field and a
quantum-mechanical treatment of the nucleon spins.
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