
I I. LATTICE GAS AND ISING MODEL

Clearly
I
fa'I )1 so that hypothesis A implies that (65)

does not vanish. The above arguments evidently hold
for any general value of m and this completes the proof
that as 2'I—+ ~, s2 approaches a limit smaller than unity
in absolute value.

(4) Keeping sp, s4 s„ fixed one can increase Is, l

and define 2'2 as a continuous function of 2'&. Since by
(59b), I spl starts to be =1 in absolute magnitude and
tends to a limit &1 in absolute magnitude as si—+ ~,
there must be a value of si equal to si' so that s2 assumes
a value 2'~' equal. to 1 in absolute magnitude, i.e.,

Q (si', sp', sp, s„)=0 (66a)

Continuing this way we finally get a set of values z&",
z2", s„"such that

Q (si", sp", . s ")=0, (67a)

But Q is linear in si". Writing Q =Bsi"+C where
8 and C are independent of si one verifies easily that

B=sg"s" ~ s "6,
where 6 is the complex conjugate of C under the con-
dition (67b). Hence

lzi'l)1 Izp'1=1, Ispl, lspl, ~ Is I
1. (66b)

Ke can fix 2'2', s4, s5, 2: and regard s3 as a function
of si' and follow the same procedure by increasing

I
si'

I

till 23 assumes a value equal to 1 in absolute magnitude.

which contradicts (67b). (It is easy to show that B does
not vanish by making a transformation similar to (64)
and reduce 8 to products of some x's with Q i.)

This completes the proof by induction.
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Previous theoretical treatments of high frequency electrical breakdown in gases based on the Boltzmann
transport equation were applied to specific gases and met with mathematical difhculties when applied to
higher pressures. We now present a simpler solution applicable to any gas and to a wide pressure range.
Agreement between theory and experiment with hydrogen gives confidence that the energy distribution-
function is correct and the distribution function is therefore used to compute other quantities of physical
interest.

I. INTRODUCTION

' 'N a recent series of papers, the electrical breakdown
~ - of helium and hydrogen in a microwave cavity has
been predicted from the measured probability of col-
lision P', and the corresponding probabilities of excita-
tion P and ionization P;. The only processes assumed
to take place are acceleration of electrons by the field,
elastic and inelastic collisions with the gas, and diffusion

to the walls, which in turn have no effect other than to
absorb the electrons and ions. Mathematical difhculties
arose in the method used in these papers when applied
to higher pressures. The simpler solution given in this
paper is applicable to any gas and to a wide pressure
range.

IL BOLTZMANN EQUATION

When a high frequency electric field E=Z„exp(j t)pp
is applied to a gas, the velocity distribution F(v) of the

~ This work has been supported in part by the Signal Corps,
the Air Materiel Command, and ONR.

free electrons is determined by the Boltzmann equation:

(aF/at) =C V, vFPV, eE—F/m.

C represents the eGect of collisions and V'„and V', are
the gradient operators in configuration and velocity
space. This equation is solved by expanding the dis-
tribution function in spherical harmonics in velocity
space and in Fourier series in time,

F=pi gq F Fp( i8c)osexp(jkppt)
=Fp'+v

I
Fp'+Fi' epx( j(tp)] /.v(2)

All terms except the three indicated may be dropped
when the geometry, pressure, and frequency fall within
certain limits which have been discussed by Brown and
MacDonald. ' These limits require that the mean free
path be less than any dimension of the cavity, that the
frequency be sufficiently high so that the electrons do
not lose appreciable energy between cycles, and that the
average motion of the electrons resulting from the
action of the field and of collisions be sufFiciently small

' S. C, Brown and A, D. MacDonald, Phys. Rev. 76, 1629 (1949).
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so that the 6eld does not clear the electrons out of part
of the tube in each half-cycle.

In evaluating the collision term it is convenient to
replace the customary mean free paths by the collision
frequencies for momentum transfer, for excitation, and
for ionization defined by

v, = fJ' vpF, (0)(1—cos8) sin8d8dy,

where E„and I'; are the experimentRHy defined prob-
abilities of excitation of all levels and of ionization and
F,(8) is the probability of scattering into a unit solid
angle inclined at 8 to the original direction.

If the temperature of the gas is negligible compared
to that of the electrons, the latter will lose a fraction
2m/cV of their energy, per momentum transfer col-
lision, to recoil of the molecule with which they collide.
The mass of the molecule is M and that of the electron
m. This fraction will be increased if there is appreciable
transfer of energy to rotation or vibration but it is
bcllcvcd thRt this ls ncgllglblc.

A collision producing electronic excitation differs
from that producing recoil, rotation, and vibration in
that the colliding electron loses practically all its energy
instead of a very small fraction of it. These processes
are treated mathematically as though fast electrons
disappeared at the rate (v,+u, )FO' and slow electrons
appeared at the rate qFQQ. Making use of these ideas
in the evaluation of the collision term, introducing Eq.
(2) into Eq. (1) and equating coeKcients of similar time
and angle functions yields one scalar and two vector
equations:

V,FQ'= —V~„FQ',

(v.+j~)F&'= (eE~/m) BFo'/Bv.

III. DISTRIBUTION IN SPACE

The direct and alternating current densities,

(6)

(7)

JQ— —eFO'(4v v'/3) dv = e~ „Dn,

J~—— —eP~'(4v v'/3) dv = euEn,

are fully determined by the components Fo' and F~'
of the distribution function. These are, in turn, found
to be derivatives of Foo. Substitution of Eqs. (6) and

(7) into (8) and (9) serves to determine the diffusion and

( *+ *—g)Fo'= —(/3)v. &o'+(1/ ')&

XP(ev'/6m)(Ev Fy'),,$+(m/M) p.v'FQ'j/av, (5)

ac mobility coefficients in terms of J"Q .
00 Vg

QD=
i

PQ 4''V dV,
~ Q 3' (10)

nvg= ~ vgF0 4%v dv,J,
and, as every exciting collision yields one, and every
ionizing coHislon two slow clcctrons

gF0'4vv'dv=n(r +2r ) (15)

Use is made of these relations in multiplying Eq. (12)
by 4vrv'dv and integrating over all velocities. The term
lQ blRckcts VRQlshcs Rt both llIQlts RQd onc obtains

nf;+ r7'Dn =0. (16)

This is a diffusion equation and expresses the fact that
at breakdown the ionization rate equals the diffusion
rate. It has a solution which is everywhere positive
only if v;= D/A. ', where h. is the chffusion length for the
cavity. This may be called the break'down condition.

IV. DISTRIBUTION IN ENERGY

If the function J QQ is assumed to be the product of
a function n(x) of space and a function f(u) of the
energy u, de6ned by u=mv'/2e, we can make use of
Eq. (16) to replace V', 'F00 by nf/A' and obtain —the
following equation for f(u):

2eu q 2 d ( df 3m )
i v,+v;—g+ (f= —v,u&i u,—+ f (.

3m~, A') 3+u du E du 3E )
(17)

p" 4v v d t' v'——Fo'—
( . I

dv (11)
~ s 3 ts dv (pg+gM~

The components I"Q' and I"i' can be eliminated from
Eq. (5) by substitution from Eqs. (6) and (7) and this
yields the di6'crential equation for FQQ.

(v,+v;—q) Fo'= (v'/3v. )V„'Fo'

+ (1/v') BL(eu,/351) v,v'(UFO'/av)+tev, v'F0'/M]/av. (12)

The energy, in electron volts, u, =eE„'/2m(v, '+~')
which is introduced here turns out to be the average
energy transferred from the field to an electron between
collisions, and ~,u, is the power transfer. It is in general
a function of the electron's energy through the collision
frequency u„and it is also a function of the external
parameters Z, p, and X=2v.c/cv. The power transfer has
a maximum for v, =op and this corresponds to the
pressure for easiest breakdown. At pressures above
this value, u, varies as (F-„/p)'.

The total excitation and ionization rates may be
defined by

nv, =
J

~ vgFO'4v'v'dv,
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The terms on the left side represent the electrons
leaving unit volume of phase space through excitation,
ionization, and diffusion, and their reappearance at low
energy at the rate qf. On the right are the terms due to
energy gained from the 6eld and lost to recoil.

The excitation frequency e, sets in discontinuously
at a potential u so that it is always necessary to divide
the energy range into two parts and solve Eq. (17) for
two functions, f, and f„, appr. opriate to the elastic and
inelastic ranges and join them at u, . On the other hand,
(v,+v,) may generally be approximated by a con-
tinuous function so it is not necessary to join functions
at u;. The method of solution appropriate to the two
ranges is quite diferent so that they must be discussed
separately.

the equation for s is

u~f„=e ' (19)

s"—s"—s'/2u —(s'+1/2u) (d/du) ln(v, u, )
=3(v,+v,)/2v, u,u. (20)

An analytic approximation to the experimental data
must now be substituted for v,u, and v,+v; and a power
series in 1/u is substituted for s', the last term in the
series being reserved to obtain exact agreement at u, .
This procedure will be illustrated later in the case of
hydrogen.

Knowing s, the average ionization frequency per
electron is given by

P;=2m(2e/m)& I
. v,usaf„du,
'll j

(21)

and the total inelastic frequency is given [see Eq. (25)j
by

(P~+ v,) = —(4m/3)(2e/m)'(v, u,u*df„/du), . (22).
The subscript indicates that the quantity in the paren-
thesis is to be taken at u . Both these expressions con-
tain an unknown normalization constant and so cannot

V. INELASTIC RANGE

When inelastic collisions are possible, they dominate
all other collision processes because of the large energy
losses involved. Accordingly the recoil and diffusion
terms may be left out of Eq. (17).We may also neglect

q in this range. The equation to be solved is then

2(d/du) (v,u,u&df.,/du) = 3(v.+v,)ulf., (18)

The conditions imposed on the solution are somewhat
contradictory; we must choose that solution which
vanishes at infinity, but we want greatest accuracy
just above u, where most of the excitations take place.
The conventional asymptotic expansion does not satisfy
the second requirement without an unreasonable
number of terms, and the WEB method diverges at u,
but we can use a somewhat similar approximation.
Setting

be evaluated as they stand, but their ratio

va ( dpi 'l
X.;=1+—= —P v.u,u&

I
v,u *'f„-du, (23)

v; E du), J.,
can be evaluated and has a physical meaning. Because
one electron must leave the tube for every one produced,
1/P; is the average lifetime of a free electron from its
liberation at an ionization to its absorption at the walls.
v,/v; is the average number of excitations produced by
an electron during its lifetime, and the number S„.
represents the total inelastic collisions during an
electron's free lifetime.

Because of the exponential nature of f„, the number
E, depends primarily on exp(s —s;). From Eq. (20)
it is seen that the main part of s' is given by
L3(v,+v,)/2v, u,uj'*which, when v,)~, is proportional
to p/E„Accor. dingly the variation of 1V„with p/E„
is given very nearly by

iU, = u exp(pp/E, ), (24)

where u and P are constants obtainable from Eq. (20).

VI. ELASTIC RANGE

Below u, the excitation and ionization frequencies are
zero but we must discuss the appearance rate UFO . In
order to calculate it as a function of energy it is neces-
sary to take the product of the distribution function
times the excitation function of each level and shift the
product down the energy scale by the energy of the
particular level. The excitation functions of allowed
transitions have a sharp maximum just above the
excitation potential, so the scattered electrons have very
little energy. The excitation functions of forbidden
transitions have a maximum far above the excitation
potential, but there are a negligible number of electrons
with sufhcient energy to excite these. Accordingly most
inelastically scattered electrons have very little energy,
and no appreciable error is made in assuming that q is
a delta-function at zero energy.

Multiplying Eq. (17) by 4vrv'dv gives the net rate of
loss of electrons from the spherical shell d~. Integrating
and making use of Eq. (15) gives

4s t "f, 4s t' df, 3m
P,+2r;— t —s4dP= ——v,e'i u, + f, I. (25)

3A'"0 vc 3 & du M

P,+2P, is the rate of appearance of electrons at small
velocities. The integral represents losses by diGusion of
electrons of speeds between zero and e, and its value at
infinity would, by Eq. (16), equal P,. The difference
represents the rate at which electrons pass the energy
u in the upward direction in order to supply the inelastic
processes occurring at higher energies. Equation (25)
was derived by Smit' directly from this principle of
bal.ance between electrons going up in energy and the

2 J. A. Smit, Physica 3, 543 (1936),
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FIG. 1.Distribution functions for hydrogen for two values of p/E, .

4or I"f,v4 v;v,vs

d8=
~p Vc (v.v')o

(26)

This expression gives the full diffusion loss v; at the
velocity ep, which corresponds to the energy Np to be
defined shortly, and the third power of the velocity was
actually found to be the best in the case for which
extensive numerical calculations were made. With this
'substitution, Eq. (25) becomes a first-order inhomo-
geneous equation. If we define an energy variable m by
drv=3mdu/Mu„ the solution of the homogeneous part
ls

rate of inelastic collisions; however, Smit includes the
thermal energy of the gas but does not include dif-
fusion. In glow discharges the diffusion term is much
larger than the thermal one. At very low pressures the
diffusion term is quite large and one must solve the
second-order equation (17) for f„but in most cases the
diffusion term is small and there is then a great ad-
vantage in replacing the integral by an approximation
such as

Both these functions are infinite at the origin, but this
is a consequence of our assumption about the reap-
pearance function q. The constant of integration in both
of these expressions appears as an energy Np at which
the function f, crosses the axis when extended beyond
u . The meaning of this energy is seen by noting that f,
would be unchanged if the actual excitation and ioniza-
tion functions v and v; were replaced at Np by delta-
functions with the proper relative magnitudes so that
all inelastic collisions would take place at exactly that
energy. Thus Np is the equivalent single excitation
potential. By this equivalence the diffusion should also
vanish above uo and hence the integral (26) must equal
v; at 8= Vp.

The potential Np is determined by equating the
logarithmic derivatives of f, and f„at u, . In general
the extrapolation Np —I, is small and when this is so a
linear extrapolation formula may be used. The first-
order derivative may be eliminated from Eq. (17) by
the standard transformation

g = (v,u,)4v'e"i'f. (30)

1 t'g' q 1 d In(v, u,) 1 3m
+ +

uo u—Eg j, 2 du 4u, 2Mu,
—s,', (31)

the whole right-hand side being taken at u, . When this
extrapolation is valid, the eGective excitation potential
uo may be calculated from the inelastic function f„
alone.

Nxi

Then g"=0 when g=0. The function g(u) has a point
of inAection at Np and may be extrapolated linearly back
to I, giving

=Ae " (27)

which is the same function as that given by Margenau. '
The solution of the complete equation for f. is

3 p"o dN

f,= (v,+2v—;)e e
Vclc&3

(My )e"o- —1q

&3m) ( v,v, s j i0—

3 tco

f,= (v,+v;)e "—' e du jv,—u,vs.
4m u

(29)

' H. Margenau, Phys. Rev. 69, 508 (1946).

which, at higher pressures, can be replaced by the
simpler function
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FIG. 2. Number of excitations and ionizations per electron lifetime
as a function of p/E. .



VII. BREAKDOWN EQUATION

The diGusion coe%cient D may now be calculated by
substituting f, and f„ into Eq. (10). A negligible error
is made by integrating f, from 0 to uo and not using f„
(see Fig. 1), the difference being readily computed and
shown to be small. Using Eq. (28) we get

2or f'2eq@'
t

"o du 2uo'
D=

(
——

( f,ul =—[(v,+v,)n+v, bj, (32)
3 Em& &o v, E„'

2000
l

&{em) I(cm)
a 0.05 l0.6
o 020 500

500—

b
0

where S and 6 are two din1ensionless functions of eo'.

4 ~vo ~4e—m vo v o+&o
x)=- de I -e"d~,

&o J o vo J e vc'J

ME„' r '0 V'

8=S—,—[e ' "—1]de. (34)
6&NO 80 ~0 P~

The breakdown condition is then

l0 I I t

0 0.0P 004 006 008 OIO O.I2

0/Eemm Hg l {volts/cm)

FIG. 3. Experimental breakdown voltage E& for hydrogen as a
function of p/8, and the calculated curve.

A'Ev'/2uo' ——X„X)+8,

where Eq. (23) or (24) can be substituted
inelastic collision number.

(35)
Ramien4 has measured the excitation and ionization

probabilities in hydrogen and his data can be repre-
sented by the functions

VIII. CONSTANT COLLISION FREQUENCY (v,+v,)/v, = hou hg ho/u, — —

v,/v, =h (u —u)The above theory has been veri6ed by comparison
with measurements of breakdown in hydrogen. For this
gas the collision frequency v, is nearly independent of
energy and given by v, =5.9)&10op at aH energies above
4 volts. The effective Geld E„de6ned by

K o —v 2K o/2(v 2+~2)

is theQ a coQstaQ j. and iQ terms of this the average
energy gain per collision is u, = 5&(10—o(E,/p)' electron-
volts.

When v, is constant the variable 2ut/3 is the ratio of
recoil loss to energy gain per collision, the loss exceeding
the gain if w& ~. At the higher pressures breakdown is
observed for m; approximately 4, so that in these cases
the electrons are losing more energy to recoil, in the
average, than they gain from the 6eld, over most of the
energy range. There are a suKcient number of statis-
tically lucky electrons, however, to overcome this
handicap and reach the ionization potential, producing
breakdown.

The integrals in Eqs. (33) and (34) can now be
evaluated in terms of incomplete gamma-functions or,
more conveniently, by the series

v 2+ &9 ~wo &up

wo 2 m&e " 5 &e'dEdm' J,

with the constants I;=16.2 volts, h;=9.2)&10 ' volt '
N, =8.9 volts. The values ho=8, 7&10 ' volt ' and

h&
——76& IO ' are in agreement with his data but were

actually obtained by 6tting the present theory to the
breakdown data as this is a more critical test of their
value. Agreement with the breakdown data could not,
however, be obtained if the losses. observed by Ramien
below 8.9 volts and ascribed to the excitation of vibra-
tions were included in the theory.

%ith the above inelastic collision functions we set

s= au —h lnu+c/u.

The codFicients u and b are determined in the usual way
for series near inhnity,

a'= 3ho/2„ub=3hg/4au,

The coe%cient c is used to obtain exact agreement at u, .
This gives

c/u, =au, h+ ', (2au, —h+——,', )&.-— (41)

v.o+ (a' (k+ 1)!* —4t P (4~o),
v, ' o {2k+5)!

v,,'+(u' {k+1)!(4wo)~
8=3 —4!Q

v, ' o (2k+5)! 2k+7 4 H. Ramien, Z. Physik 70, 353 (1931).

The approximation is then tested by substituting Kq.
(39) with these constants back into Eq. (18) and solving

for (v;+v ). This gives the theoretical excitation fre-

quency for which Kqs. (19) and (39) are the exact
solution, and it must agree closely with the experi-

(36) mental data for P, and I'; particularly between u, and

u, . Substitution of Kqs. (19) and (39) in Eq. (23) gives
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proximations made in the formula for the effective
excitation potential No and at these pressures the more
exact conHuent hypergeometric functions should be
used. '

The agreement with breakdown data gives consider=
able confidence that the distribution function is correct,
and therefore it may be used to compute other quan-
tities of physical interest. Normalizing the distribution
j, yields the total number of collisions by an electron

1V.= v./r, = (us/u, )(1V„(1+wsm)+-s,+wsb], (44)

and this is shown in Fig. 4. The tremendous number of
collisions experienced by an electron before being
absorbed by the walls is a measure of the probability of
its finding an impurity, however small. At pA=40 cm-
mm of Hg, which corresponds in hydrogen to p/E, =0.1,
there are 10~ collisions and therefore an impurity
occurring as one part in 10 will be struck, in the
average, ten times by each electron. If the impurity is
such as to attach the electron this will make breakdown
more difficult, and this is probably the explanation of

the number of inelastic collisions per electron

ks au+ —b+ &
—c/uz (uz)

k, 8(u,) (u, )

where
&& expL(a —c/u;u, ) (u,—u,)], (42)

FIG. 4. Number of collisions per electron lifetime as a function
of p/E, .
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This function is shown in Fig. 2 and agrees very well
with the approximation (24) with n=2, P= 71.7 volts/
cm-mm of Hg, for almost the whole range of the meas-
urements. The limit Ã„=2 as p/E —&0 comes from the
near equality of h, ."..nd ho, so that at high energies there
are about equal numbers of excitations and ionizations.
Introducing Eq. (39) into Eq. (31) we find the eifective
excitation potential from

1/(us —u ) =a—3m/2Mu, —(b+ s)t u, c/u, '. (43)—
Expressions (36), (42), and (43) may then be introduced
in (35) to obtain a direct comparison with the quantities
measured at breakdown. The results are shown in Fig. 3.
The agreement is good over a wide range of pressure for
several diferent values of A and at two different fre-
quencies. The disagreement at low pressures is due to
the neglect of the diffusion term in f„a dtno the ap-

FIG. 5. Mean energy and equivalent single excitation potential as
functions of P/Z, .

the experimental points lying above the theoretical
curve at the higher pressures.

The mean energy u is obtained from the same
integral as the diffusion constant and is given by

u/u, =-,'(X„n+b)/PV. ,(1+w,n)y-,'+ w, b]. (45)

At high pressures the mean energy tends towards
3us/10. The mean energy and uo —u, are plotted against
p/E, in Fig. 5.
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~ A. D. MacDonald and S. C. Brown, Phys. Rev. 76, 1634 (1949).


