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The Inelastic Scattering of Neutrons*
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The total cross section and the differential cross section for the inelastic scattering of neutrons are
considered. It is assumed that the compound nucleus is sufFiciently. excited so that the statistical model may
be applied. If the statistical model may be applied as well to the residual nucleus, it is shown that the
angular distribution of the inelastically scattered neutrons is isotropic. If only a few levels of the target
nucleus can be excited, the angular distribution is anisotropic. Tables are provided which permit the cal-
culation of the angular distribution if the incident and emergent neutron angular momenta are less than
or equal to 35. Examples of the evaluation of total cross sections are given, providing examples of the
sensitivity of the results to the quantum numbers of the excited state.

L INTRODUCTION

! 'HE inelastic scattering of neutrons is of interest
not only for the theory of the passage of neutrons

through matter but also because of the light it casts
upon the properties of the target nucleus. For moderate
neutron energies in which only a few levels are excited,
the total cross section as well as the energy and angle
distribution of the emergent neutrons is sensitive to
the energy, angular momentum, and parity differences
which exist between the ground state of the target
nucleus and the states excited. When the neutron
energy is suKciently high, the measurements are no
longer as sensitive to detailed properties of the excited.
states. It will be shown that the angular distribution of
the emergent neutrons is then isotropic. However, the
energy distribution is dependent strongly upon the
density of energy levels of the target nucleus as a
function of the energy of excitation.

In this paper, which may be regarded as a sequel to
one of %olfenstein's' on the same subject, the analysis
required for the prediction of the relevant experimental
quantities is performed. The discussion divides the
inelastic processes into two categories according to the
validity of the statistical model for the compound and
residual nucleus. In category I we place those situations
for which the statistical model may only be applied to
the compound nucleus but not to the residual nucleus.
This will occur whenever the neutron energy is so small
that only a few levels can be excited and whenever the
target nucleus is a middleweight or heavy nucleus, for
then the density of levels in the compound nucleus is
sufficiently great. In category II, we assume that the
neutron energy is so large that many levels of the target
nucleus are excited so that the statistical theory applies
to both the compound and residual nuclei. The angular
distribution of neutrons in category I is generally ani-

sotropic. Tables are provided which permit a prediction
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of this distribution when the orbital angular momenta
of the incident or emergent neutrons is less than or equal
to 35. For neutrons in category II, we give a proof of
the isotropy of the inelastically scattered neutrons.
The faIniliar dependence of the energy distribution
on level density may then be obtained.

Our emphasis is on neutrons. However, the discussion
is applicable with only minor changes for protons or
alpha-particles either incident or emerging.

D. GENERAL CONSIDERATIONS

The general formulas upon which our discussion will

be based have been given by Vijolfenstein. ' Vfe shall
restate them, here for the purposes of fixing our notation
and reviewing the simplifications which follow from the
application of the statistical model to the compound
nucleus.

Eotatioe. —I.et the target nucleus have a spin of
i (in units of 5), the residual nucleus a spin of i', the
initial and final orbital neutron angular momentum by
l and 3, respectively, the corresponding initial and final
energies E and E'. The spin of a level in the compound
nudeus will be denoted by J. It is convenient to com, -
bine the neutron spin and the spin of the nucleus to
form the channel spin j, and j, for the initial and anal
states:

~ 0

j»2

The spin of the compound nucleus J is formed by com-
bining l and j or l' and j'. %e shall drop the subscript
on j and j' employing the subscript only when it is
necessary to sum over initial and final states. For a
given J the values of l and /' which may contribute to a
reaction are given by

The s axis will be taken along the direction of incident
neutron so that the s component of its orbital angular
momentum will be zero. The s component associated
with the initial channel. spin is ns and is equal to the s
component of J. The s coIQponent of the angular mo-
mentum of the emergent neutron is m' so that the corre-
sponding quantity for the Anal channel spin j' is m —m'.
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I NELASTI C SCATTERING OF NEUTRONS

Parity must, of course, be preserved. Changes in

parity will be carried by the neutron orbital angular
momenta, even / and 1' corresponding to no change in

parity whereas odd 3 and l' introducing a parity change.
Simptificatiosts follovoimg from the statistical model

%e assume that, at the excitation energy of the com-.

pound nucleus, there are many energy levels of all

types. More precisely, the energy resolution of the
incident beam is broad enough so that many levels of
the compound nucleus are excited. The corresponding
wave functions are assumed to have a random phase
so that when phase averages are performed all inter-
ference terms will vanish. From the concept of the
compound nucleus, it follows that it is then possible to
divide the inelastic scattering process into two parts
comprising (1) the formation of the compound nucleus
and (2) the decay of the compound nucleus by particle
emission. For the energy region under. consideration
we shall neglect the competition arising from gamma-

ray emission and, except for the lightest nuclei, from
charged particle emission. In a paper submitted for
publication Margolis will consider the effects of gamma-

ray competition.
Application of the statistical model perInits us,

therefore, to neglect the interference among the various
l's which contribute to the formation of the compound
nucleus as well as the interference among the P's which
are involved in the decay of the compound nucleus.
Hence we may write

o(i
f
i') =.P))o (1, i, f

l', i'),
where

o(l, if l', i')=(1/2(2i+1))p. , tto(l, j fl', je'). (2)

Here oO, i fl', i') is the cross section for the process
involving the indicated initial and 6nal values of the
neutron orbital angular momenta and spins of the
target nucleus. On the other hand, o.(l, j fi', je') is the
cross section for the process involving an initial and
6nal channel spin j and j'p, respectively.

A certain fraction of the neutrons with orbital
angular momentum l which strike the nucleus, "stick,"
and form a compound nucleus. The cross section for this
process is denoted o-, &'&. lt is often expressed in terms of
the penetrabilities TE(E) as follows:

o, ~'& = (2l+1)n X'T((E). (3)

The cross section for the formation of the compound
nucleus of spin J by "/" neutrons will be given by o.,")
multiplied by the probability that the incident neutron
and target nucleus form a system of spin J. This prob-
ability is equal to the square of the Clebsch-Gordan
coefficient

f (lg; Om fly; Jm)
f

' so that the cross section
ln questIon ls

o, "&
f (jl; Om

f
lj; Jm)

f

'
=(2l+1) lt'T (E) f (lj; Omflj; Jm) f'. (4)

To obtain the cross section. for a particular inelastic

process we must multiply (4) by the relative probability
of that process. This may be obtained from (4) through
the use of the reciprocity theorem. ' The cross section
o(l, j f

l', j'
f 8) for the production of neutrons of energy

E' of angular momentum /', channel spin j' and moving
ia a direction 8 turns out to be

a familiar expression. ~ At this point the sum of
o (l, j f

l', j') over jj', l,, and l' may be readily indicated
obtammg o(t fi).

ÃX2

o(zli') = P T)(E)
2(2i+1) ~

'2

~*, ~ ——~1j, l

i.o

if both jg and j2
if j~ or j2, not both ~

if neither j& nor j2 .
satisfy

f
J—l

f &j;&(1+1); (1O)

The prime in the sum (9) requires the omission of those
terms in the sum for which E,'=E' l'=l" and j"
equal to either value of j'. The sum, over P is m,cant to
include all values of the angular momentum of the

' J. Blatt and V. F. Weisskopf, forthcoming book on nuclear
theory.

The r index refers to possible channel spins, p to possible
6nal neutron angular momenta, E,' to possible 6nal
neutron energies. The prime on the summation indicates
that the term for which P=l', E,'=E', and j„'=j' is
omitted. The factor A J is de6ned as

~s(l, jli', j'I~)=Z..- f«j;Omlij; Jm)f'
X

I
«', j', m', m —m' ll'j', ~m)

I
'f 1'~ - (~, ~) I

'

There is no dependence on q in (7) because of the ab-
solute value sign on Vp „.Note that Eq. (6) refers to
the excitation of a single level of energy E'.

The cross section o(l, nfl", g') may be obtained by
integration and the sum rule

P„f(lj; Omflj; Jm) f'=(2J+1)((2l+1). (7)
Hence

o(1, jll' j')
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TABLE I. Values of initial and Anal angular momenta and of
the spin of the compound nucleus, entering into calculation of
oii!i'l for the transition 0+—+1+.

(r/2)
(3/2)-

(3/2)+

(5/2)'
(5/2)

emergent neutrons which can lead to the particular
excited state being considered.

In these expressions the properties of the compound
nucleus enters only in J and T&. For J we make the
statistical assumption that all J's consistent with the
conservation of angular momentum enters into the
sum. The penetrabilities T~ have been computed on the
bases of the schematic theory for nuclear cross section
and will be given in a paper in preparation. ' The proper-
ties of the residual nucleus occurs through the quantities
E,' and j', and of course the parity. It should be borne
in mind that the penetrabilities as given by the sche-
matic theory are averages over resonances. For a given
level in the residual nucleus there can be strong Quctua-
tions from the average.

Although (7) and (8) have been primarily developed
for application to inelastic neutron scattering, it is
clear that they may be employed to deal with inelastic
scattering of other particles and for nuclear reactions
provided, of course, that the assumptions underlying
their derivation holds. The main change occurs in the
factor common to both (7) and (8),

Ti(E)Ti (E')/2 .T (E.').

For Ti(E) and Ti (E') we must insert the penetrabilities
of the incident and emergent particles. In the denomi-
nator we must insert the penetrabilities for those par-
ticles which are readily emitted by the compound
nucleus. These particles are usually neutrons. Applica-
tion to reactions involving charged particles will be
presented in another paper.

III. INELASTIC SCATTERING WITH EXCITATION
OF FEW LEVELS

We first consider the integrated cross section, o (iI i')
as given by Eq. (9). We shall be interested here in
showing the sensitivity of o(iIi') to the quantum
numbers of the excited levels.

Sufficiently close to threshold the energy dependence
of o(i

I
i ) is given by Tp(E), since it is always possible for

i' to equal zero and since Tp(E) approaches zero less
rapidly than T& &E'), i'WO, as may be seen from the

' Feshbach, Shapiro, and Weisskopf, to be published.

limiting form

T,,(E'):[(P—1)!/(2P—1)!]s
Jl '-+0

X [z'Xp/(X '+i")](2x')"' (11)

where x'=O' R, O'= wave number of emergent neutron,
R, the nuclear radius, and Xo is a constant defined by
Feshbach and Weisskopf. ' Hence Ti.(E') goes to zero
like 8'&'+&'. The additional angular momentum
required to make the transition from i to i' possible is
furnished by the incident neutron. In general, the term
Tp(E) will not dominate the series for o(iI i ) for long.
This is true even when Ii—i'I is small. As Ii—i'I
increases and the energy of the excited level decreases,
the energy region in which the l'=0 term is dominant
becomes smaller and sm, aller. As a consequence, the
shape of the total cross section curve as a function of
energy may be quite sensitive to Ii i I—.

The results obtained for a typical example will now
be exhibited. The cross section cr(iIi') was first calcu-
lated for the case of a single excited level 0.5 Mev above
the ground state, the latter having a spin i=0. Four
assignments for the angular momentum and parity of
the excited state ere investigated: 0+, 0, 1+, 1,
where the numeral indicates the value of i, + means
same parity as that of the ground state, and —means
opposite parity. Angular momenta up to 3 were con-
sidered. In Table I we list the values of /, 1', J, e; ~~,

for one case, 1+. The final expression for the
cross section is

2Tp(E).('I i') = (~x /2)
1+[Tp(E')/( Tp(E') +Tp(E') }]

2
+Ti(E)

1+[Ti(E)/2Ti(E') ]

1+[Ti(E)/(2Ti(E')+Ts(E') }]

+Ts(E)
1+[Ts(E)/(Tp(E )+2Ts(E )}]

1.+[Ts(E)/2Ts(E') ].

+Ts(E)
-1+[Ts(E)/(Ti(E')+2Ts(E') }]

8

1+[Tp(E)/2Ts(E')]-

The resulting values of o.(iI i')/( )t'/p2r) for a nucleus of
radius 8X10 " cm are plotted in Fig. 1. We see that
o(iIi') is quite sensitive in magnitude though not in

' H. Feshbach and V. F. Weisskopf, Phys. Rev. 76, 1550 (j.949).
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shape (for the
I
i —i'I is small) to the value of i' but not

nearly as sensitive to the parity. On the same figures we
have given the predicted o (i I

i') for i'= 3, with a change
in parity. We note the characteristic change in shape.
In this case the l'=0 term dominates for E'~20 kev
while for the cases where Ii —i'I is small the l'=0 term
is dominant up to E' equal to 200 kev. The sensitivity
of the shape of o(ili') to Ii —i'I was first noted by
Ebel. ' We again remark that the above calculations
are based on averages as given by the schematic theory.
Note also that gamma-ray competition may be im-
portant for some of the terms in o(i/i') close to
threshold.

Angular dislribllion. —Returning to Ecl. (6) we see
that the dependence of the cross section on angle enters
through the factor

A~(l j ll' j'I+)=2, l(jl'0nsllj' urn)l'
X I (lj''; rn', rn rn'—

I
l'j' ~rn) I'I I"~ (tI Io) I' (~2)

Most of this section will be concerned with the evalu-
ation of this sum. Our results will maintain a separation
of the quantum numbers of the initial and final state
permitting the rapid evaluation for various assumptions
for these numbers. We therefore expand the sum in (5)
over nz in a power series in m

P I
(l'j '; m', m rn'

I
l—'j ', Jns)

I

'
I

V$. (t7, y) I

'

j+1

C,F.

2j+3

3

2j+1

2j—1

s (1,jjJ)
1

j(j+2)
5

3j'+3j—1

(j+1)(j—1)

(j)(j+2)(3j'+6j—2)

35

3j '+6j '—3j+1

7

(j+1)U—1)(3j'—5)

35

J+n C F. 0
Sn(2, j~ J)
1

j+2

j+1

2j+5

2j+3

5

j(j+3)

3j2+6j—2

j0+3)0'+3j —1)

21

5j'+20j'+10j'—20j+6
21

2j+1 11j2+11j—15 9j4+18j'—16j2—25j+21

21

2j—1 3j'—5 5j4—20j2+21

21

TABLE II. The factors s„ in Eq. (15). The symbol C.F. stands
for common factor. For example, s&(2, j~ j+2) is L(2j+5)/5)
xrj(j+»i».

n=o

where the function F is the coefficient of m'". Letting

~.(l j I
j)= & rn'"l(jl'0nrllj' jar)l' (~4) 7

m=0

U-2)(j+1)
1

7

Sn(3, jfJ)

j(j+4)

(j+1}(j—2)(j'—j—3)

j(j+4)(3j2+12j—4)

99

A J is written as follows:
2j+5 j2+

j+2 — 1
7 3

5j4+30j'+30j2—45j+13
33

AJ(i jll' j'I&)=E x (i~j I
j)I' (fall'~j'I+) (l5) 2j+3

n=O j+1
7j +14j—15 53j4+212j —30j —484j+315

1
15 165

The s„ terms contain the dependence on the initial

«1I&/(~'&

2j+1 23j'+23j—66 39j4+78j '—190j'—229j+366
1

45 99

0.2 0.3

ENERGY ABOVE THRESHOLD IN Mev

0.5

2j—1
j—1

7

2j—3
j—2

7

2j—5
j—3

7

ij'—22

j'—j—3

(j+1)(j—3)
1

9

53j4—348jr+610

165

5j4—10j'—30j'+35j+63
33

(j+1)(j—3)(3j'—6j—13)

99

FjG. 1.Total cross section for the inelastic scattering of neutrons
by a target nucleus of zero spin. The results for four diA'erent
possibilities for the spin and parity of the level excited are given,
the energy of the excited level being taken as 0.5 Mev above the
ground state.

'A. Ebel, Massachusetts Institute of Technology thesis (un-
published).

quantum numbers l and j only, while F„contains the
dependence on the quantum numb. ers of the final state.
The functions s„are given in Table II for arbitrary j
and J for 1&i&3.The functions F„are given in Table
III for arbitrary J with 1&l'&2. The values of F„at
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TABLE III. The factors F„ in Eq. (15). The symbol C.F. stands for common factor. For example, Fo(j'+1
~
1, j'~ 0) is L1/(2j'+1)g

&&+'~ Ir„)s+(j'+I)
~
Fzz~sj while Fq(j'+1~1, j'~0) is —(3/4s)t (I/(2j'+1)(j'+I) 1Ps. The functions

~

Ft~l' and Pt are the square
of the absolute value of the normalized spherical harmonics and the I.egendre polynomials of order /, respectively.

~
F»~ equals

(3/8z. ) sins';
)
F&0(' is (3/4s) cos'+.

J+22
AngnlRI'

dependence

j'+1

C.F.

(2j'+1)

~.(J[i, ~'[a)
0

I »Il' I »ol'

3

4~ (j'+1)
3 1

4 j'U'+1)

(2j'+1) 4m j'

Jge
Angl113, 1

dependence

j'+2
(2j'+1)(2j +3)

j'+1

/
I 22 f2

j 'U' —1)

F.(J]2, ~'I e)

3(j+2)(j'+1)
2j'U'+2)

2

j'+2

(15/Sm) P2

4U'+1)(2j'+1)

7(j'+1)(j'+2)

20')(j'-4)

7j'(j'+1)(j'+2)

(15/S~) P4

6j"+30j'+31

7(j'+1)(j'+2)

2(6j'2+18j'+7)
7j'(j'+1)(j'+2)

(is/st)P4

{j'+1)(j'+2)

j'(j'+1)(j'+2)

3(j'—1)(j'+2)
(2j'-1)(2j'+3)

(j')(j'+1)
2(4j'2+4j' —15)

7j (j'+1)

6(6j'2+6j'-5)
7(j')(j'+1) j'(j'+1)

2j'+1

(2j'-1)(2j'+1)

j'+2

(j'+1)(j'+2)
2(j'2—1)

2
l j'(j'—1)

2(j'+1)(j'+5)

7j'(j'+1)(j'—1)

4j'(2j'+1)

7j '(j '—1)

2(6j'~—6j'—5)

7j'(j'+1)(j'—1)

6j'2—18j'+7

7j'(j'-1) j'(j'-1)

0' and 90 are contained in Tables IV and V. For P
equal to 0, Ag equals (2J+ I)/L4rr(2/+I) j, independent
of t). For l=0, A~ ——(2J+I)/l 4rr(2/'+I)j. The case
0=3 may be included by employing the symmetry of
our results between initial and final states, which we
shall now (iiscuss.

I'ollowing Blatt and Biedenharn, ' it is possible to
show that

~~(/'j I/' j'l~)
(2/'+ I)(2J'+ I) '

l Qr, (2L+ I)V(/lL; 000)W(JJ//; Lj )

V(/'/'L; 000)W(JJ/'/'; Lj ')Pr, (cos@) l
.

The coeKcients V and 8"have been defined by Racah. '
Blatt and Biedenharn introduce the coefficients
Z(a b c d; e f), which they have tabulated and in terms
of which Aq takes on a particularly simple appearance

' J. Blatt and L. C; Biedenharn, Phys. Rev. 86, 399 (1952).
7 6, Racah, Phys. Rev. 61, 186 (1942).

as follows:

l gr. Z(lJ/J;j L)Z(l'J/'J; j' L) P(rcos)t)l.
4rr(2l+ I)

(I6)

From the general properties of V and 8"or of Z we may
conclude that the summation index L, takes on only
even values and that

L&min(2/, 2l', 2J),

an observation which has been made by several
authors. ' ' Hence if / or /' are zero or if J is either zero
or ~, Aq will be independent of 8. The fact that I is
even is of course obvious from the definition of Ag. The
symmetry between initial and final states may now be

8 C. N. Yang, Phys. Rev. 74, 764 (1948).
9E. Eisner and R. G. Sachs, Phys. Rev. 72, 680 (1947); I.

%olfenstein and R. G. Sachs, Phys. Rev. 73, 528 (1948).
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TAsLz IV. F~ij~/'j'~ol.

I' (Jjk, j'j0)

j'+1
3 1

4' 2j'+1
j'+1

(j'+1)

j 'U'+1)

4z 2j'+1

j'+2

j'+1

e.F.

15 1

Sm (2j +1)(2j +3}

15 1

4~ (j') (j'+1)(j'+2) (2j'+1)
5

4~ (2j'-1}(2j'+3)

15

4m j'{j'+1)(j'—1}(2j'+1)

15 1

8m (2j'+1)(2j -1)

(j'+2)(j'+1)

(j')(j'+1)

(j')(j'—1}

{2j'2+6j'+5)

(j'+1}(j'+2)

(j'+1)'

(j'+1)(j'+2)

j (j+1)

j 'V' —1)

stated: Hence

A ~(f jl 1'j'I ~) = P(2t'+ 1)/(2f+ 1)lA~(f'j'I Vl ~) (17) A;(12 I121~)= (1/4~) Lk»n'~+3 «s'~ —3F2(«s~) 3

Because of the length of these calculations it was
important to make a number of checks which were ob-
tRlncd fI'oIQ thc following I'clRtlons:

"F„(J)P, q'~ ~)do,= ~„,.

P; (2j'+1)F„(J~3',j'~ 8) is independent of 8. (19)

P„m'"F„(JIf',j'~0)

= [(2P+1)/4~]
~

(f'j', Om
~

f'j'; Jm)
~

'. (20)

Ps s„(E, jf J)=g„m'". (21)

An example of the calculation of A J will now be given
in order to make the use of the tables clear. Wc tak.e
A ,*(1—,'~ 1—,'~ 0) and therefore require FD(-', ~

1-,'
j 6) and

F~() ~1/8), where J=j'+1, (2j'+1)=2. Then

Fo(llfll+)=-:C-'ll' I'+llI'oI'3,
F~(2 I12l &) =kL(—~/4~) 3]F2

The values of s„, J=j+1, are

so(1klk)=4/3, »(12I2)=s.

Once A J- ls RvailRbl, sufhcient dRtR ls RVRllRblc fol
the calculation of the angular distribution. We note
that as a consequence of the statistical assumption for
the compound nucleus that the predicted distributions
are symmetrical about 90'. If either /=0 neutrons
incoming or l'=0 neutrons outgoing or if the compound
nuclear stRtcs with J=4 foI'IQ thc IH,ost 1IQpoI'tRIlt com-
ponents of cross section, then the distribution will be
isotropic. This will generally be the case near threshold
for then only /'=0 neutrons have appreciable trans-
mission factors. We can be certain of large anisotropy
in the angular distribution only if the spin change
between the initial and 6nal levels is large as wouM.

occur in the excitation of isomeric levels. For smaller
spin changes the anisotropy will be correspondingly
smaller. In Fig. 2 we give an angular distribution in
which a target nucleus i =0 is struck by neutrons having
1-Mev energy. These excite a level at 0.5 Mev with i =1
and opposite in parity to the ground state. These
angular distributions are essentially average results
since fluctuations away from the schematic theory will

affect them considerably. For this reason it is important
to employ the parameters E. and Xo which best fit the
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TABLE V. F„(J
~
tj''~ w/2}.

Jgn C.F.
z.(J[i, ~'] ~P)

j'+1
8' 2j'+1 j'+1

3 1

8m 2j'+1
j'+1

j'0'+1)

j'+2

j'+1

j —2

C.F.

64m (2j'+1)(2j'+3)

15

32~ 2j'+1

32m {2j'—1){2j'+3)

15 1

32 2j'+1.

64m (2j'—1)(2j'+1)

' F (J ( 2, j'
I ~/2)

0

3j'2+5j'+4

(11j' +11j'—18)

j'+2

3j +j +2

2j"—6j'—11

(j'+1)(j'+2)

2j"+10j'+3
j'(j'+1)(j'+2)
—5{2j"+2j'—3)

j'(j'+1)
2j'2—6j'—5

j'(j'+1}(j'—1)

2j'2+10/ —3

(j'—1)(j')

(j +1)(j'+2)

j'(j'+1)(j'+2)

j'(j'+1)

total cross-section data, though this will not take care
of fluctuations from level to level.

IV. INELASTIC SCATTERING WHEN THE DENSITY OF
LEVELS IN THE RESIDUAL NUCLEUS IS HIGH

In this section the statistical hypothesis will be
assumed for the residual as well as compound nucleus.
Nuclear levels of all types are then so dense that they
may be considered to form a continuous distribution.
It is expected that this description will be valid for the
heavier nuclei or for the middle-weight nuclei if the
incident neutron energy is sufficiently great.

Let then the number of levels having an energy
between (E E) (this is just the —excitation energy) and
(E E')+d(E E') b—e—
e(E E')d(E E')— —

= L(2j '+ 1)IDB(E E')3&(E E') (22)— —

where DE(E E') is the distance—between levels in the
residual nucleus. The factor (2j'+1) implies that there
are (2j'+1)' levels at the energy (E E') with channel—
spin j'. One factor of (2j'+1) is already contained in
the sum over m' in Eqs. (6) and (7). We now pause to
justify this factor, which was also assumed by Wolfen-
stein. '

The motion of any ensemble of particles may be
broken up into three parts: motion of the center of mass,
rotation about the center of mass, and "vibration"
relative to the center of mass. The rotation about the
center of mass is just that of a rigid body" and carries
the angular momentum of the system. The speci6cation
of this angular momentum requires three quantum
numbers; the total angular momentum j', the projection
of the angular momentum along both the figure axis
of the system, and an arbitrary s axis which in the
present problem is taken to be the direction of the
incident particle. Hence a state of a given angular
momentum has a (2j'+1)' degeneracy, since each of
the projections has (2j'+1) possibilities.

Level density formula (22) leads rigorously to the
conclusion that the angular distribution of the emergent
neutrons is isotropic. This may be seen as follows. "The
final /' is formed by adding j' to a 6xed J. In order for l'

to have all possible orientations it is necessary for the
possible directions of j' to cover the complete sphere
with j' as radius. Since every vector j' corresponds to a
state of the final system with a given value of j', the

"E.Kemble, Fundamental Principles of Quantum 3fechamcs
(McGraw-Hill Book Coinpany, Inc. , New York, 1937).

"We are indebted to V. F. Weisskopf for this discussion.
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~(EI E', e)dE'dn

(21+1)Ti(E)T( (E')
2(2z+1) tt' ~'1,

(2j'y1)a, (i, ql1', q'I e) dE'dn

Z- T.(E') D,(E—E')

The sum" over j' may be performed through the use
of a relation due to Racah

number of these states is quadratic in j'. A proof of the
angular isotropy has been given by Wolfenstein' but his
proof is not as complete as the one that follows.

We now insert expression (22) into the general for-
mula (7). We shall obtain the energy distribution ot
the emergent neutrons as well as the isotropic angular
distribution. The cross section 0(EIE, 6) for inelastic
scattering with the emergent neutron having an energy
between E' and E'+dE' and a direction 8 in solid angle
dQ is

RELATIVE
CROSS SECTION

0
0

I

20'
I I

40O 60'
e

FIG. 2. Angular distribution of inelastically scattered neutrons
by a target nucleus of zero spin. The excited level is assumed to
have a spin of one opposite parity and an excitation energy of
0&5 Mev, while the inciderit neutrons have an energy of 1.0 Mev.

Therefore

Z,'(2j'+1)&.(&, jl&', j'I&)
=P,.. .„.(2j+1)I gj;0~Ii&; J~) Iz

X
I
(t'j', Jzzzl t'j', zzz', m m'—) I'I V~

=(27+1)P, ~ l(lj; Ozzzljl; JNz) I'I V,
)& p, I

(t'J; zzz',
'—

zzz
I
E'J; j', zzz' —nz)

I

'
=(2~+1)&, I(~j'O~l~j'~za) I'lI"~

Hence

Z~'(2 j'+1)~~«, g I
~'~ g'I &)

= (21+1)'(2P+1)/I 4zr(2l+1)], (24)
l(1j;m„mjIV z, m, +m;)I'

27+1

I
(Ij; zzzg, —(zzz(+ zzz, ) I

1J; j, —zzz, ) I

'

2j+1
(23)

demonstrating the isotropy of the angular distribution
which follows from the statistical assumption and
energy level density (22).

The energy distribution of the emergent neutrons
may be readily obtained since in virtue of (24) the
sums over j and J may be performed. We find that

~(EIE')= t (EIE', ~)dn

(E~(21+1)T~(E))(Z~ (21'+1)T~ (E'))D~ '(E—E')
= mX'

Qt (2t"+1))I T(.(E")Ds '(E E")dE"—
0

Since the cross section for the formation of the compound nucleus is

0.(E)= zrX' Q)(2l+. 1)T)(E),
we may rewrite (25) as

E'0, (E')Drz '(E E')—
~(E IE') =~.(E)

t E"~.(E")D; (E E")dE"—
d0

(25)

(26)

The cross section 0, as calculated by the schematic theory for nuclear cross sections are given in reference
(3). Formula (26) has been discussed in many places in the literature. '

We are greatly iridebted to Professor V. F. Weisskopf for many helpful discussions. We would also like to
thank Dr. H. Goldstein for this thorough criticism of the manuscript.

"We are indebted to M, Gell-Mann for suggesting the use of Eq. (23).


