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Some questions concerning the application of the multiple scattering theory to the analysis of cloud-
chamber pictures are discussed from the theoretical point of view: (a) The Moliere theory of multiple
scattering is modified by the consideration of the finite nuclear dimensions. It is assumed that the prob-
ability of single scattering goes abruptly to zero for angles greater than po= p a/r„, where a is the radius
of the statistical Thomas-Fermi atom, r„ the radius of the nucleus, and q is the screening angle as derived
by Moliere. The distribution function for plural and multiple scattering is then derived for finite values of q 0.
It is shown that the cutoff affects especially the tail behavior of the distribution function as it was to be
expected. While Moliere's function decreases as q ' for projected angles of scattering large compared to the
rms angle, the modified function decreases approximately as (1/q) times a Gaussian function of (q —s s)
for angles large compared to the rms angle and the cut-off angle. (b) The distribution function for the mean
value of the square angle of scattering in n plates of a multiple-plate cloud chamber is derived and com-
pared with the normal y -distribution. (c) The effect of observational errors on the distribution function for
multiple scattering is estimated quantitatively and discussed in some detail for the case where the mean-
square angle of real scattering is large compared to the variance of the noise level scattering.

I. INTRODUCTION

'HE observation of Coulomb scattering along the
tracks of charged particles in photographic

emulsions has played an important role in the identi-
fication of cosmic-ray particles and in the determination
of their momentum distribution.

Scattering measurements, if properly interpreted, can
also be of great value in the analysis of cloud-chamber
pictures. Groetzinger, Berger, and Ribe' have discussed,
from this point of view, the scattering in the gas of a
cloud chamber. In the present paper we propose to
investigate some theoretical questions concerning the
scattering of charged particles in their passage through
the metal plates of a multiple-plate cloud chamber. In
subsequent papers we shall describe the application of
the scattering method to specific problems.

Coulomb scattering of charged particles in Rnite
thicknesses of matter has been the subject of many
theoretical studies. Early investigators' have treated
the problem in the limiting case of multiple scattering,
i.e., they have assumed that the particle undergoes a
very large number of very small deQections in traversed
layer. They have consequently obtained a Gaussian
(normal) distribution for the observed angle of scat-
tering. More recently, Snyder and Scott' and Moliere4

have treated the problem in a more rigorous and general
manner. They have obtained solutions describing the
transition from the limiting case of multiple scattering
to.-,the limiting case of single scattering through the
intermediate case of plural scattering, where the ob-
served deflection results from a small number of indi-

vidual scattering events. The distribution functions

*This work was supported in part by the joint program of the
ONR and AEC.

' Groetzinger, Berger, and Ribe, Phys. Rev. 77, 584 (1950).
' For a review, see B. Rossi and K. Greisen, Revs. Modern

Phys. 13, 240 {1941),' H. 'S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
4 G. Moliere, Z. Naturforsch. 2a, 133 (1947); Ba, 78 {1948).

II. THE EFFECT OF THE FINITE SIZE OF NUCLEI

(a) The Probability of Single Scattering

Moliere has derived the following expression for the
probability that a particle su6ers a deflection through
a projected angle between p' and y'+dy' in conse-
quence of a single collision occurring in a thickness t of
the scattering material:

fr(p')&v'=sgdq'l(q'"+q' ')' (1)

The symbols in Eq. (1) have the following meaning:
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found by Snyder and Scott and by Moliere approach
the Gaussian function at small angles, but exhibit a
much longer "tail" at large angles. In our discussion we
shall make use of Moliere's results which are analytical
in form. However, the theory of Moliere (as well as that
of Snyder and Scott) neglects the upper limit to the
angle of single scattering determined by the finite size
of atomic nuclei. Therefore, this theory overestimates
the probability of deAection through large angles. In
Part II of this paper we shall modify Moliere's theory
by taking into consideration the finite nuclear size. The
other questions discussed in the present paper include,
in Part III, 'the distribution function for the mean
square values of the angles of scattering observed in n
plates; in Part IV, the e8ect of the "noise level" scat-
tering on the observed distribution function.

In the analysis of cloud-chamber pictures, the ob-
served quantity is the projected angle of scattering.
Therefore, we shall restrict ourselves to the discussion
on the distribution of this variable. The theory may be
easily modified for the case of spatial angle of scattering.
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where P =momentum of scattered particle; cP =velocity
of scattered particle; Ze= nuclear charge of scattering
material; A=atomic weight of scattering material;
t= thickness of scatteririg material in g cm '; 2V= Avo-
gadro number; 222, = electron mass. The factor Q is the
well-known term occurring in the Rutherford formula.
The parameter q is the so-called "screening" angle ac-
counting for the shielding effect of atomic electrons.
Moliere obtained Eq. (3) by assuming the Thomas-
Fermi model of the atom with a nucleus of vanishing
radius. We shall take into account in an approximate
manner the effect of the finite nuclear dimensions by
assuming that the scattering probability is given by
Eq. (1) for io'( ooo and is identically zero for 22') 22o.

fi(y', 2 o)do '= 2Qdo '/(~"+v -')',

0,
I
v'I) ~o. (4)

with the Fourier transform

1 t
+" e '«'d p' +" cos(ty')doo'

g(t oo&=Q -JI
(q "+V ')'* ~o 2"

(7)
wherein we made use of the fact that yp))p

The evaluation of the first integral in Eq. (7) is
discussed in detail by Moliere. As one may easily verify,
expansion in powers of q yields with sufficient accuracy

1 t'+ e '&" doo'

2 "-- (v"+e ')'
PV'2

+-inI P I,q24 44ej
where in(y2/e) =0.154 . (l22y=Euler's constant).

Hence, the Fourier transform may be written as
follows:

1 P (y'22 ' i I'+" cos($p')dy'
+—lnI

22„2 4 E 4e ) &so 22'

(g)

As a definition for the limiting angle yo we shall use
the equation

yo/22 =u/r, (5)

where a=1.67)&104r,Z ' represents the radius of the
atom computed from the Fermi-Thomas theory, and
r„ is of the order of the nuclear radius 8„=&r,A'
(r, =e2/rn, c2). In the classical limit, (Z/137P)'))1, po,
as de6ned by Eq. (5), tends to the value 2Z(r, /r )
(222,c/PP), which represents the angle of defiection
corresponding to a collision with impact parameter
r„.At the limit for (Z/137P) 2((1, ooo becomes practically
equal to the value li/r„ in agreement with the results
of Born's approximation.

It is convenient to use the Fourier representation for
the expression (4):

+N

fi(o' oo)=—
I

db"'"'g((; oo),
2m~

(&)g
—go +co

v

d& exp(2(v '"')La(k; ~o)]",
2xk!

(9)

where go
=—g(0; qo). Therefore, the total probability

that the particle will su6er a deQection through an
angle between 22 and 22+do2, as a result of the accumu-
lation of 0, 1, 2, , k, scattering collisions is given by
the sum of Eq. (9). One thus obtains

d yg g0 p+oo

f(y vo)dv = d]e "~e ":~o)
22l QQ

(10)

One may verify that the factor e «normalizes Eq.
(10) so that

~
+00

deaf(o; vo)=1

Substituting for g(p; Ooo) the expression (8) and taking
into account that go ——Q(1/22 '—1/22222), one arrives
at the following expression for the distribution function:

1 p+" -p2 (72~ 2

f(y; ooo)= — d$e'«exp Q —inI P I

22r & —„4( 4e )
1 p" cos()y')

+ —
I
——doo' . (11)
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It now remains to evaluate the integral in Eq. (11).For
this purpose it is convenient to introduce with Moliere
a new dimensionless parameter 6, defined by the
transcendental equation

(&'& '~
G= —-', lnI—

4 e 2GQ)
(12)

In addition, let us transform simultaneously the
variables p and $ into the new variables

x= q/(2GQ) l and g= (2GQ) &].

Our new scattering variable x represents, therefore,
a projected angle measured in units of the characteristic
parameter (2GQ)'. We shall denote this important
quantity by 020., referring it thereby to the standard

(b) The Distribution Function for Plural
and Multiple Scattering

In order to derive the distribution function we follow
a method analogous to that used by Moliere.

Iet the probability that a particle will suffer a
deflection through an angle p' and p'+dye', as a result
of one single scattering, be given by Eq. (6); then the
probability that the same particle will be deflected
through an angle between o2&"' and q &"'+dq'"&, as a
result of k scattering collisions, is given by
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deviation of the normal distribution. The reason for it
will become evident later. After a few simple algebraic
operations one then finds the following distribution
function for the scattering variable x:

+00 ~2

f(x; xo) =—' dye'~* exp
2m ~

1 fg' g' 1 r" cos(qx')dx''l-
+—

i

—»—+ -i —„I,(»)
2G ( 4 4 2x(P ~no x" )

where xo= go/v20.
While Eq. (11) is characterized by the three param-

eters Q, p, and go, note that Eq. (13) is characterized
by the three diferent parameters r, t", and xo.

By solving numerically the transcendental Eq. (12),
one 6nds that G may be represented with sufficient
accuracy by the explicit expression'

Z4~3W-~~

G 5.66+1.24 logM (14)
1.13p'+3.76(Z/137) '

for t&0.1 g cm '. Note that G depends not only on the
thickness and the atomic number of the scattering
material, but also on the velocity of the scattered par-
ticle. However, for heavy materials, the dependence on
P is slight, e.g. , one finds for 4 inch of lead

Go 6.89 for P=O and G, 6.56 for P=1.

Since, in general, G is appreciably larger than unity,
we can expand the exponential in Eq. (13) in powers of
(1/2G) and neglect terms containing powers higher than
the erst. After having performed some integrations on
the right-hand side of Eq. (13), we find the following
approximate expression for f(x; xo):

f(x; xo) = exp( —x')/Qz.
+(1/4G)D"'(x ~)—~(x; xo)j

where we have used the following abbreviations:

1 t+"
f&'&(x; ~)=— dg exp(zqx —q'/4)

)

—ln—(, (16)
4)

2 f Gx
i~(x; x,) = exp( —x')

~so xa

)(exp( —x") cosh(2xx') — . (16')
2xp

The first term in Eq. (15) is the properly normalized
Gaussian. It is predominant for x(1, i.e., for angles
smaller than V2tT, since the correction functions
f"'(x; Did) and a(x; xo) do not exceed unity, as we shall
see later on.

5 The straight-line relation between G and logt has been pointed
out independently and discussed more exhaustively by W, T.
Scott, Phys. Rev. 85, 245 (1952).

One easily verifies that f(x; xo) is normalized in such
a way that

f(x; xo)dx= l.

The function fu~ (x; ~), defined by Eq. (16), is the first
correction function in Moliere's theory. Its properties
are discussed by Moliere. In particular, it has the fol-
lowing expansions in power series:

For small arguments

2
s (; -)= exp( —x') Q u„x'",

ao =-,'4(-', )=0.01825; %(z)= I"(z+1)/I'(z+1);

ai ———1—4(-,') = —1 0365.

ger 1
8) = p= 2) 3) 4)

2 v(i —1)1'(v+-', )
(18)

yo 260 A'( ( Z ) ')
xo= —

]
1.13p'+3.76] ) [

. (20)
(2GQ)'* Z Gt 0 (137)

Equation (20) shows that xo is of the order of one for
larger values of Z and t, e.g. , for ~ inch of lead, one
finds that

xo 1.17(1.19+p')'.

In the case of lead, the correction function, «(x; xo),
will modify the Moliere distribution appreciably even
for angles comparable to 0., as we shall see in the fol-
lowing section.

(c) The Cut-Off Correction Function

%e now turn to the calculation of the cut-off cor-
rection function, i~(x; xo). By expanding cosh(2xx') in
Eq. (16') in a power series we obtain the following
representation of ii(x; xo):

2 00

i~(x; xo) = exp( —x') P b„(xo)x'",
7r v=0

For large arguments

f"'(x ~) =1/x'+3/x'+45/4x'+ . (19)

The correction function i~(x; xo), defined by Eq. (16'),
describes the effect of 6nite size of the nucleus. Note
that, as xo approaches infinity, i~(x; xo) vanishes, and
Eq. (15) becomes identical with the distribution func-
tion given by Moliere. However, xo is large compared
to one only for fairly thin layers of light materials. For,
according to Eqs. (5), (3), and (2), xo is given by



322 STAN I SLAW QLB ERT

0
0

-Qt

(ll
f (x;x.) vs x rection function f&'&(x; pp) has been drawn for com-

parison. In all cases, the two correction functions dier
markedly from one another for angles appreciably
greater than the cut-off angle. Indeed, as we shall prove
in the Appendix, for x&&xp, our correction function
becomes

f~'&(x; xo) = exp[ —(x—xo)']
2 g sp g

FIG. 1.f( )(x& xo} versus x for four values of xo'.. xo ——00 ' 4 3' 2 3

where

3)1
X 1+( xo+ )-+ (24)

2xp) x

1 1—exp( —xpo)

bp(xp) = —— — —Ei(—xp');
2 gp

bi(xp) = —Ei(—xp');

b„(xp) = a„[1—I(xo', v —2)]; v =2, 3, 4,

It thus drops to zero with increasing x much more
rapidly than the Moliere correction function which

(21') decreases as x—' as x approaches infinity [see Eq. (19)].
Consequently, the "tail" of the distribution function is
represented by the equation

—Ei(—ot) = e 't 'dt— f(x; xp) = exp( —x')+ exp[—(x—xp)']
8Gxp'x

is the exponential integral; and

I(e; p)p!= 3 e 'tvdt-

2 00

f&'&(x x,) = exp( —x') P n (xo)x'"
v=0

(23)

with the coeKcients

is the incomplete gamma-function. 6

The similarity between Eqs. (21) and (17) offers the
possibility of condensing the functions f&"(x; pp) and

z(x; xp) into one expression. By doing so, we obtain a
compact form for the distribution function:

f(x; xo) =exp( —x')/Qm+ (1/4G)f"&(x; xp), (22)

where now

3 $1
1+i x,+ i

—+ . (25)
2xpi x

Among other consequences of the cutoG the following
is worth mentioning: The mean-square angle of scat-
tering is no longer infinity as in Moliere's theory; for
now the expression

!I+00

(x')A, =—

) x'f(x; xp)dx (26)

1(y') 1 1
(x')o„———

~

—
~

=—1+—(ln(exp') —1—4'(-', )) . (27)
2&p')A, 2 2G

converges. Indeed, the substitution of Eqs. (22) and
(23) into Eq. (26) and a straightforward integration
and summation yield

Xp

ni(xp) =Ei(—xo') —1—@(-',);

1 1—exp( —xo').(*.)=- +(l)+ —Ei(.—xp');
2

(23')

as

p++0

(o ")A =— v "fi(o ', p p)~v' (28)

Alternately, the mean-square angle can be expressed

I(xo', v —2)
n, (xp) = &=2, 3, 4, . .

2 v(v —1)r(v+-,')

The power series in Eq. (23) converges for all values of
x. It converges rapidly even for x larger than unity.
Equation (23) may, therefore, be used conveniently for
mathematical calculations.

Figure 1 shows the behavior of f"&(x;xp) for several
values of the cut-oG parameter xp. The Moliere cor-

'See K. Pearson, Tables of the IncomPlete Gamma-Fgection
q~Cambridge University Press, Cambridge, 1946}.

where fi(p; ooo) is the probability function of single
scattering. By virtue of Eq. (4), one finds that

o o+ (o '+ o
o')'* o o

(~");=a -l.—oo+(o '+oo')'* (o '+eo')'

or, since yp&&p,

(o ")"=Q[»(2~p/o -)—1]. (29)

This is identical with Eq. (27), as one may verify by
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remembering that

P0 ~ ('Y W~1
~'=GQ; xo' ——,G= ——ln~—

2o' 2 E e 2o2$

1 R

(V' )A~= (30)

4'(-', )= 2 —ln4y.

III. DISTRIBUTION OF MEAN-SQUARE ANGLE

The distribution function derived in Part II can be
applied directly to the interpretation of experimental
data only when the number of measured angles of
scattering is very large and when all measurements
refer to particles of the same kind and the same
momentum. In this case a fitting of the experimental
data to the theoretical distribution curve yields the
value of the parameter 0. and, therefore, affords a
determination of the momentum of the particle. More
simply, if p&, p2, , p„represent the measured angles,
the quantity

sions of the type of Eq. (22), ois

f.(xi, , x.; xo)d"x
=f(X1; *o)f(X2; *o) f(X; Xo)d"X, (32)

where d"x stands for dx1dx2 dx .
If one interprets the variables xi as Cartesian coor-

dinates in an e-dimensional space, one immediately
sees from Eq. (31) that x has a constant value over the
surface of a hyper-sphere, since p has the meaning of
the radius of this hyper-sphere. Therefore, the prob-
ability F„(x;xp)dx is given by the equation

F (xi xo)dx= t f(xi; xo) ' ' 'f(x; xo)d"x (33)
J

where the integration extends over the volume included
between the hyper-spheres of radii x and x+dx. One
can easily prove that the following transformation
satisfies Eq. (31):

Xi= X COSP1 COSP2 COSP~ 1,

x2 ——x sinpi cosp2 cosp„ 1,

may be regarded as equal to the mean-square angle,
(222)A„which is related to o. by Eq. (27).

In the evaluation of cloud-chamber results, however,
we are often faced with a different problem. The ob-
served particles have, in general, diferent momenta and
diferent masses, and each particle goes through a small

number of plates. For each particle we may compute
the value of (222)A, by means of Eq. (30), but, because
of the small value of m, there is no longer a definite
relation between the value of (222)A, and the value of o'
for the particle in question. From the distribution in the
experimental values of (222)A„we wish to derive the
maximum amount of information concerning the scat-
tering parameter 0.. Clearly, for the solution of this

problem, it is necessary to compute the distribution
function for the quantity (p2)A„ in the case of a homo-

geneous group of particles.
For simplicity, we neglect the momentum loss of the

particles in the traversal of the plates and we introduce,
instead of (222)A„, the quantity

N(V')A.x'— =Px .
20 2

(31)

Let F„(x;xp)dx represent the probability that x lies
between x and x+dx. One may derive the mathe-
matical expression of F„(x;xp) with the following
argument.

The distribution function for each of the e scattering
variables x; is known and is given by Eq. (22). Since
we may consider the variables xi as statistically inde-
pendent, the probability that x& will lie in the interval
between xi and xi+dxi, x2 in the interval between x2
and x2+dx2, etc., is given by the product of 22 expres-

X1= X SlnP1 1 COSP/' ' 'cosP~

xn= x slnp~

The P, , (i = 1, , 22 —1), a,re now independent variables
with respect to the limits of the integral in Eq. (33).We
write for the volume element

d x= dAdg)

where dA is the surface element on the e-dimensional.

hyper-sphere, and has the expression

Bxi/Bx . . Bx„/Bx
dA = Bxi/Bpi Bx„/Bpi dpidp2 dp —i

Bxi/BP~ i ' ' ' Bxn/—BPni-
COSP2 COS Pp' ' ' COS Pn 1dP1' ' dPo ——1 (34)

We can rewrite Eq. (33) as

F-(x; xo)dx

~m/2 (n/2
=dx2"J ) f(xi, xo) f(x„)xp)dA, (35)

0 0

where dA is given by Eq. (34). The factor 2" in Eq. (35)
arises from the fact that the integral in Eq. (35) is
extended only over the positive part (positive 2"-ant)
of our hyper-sphere. By substituting Eq. (22) for

f(x;; xp) and neglecting terms proportional to powers
of (1/2G) greater than the first, one obtains

(
F-(x;*o)= f f

exp( —x')
Egpr j

~w/2 ~w/2 (
&& I

~
1+—g Q n„(xp)x " ~dA. (36)

~p E 2G '=1 =o
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Q.e
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Fos~ tX;x,) vs X for xe ~ 3 taken x0'= 3, which is a good approximate value for the
4 inch lead plates. (A very accurate value of xp is not
necessary since the correction functions P„("are fairly
insensitive to xp.)

Figure 3 shows the deviation of F„from the normal
x -distribution. The ordinate R„represents the ratio

L2/r(-N)]X" 'e p( —X')
R„(x;xp) =

F„(x;xp)

The integrals in Eq. (36) are all of the form

~ ~/2

X 2"dA = X2"+"
J

i x ~ ~ ~ sin'"p; i cosp,'"

Xcos Pp i cosPp cos Pp' ' 'cos P~ ld P

This integral has the value

-G8

FIG. 2. F„(')(x', xp) versus x for xp =3, and for four values of I:
@=1,3) 7, 11.

(4O)
1+(1/2G)Z -, '-'(xp)x"

for 2G=13.4, x02=3, and e=1, 3, 7, 11. In particular,
Ri represents the ratio of the Gaussian exp( —x')/gpr
to the distribution function f(x; xp), derived in Part II;
(Pi= 2f(x; xp)). One sees that in all cases the deviations
become significant for (p')A, )o'.

To conclude the discussion on the distribution func-
tion P„, we calculate the position of the maximum of
P (x; xp) . For this purpose we have to solve the equation

~g q"—' r(&+-', ) 1
L

' - „..——',( —)]( +—Q
& 2 ) r(p+-'rA) 2GA=p )

Note that the right-hand side of Eq. (37) is independent
of the index i, so we can replace the sum over i in Eq.
(36) by the factor rt By combin. ing Eqs. (37) and (36)
one thus obtains

00

(n) 2v~&v X most prob. =Oy

26 v=i

which follows from the differentiation of Eq. (38). By
setting

(41)X',.A „.b. = —',(e—1)+pp (xp)/2G& (x'xp)= x" 'exp( x)
rpe)

/ri 1)"—
GO go PA„() go

2 ) (42)where
2 r (1+-',rA) r(p+-', )

~„(xp)a, &"'(xp) =
Table I gives the numerical values of co for some
values of xp and e. Combining Eqs. (31), (41), and (42)
one thus has the following expression for the most
probable value of the rms angle g(p')A, '.

r(A+-', n)

The coefficients n„re adefined by Eqs. (23'). The series
in Kq. (38) converges for all x. Also, it can be shown
that F„is properly normalized, i.e.,

('rA —li ' 1 co„(xp)
i~ 1+—

E pp ) 2G rA
—1P„(x;xp)dx= 1.

f"
0

and neglecting terms proportional to (1/2G)p, we find

( 1 ~
q that

X
~

1+—P n, ~"'(xp)x'" ~, (38)
2G.=p )

The first term in Kq. (38) corresponds to the Gaussian
approximation. It is identical with the expression known
in the literature as "y2-distribution for e degrees of
freedom. " The second term represents the corrections
to this normal distribution. Figure 2 shows the behavior
of the correction function

2 00

F-"'(x;*)=— x" 'e p( —x') E .'"'(x)x'" (39)
r(-,'~) v=0

l.Q

02

Rrp(X)xo) vs. X for xo ~3, 2G ~ l3.4

for v=3, 7, and 1.1. For the cut-o6 variable, x0, we have
FIG. 3. R„(x,xp) versus x for xp ——3, 2G= 13.4, and for four values

of e:m= 1, 3, 7, 11.
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IV. "NOISE LEVEL" SCATTERING

We now turn our attention to a different problem
that occurs in the theory of multiple scattering. Up to
now, we have assumed that the projected angles of
deflection corresponding to the scattering in the plates
of a cloud chamber can be measured with absolute
accuracy. In practice, of course, this is not the case.
A cloud-chamber track consists of a discrete array of
droplets whose centers do not lie exactly along the
trajectory of the ionizing particle. This fact, together
with the imperfection of the measuring instruments,
introduce errors in the determination of the direction of
the track between consecutive plates. These errors
result in an apparent scattering that we may term
"noise level" scattering.

Let us introduce an arbitrary line of reference, and
let y be the measured value of the angle between this
line and the central line of the track. Let y be the true
value of this angle. The distribution of p around p may
be assumed to be normal:

TABLE I. NumeI'leal values of (a {gp)=2GLx p & s —p(N —1}g.

sp =2,3
Xp 3

M=3

—0.667—0.628
—0.964—0.694

n =11

—0.775—0.190

the following matrix:

(~a) =

2
—1

0

—1 0 0
2 —1 0 . 0

—1 2 —1 0

0

and D„ is the determinant of matrix (a,A).

On the other hand, if we disregard the noise level
scattering, and consider only the real scattering in e
plates, the e-dimensional distribution for the differences

y; between the angular positions of consecutive seg-
ments of the track is described by Eq. (32):

1 1
exp — (y —y) ',

o g(2 pr) 2o.j' f-(~» " ~-; ~p) =II f(~*;*o) (45)

where o ~ is the standard deviation corresponding to the
noise level scattering.

If we assume that there is no real scattering in any
of n plates, the measured (as+1) angles, yp, y~,
between the line of reference and the ith section of the
track will obey the (n+1)-dimensional normal dis-

tribution

where

f(v', ~p) =
o(2pr)&

Xexp( —
s "/2 ') 1+—2 (») I I

(45')
4G.=o E2o')

.og(2pr) l

1 n

exp — Z (V'- v)' (43)
2|7~2 i=0

We are now in the position to write the complete dis-
tribution function for the actually observed angles:

p~+ +~)

owever we are not interested in the distribution of which include both real scattering and noise level scat-

e angles p; but rather in the distribution of their tering. This distribution function is given by

consecutive differences, i.e.,

~ =v —v-i
One may derive the e-dimensional distribution function
of 6, from Eq. (43) by expressing the p; in terms of 6,.
One finds

Xf„(A—&s, , 8„&„)h„(ag, —
, 6„), (46)

n

Xexp — P u;A "6;AA,
012 s, k

where f„is defined by Kq. (45), h„ is defined by Kq. (44)
and d"6 stands for dA~dA~ dA . One can integrate
Eq. (46) without difficulty in the case where the func-
tions f(cp, , xp) obey the normal distribution, i.e., if one
neglects terms involving (1/2G) in Eq. (45'). The result

(44) may be written as

where ag, ' are the elements of the matrix reciprocal to H (8q, , 8„)=
~ ~

D„' l

Eo'(2n.)l)' This discussion is based in outline on the theory of noise level
scattering in photographic plates developed by G. Moliere
)Theoric der Streulng schneller geladener Teilchen, III, to be
publishedj. It is an adaptation of Moliere's theory for the analysis
of multiple-plate cloud-chamber pictures.

Xe pP —(1/2 ")P &, '8;8 ], (47)
s, k
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where now

0"=(1+2@)o2, p= o 22/vT2,

1 i=A

D„'=det(A;A).

Explicitly, one has for A, k

'0
(A;A) =

0 0
—e 0

0
~ 0
~ 0

A;A= (8;A+~~;A)/(1+2~),
0 i@A

(48)

deviation from the value 0- to the value

0'= (1+p)0..

Secondly, it introduces a statistical correlation between
the consecutive angles 0; and 0;+~. The e-dimensional
distribution function can no longer be expressed as a
product of Gaussians, i.e., the scattering angles are no
longer statistically independent. However, one may
verify that the distribution function for the root-mean-
square angle (8')A„' is not affected by the correlation
mentioned above. An integration of II„, similar to that
discussed in Pa,rt III, yields the following distribution
for x'= [22(82) „/20'2]':

0

with 2= p/(1+2'). Furthermore, note that all param-
eters in Eq. (47), i.e., o', D„', A, A, are expressed in terms
of one quantity p, . If p approaches zero, H„approaches
the distribution function f„computed under the
Gaussian approximation, i.e., the function

( 1 q" 1
f-(~~ ",~-)=

I

Ko.(22r)') 2vT2 '=t

i.e., we assume that the noise level scattering is much
smaller than the real scattering. In this case

1 p, 0
p 1 p

(A' ')= 0 1

0 ~ 0
0 0
p ~ 0

~ ~

0 p 1

and D„'=1, so that the expression in the exponent of
Eq. (47) becomes simply

Q A,A '8,82=822+82'+ +8 '

Explicit formulas for D ' and the reciprocal matrix
elements A;A ' may be calculated from the matrix (48).
Because of its complicated character we shall omit this
computation and limit ourselves to one special case

F-'(x'; ~o)&x'=, x'" ' exp( —x")
r(2222)-

1
X 1+—Z ~,&-&(~,)x'"+ ",

26

i.e., (8')A„ iS diStributed in the Same manner aS (22')A„

but has a diferent standard deviation. The latter fact
aGects the position of the maximum of the distribution
in rms angle. We now have for small p

[(8')Av ]most prob. (1+v)[(y')Av']most prob. v

where [(tp2)A, ']~sot »ob. is given by Eq. (41').
The noise level scattering also modifies the expression

(29), pis. ,

(8')"= (1+2Y)Q[ln(2~o/~-) —1]
The author wishes to express his gratitude to Pro-

fessor B. Rossi for his great interest and active help in
the preparation of this paper, and to Dr. W. T. Scott
for his review and criticism of the manuscript.

APPENDIX

The representation of the correction function
f&'&(x; xp) in power series of x, as given. by Eq. (23), is
inconvenient for the study of the behavior of this
function for large a,rguments. In order to find the
asymptotic expansion of f"'(x; xo) for x))1 we rewrite
the correction function as follows:

i, k
2

+2IA(8282+8282+ . +Oo 18o) f(1)(z. &.) exp( &2) ~+~ &2

Hence we may write for Eq. (47)

a„(8&, ''', 8„)=I I exp — &8,2

&o'(22r) 'j 2o" v=t

where s= 2xxp and

g 2k—2
0+2 (—1)' 2pA(&) (A1)

k=P t| |.

p
X 1——(Ot82+ .+8 -tO ) (49)

0 ~2 1
~A(s) =- 2

Y=2 t

(A2)
2 (2p). (p 1+0)

From Eq. (49) one can see that the noise level scat-
tering has two sects. First, it increases the standard One may verify the correctness of the above expressions



by making use of the following formula:

00 g 2k+2v —2

I(xp2; v —2) = P (—1)' . (A3)
(v —2)!&=p k!(v—1+0)

By virtue of the known theorem

j.
I eV '"—"dt

(2v)! 24rt

l t- PLti~E l

0gy

.Z )y

(where y represents any integration path encircling the
origin once in a counter cloclcwise direction), we may
express Eq, (A2) as foHows:

1 1 t
~ (s)2"+I 1

wo(s) =——,dte' g l
—

l

— . (A4)
2s 22ro ~ ~ v=2 1 t) k+v —1

If we choose the integration path so that
l s/tl &1, we

may sum up the series in Eq. (A4) as

(s) 2v+I 1 (s) 2—21v - ( s2 )
Zl —

I
=-l -

l »I 1—l+Pol-.=2 &t) v+a 1 &t) & t2)

Fxo. 4. Integration path p for the integral in Eq. (A5).

(2k —3i p, !
l

2s»=p, 1,2, 2, E t4 ) (Ws)»

k=o j. 234
Substituting the above expressions into Eq. (A1) ancl

summing over k, we obtain the following semicon-
veI gent, selles:

Po=O; P.(t)=Z k=j. 23 .

2
f "(x;xo) = cxp( —x') ln(2xo)(2x' —1)

gpr

We thus obtain the following integral representation
for wp(s):

1 ( s $ (si
w„(s) 122—22

i
dtetto —2k lnl 1 l+Pol

22ro J, ( t2 ) &t)
(A5)

By deforming the integration path, y, into three parts,
yo, y+, and y, as indicated in Fig. 4, we may express
Eq. (AS) as a sum of three contributions, wplPI, wpC+',

and ml, & ~, corresponding to the three paths, yo, y+,
and y, respectively; i.e., we put

wp=wp"1+wpl+'+wo' '.

By cxpallcllllg tllc 111tcgl'allcl 111 Eq. (A5) 111 lnvel'sc
powers of s, one hnds

w "'=-'s'(-' —»y) w "'=—-'s' —in'.
S2

wolo'= ——— +s' 2"I'(2k—2), k=2 3
4k 2k —1

(2x)' (2x)4
0 ~ ~

exp L
—(x—xp) 'j

2xgpr

—exp L
—(x+xo) 'j

g„(xp)

»=o, 1,2, (2x)»

q»(xp)
(A6)

(—2x)"

1 expL —(x—xp)'j
f&"(x; xp)—+

2+or

( 3i1
X 1+l *o+

2x,J x

d» (ezp( —Xoo)i
g„(xp) = (—1)» exp(x, ')

dxp" i xpo )
Fol tile case wllclc xo ls of tile Oldcl of ollc, Ec!. (A6)
becomes for x&&1


