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The scattering of a particle by a system of E particles, is
described without approximation by a set of equations not
containing the interaction Hamiltonian, but an infinite set of
two-body collision parameters which can be obtained from solving
two-body problems. These equations, obtained with the assump-
tion of two-body potential interaction between particles, can be
applied to the case where the scattering particles are themselves
complex systems, provided that the relevant two-body collision
parameters are known or inferred from experiment. In the
simplest case where the only relevant parameter is the scattering
length, the first approximation is Fermi's result for the scattering
of slow neutrons by protons. The "impulse approximation" is

shown to be an approximate form of the present first approxima-
tion. It is shown that previous approximation schemes, in general,
fail to give convergent higher approximations for the limiting
case of point scatterers, whereas the present equations give
convergent higher terms, It can be concluded that the latter are
particularly appropriate for short-range interaction. The matrix
cx which contains all necessary two-body collision parameters is
expressed in terms of solutions of the ordinary free two-body
scattering problem. The result is applied to derive a revised
theory of refraction and diffraction of slow neutrons in crystals
by including the effect of zero-point motion of the nuclei and the
electrostatic interaction between neutrons and electrons.

I. INTRODUCTION

HE usual starting point in treating the scattering
of an incident particle by a system of many

particles is the total Hamiltonian of the composite
system. One assumes then that the solutions of the
unperturbed scatterer are known and determines the
effect of the incident particle by perturbation calculus.

If the particles composing the scatterer are not
simple but complex systems in themselves, such as
nuclei or atoms, this direct approach becomes not only
prohibitively complicated but it is often barred by
ignorance of the correct Hamiltonian as in the case of
nuclei.

An alternative approach to the multiple scattering
problem is used in classical dispersion theory and in
Kwald's theory of electromagnetic lattice waves. The
individual scatterers are represented by point-dipoles
characterized by their polarizability. The total field is
composed by individual wavelets, each of which is
expressed in terms of the effective field, i.e., the field
emitted by all other scatterers, evaluated at the loca-
tion of one scatterer. The remarkable feature of this
method is its ability to be generalized for the case
where the individual scatterers are not simple dipoles
but atoms or ions. One uses the results derived for the
simple case by simply substituting the appropriate
polarizability for the atoms; these may be either
calculated or observed.

Another example of this approach is given by Fermi's
calculation of scattering of slow neutrons by bound
protons. ' The equations describing the scattering is first
approximated by an equation which does not contain
the interaction potential but the scattering length. The
result is then applied to the more general case of
complex nuclei where the interaction cannot be de-
scribed by a two-body potential. By simply substituting
the empirical scattering length of the nucleus, a complex
many-body problem becomes tractable.

E. Fermi, Ricerca sci. e vicostruiz 7, Part 2, 13 (1936).

These examples suggest that one could apply the
same method to a wider field if it were possible to take
the first step rigorously, i.e., to restate the scattering
problem for a system of many simple particles in terms
of two-body collision parameters rather than interaction
potentials. Clearly, it will not be possible, in genera1, to
characterize the scatterers by only one two-body colli-
sion parameter as in the two cases mentioned. One
must be prepared to deal with an infinite set of two-
body collision parameters replacing the interaction
potential. One may hope that it will be possible to
eliminate, in a given case, all but a few of these pa-
rameters as unessential.

This step was taken in a previous paper' for the case
of static scattering centers. In the present paper the
procedure is applied to the general case of a system of
bound particles.

The transformation of the many-body Schrodinger
equation into a set of equations which contain only
two-body collision parameters is done without approxi-
mation; the solution, of course, is possible only by
successive approximation.

While in the case of simple scattering particles the
new equations are thus rigorously equivalent to the
Schrodinger equation, the approximate solutions of the
two equations are not identical. It is found that the
equations presented here are particularly useful for
scatterers with short-range interaction. This result is

not surprising in view of the similar circumstance in

the case of Axed scatterers studied previously. '

II. THE TRANSFORMED INTEGRAL EQUATION

We consider the interaction of a colliding particle
with kinetic energy 8', and momentum-spin variables

k, with a system of Ã particles interacting among
themselves by an interaction Hamiltonian V which

may include an external potential but does not act on

~ H. Ekstein, Phys. Rev. SB, 721 (1951).
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the incident particle. The Schrodinger equation is

) W,+Q W,+V+ U —E
i
4'= 0,

)i=i

(W,+gW,+V+ U E)P= U—%'o. —(3)

We assume that U describes two-body forces only, so
that it can be decomposed into

N

U=Q U, ,

where every U; acts only on the positional and spin-
coordinates of the incident and of the ith target
particle. Since we deal with a multiple scattering
problem, we decompose the scattered wave P into
waves scattered by the individual target particles as
follows:

(W+QW+V E)/+Up=——U+0

and it is clear that
Z4'=A (6)

so that Eq. (5) can be written as

(W,+QW„+U; E)f;=—U;%p ——Vf, QU;P, . (7—)

We seek to r state the scattering problem in terms of
the solution of a two-body problem which involves

only U;. H the right-hand side of Eq. (7) is temporarily
considered as a known function Ig, then the solution of
the equation

(W,++W„+U; E)P;=k, —

can be expressed in terms of the resolvent kernel E,,
(W.+QW„E)P,= (1+Ki)k, —(9)

and the compatibility of the two equations requires that

where W; is the kinetic energy ot the ith particle, and
U describes the interaction between the incident and
all target particles. The "initial" state of the system is
described by the wave function +0 which is a normalized
solution of

(W+ pW;+ V E)%'0 —0, —— (2)

describing a plane wave of incident particles. The total
solution consists of the sum of @0 and P, the scattered
wave which vanishes for large values of r, the coordinate
of the incident particle. Equation (1) becomes

To give a definite meaning to the inverse operators
appearing in Eq. (10), it is remembered that in scatter-
ing problems the solution containing outgoing waves is
obtained by adding a small positive imaginary constant
to the energy, and letting it vanish after integrations
are performed. ' We shall assume tacitly that this is
done in all subsequent equations.

We now choose a definite representation in which the
momentum- and spin-variables of all particles k and

p~ p~ are diagonal. In this representation all kinetic
energy terms are numbers, and U; is a unit operator
with respect to all variables except those of the colliding
and the ith particle. In Eq. (8) and the subsequent
equations all but these variables may be considered as
constant parameters. With the notation

E(pi p;-i, p,+~ p~) =E Z.~; —W, (12)
and

y;= K,(W.+W; E), — (13)

where W, and W; are definite functions of k and p, ,
respectively, Eq. (10) can be written

y+U(W+W E) 'y =——U. (14)

Equation (14) is now a statement of a two-body prob-
lem. By Eqs. (19), (11), and (13) we obtain for Eq. (7)

(W.+ZW-+ V E)0'= v8—'0+2~ ~' vA J
—y (W +QW —E) 'VP. (15)

ln order to obtain the asymptotic form of the wave
function in coordinate space, we transform to that
representation in which the energy of the unperturbed
scatterer and the momentum of the incident particle
are diagonal, i.e., we expand the present wave functions

4'(k, p)
4"(k, P) =29 (P)A. (k) (16)

where the y~ are eigenfunctions of the scatterer's
Hamiltonian

(ZW.+V-Ei) v ~(p) =0 (17)

The total scattered wave function P, P; ~(k) is then
the probability amplitude for finding the incident
particle scattered into a state k and simultaneously,
the scatterer in the state l. One obtains in the usual
manner from Eq. (15)

(W,+E —E)P;, (k)—g P, (k~y;, „~k')P;,„(k')dk'
m j~i4

—P) (k~v', i )k')P;, (k')&k'=(k~v;, io~ko), (18)

K;+U;(W,+QW E) 'K;—
= —U;(W,+QW„—E)—', (10)

and

with

and
'Yi, tm= (Ply 'Yigm)y (19)

Ki(W.+EW„E)+K'U;= —U;. — (11)

Again, E; is a unit operator with respect to variables
other than those describing the incident and ith
particles.

PW„E-
Viim= I yl) Vi , em

W.+PW.—E
3 C. Mglller, Kgl. Danske Videnskab. Selskab, Mat. -hays. Medd.

23, No. 1 (1945);22, No. 19 (1946).
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where
F,(k) = —(W,+Eg—E)gag(k), (22)

In coordinate space the asymptotic value of the wave
function gag(r) is'

exp(ikgr) (dk ) (kg $
gag(r) —(2or)& kgl I Fgl —r I, (21)

r g dE) h=hg (r )
and

Then,

go = (m,k+ my, )/(m+ m;),

R=k+p;.

W(gg) = ggg'gg'/2gg.

W(E) = ii'E'/2(m+m;)

(29)

(3o)

(31)

(32)

conjugate to the relative distance of the two particles

and k~ is defined by

W, (kg)+Eg E. ——

With this notation Eq. (18) can be written

where p; is the reduced mass. The momentum repre-

(23) sentation of the potential U; becomes

(kp, l
U;Ik'p )=U, (gc—gg')h(K; —K ) (26a)

Fg, (k')
F,, g(k)-gg, (kI&,, g„lk)

~ g'w g~ W, (k')+E E— where

U;(gg) = (2gr) o exp( —igg r)N, (r)dr. (33)

F;,„(k')
(kl'Y'. g Ik')

'
dk'

W.(k')+E —E
The integral equation for the matrix n; becomes

t Ug(go —go")(gg"
I cg;I ge')

(kl v—;go l ko), , (24) (gol ce'I gc')+ '

W(gg")+ W(E;) E—
ZgFg, g Fg. (25) = U;(gg —gg'), (28a)

Equations (24) and (25) restate the scattering problem
in terms of two-body collision parameters. Only the
knowledge of the unperturbed wave functions y~ and
of the two-body matrices p; is necessary to write down
Eq. (24) explicitly.

The integral Eq (14) .for y; can be simplified by
separating o6 the total momentum of the two particles,
as usual in two-body problems. To satisfy the conser-
vation of momentum the interaction Hamiltonian U;
must be of the form

(kp, lU'Ik'p )=(~IU;la')&(K —K'), (26)

where K is the total momentum and x is some relative
momentum together with spin variables. By the form
of Eq. (14) it is clear that y; can also be factored

in which E; is considered as a constant parameter. If
the potential has spherical symmetry, separation of
variables in Eq. (28a) leads to a set of one-dimensional
integral equations. ' Alternatively, the matrix 0.; can
be constructed from the Green's function which satisfies
the difterential equation

[—(Igo/2gg;) P+ gg;—E+W(K;)7G;(r, R)
= —gI(r —R), (34)

as follows' '

E—W(E;)—W(gg') g

(ul ~'I ~') =
(2gr)'

Xexp(iV R—igg r)N, (r)G;(r, R); (35)
(kp'I ~'I k'p'') = —(a I ~'I ~') ~(K—I') (2&)

The matrices p;, & and p;, & are explicitly
and the integral equation for a; is

cg;+ U;[W(a)+W(K') E7 gag = U. — — (m,k my; m—,k' —my, 'p

(klan', g-Ik')= —
o g*(I)I

J g m+m; m+m;
where W(gg) is that part of W.+W; which depends on
the relative momentum gg and W(E') the remainder.
Equation (28) involves only three momentum coordi-
nates like the problem of scattering by a fixed center
of force.

In the remainder of this section the preceding equa-
tions will be written down more explicitly for the case
of scalar nonrelativistic particles with potential interac-
tion. Let m and m, be the mass of the incident and the
ith scatterer particle, respectively. We choose obviously
for relative momentum coordinate the momentum

xs(k+p; —k' —y )y.(p p.)dy'dp, (»a)

(m;k —my; m,k' —mp l
xl

m+m, m+m; )
X~(k+ p' —k' —y'')o -(y''y-)d p''d p (2»)

W(p''p-) E-—
(kl v', g-I k') = — log*(p)

W(k'p, 'p.)—E

'W. Pauli, 3Iesorg Theory of Nuclear Forces (Interscience
Publishers, New York, 1948). We have added a minus sign
missing in the tezt,

5 In reference 2 a minus sign on the right-hand side of Kq. (23)
was omitted erroneously.
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The notation p, 'p„means explicitly Pi P, ip
p;+~ y~, i.e., e stands for all but the ith mo-
mentum. Further,

$2 (k~2 p.~2 ~ p 2)
~(k'p''p-)= —

I

—+ + ~
2 Em m, ~a~ m„)

(36)

and the analogous expression with omission of k"/m
holds for W(p, 'p„). Equation (21) becomes

A(r)-
—(2n.) lm

A2r

(ki q
exp('k, r)Z,

(
—r ~.(r i

(21a)

as can be seen by applying Eqs. (21a) and (24) to the
simple case of scattering by a fixed center of force.
By.comparing with the usual definition of the scattering
length

exp(ik, r)
exp(iko r)— a, (38)

one has
o.= 5'a/(2m. )'ii. (39)

By Eqs. (24), (19a), and (21a) we have for the first
approximation of the bound scatterer

: m exp(ikir) t.——(2 ) ) *( ) o(k —ko+ )dp, (40)
p r

where
k= k,r/r

In coordinate representation the integral is

p&*(r) exp[ ir (k—k—o)]go(r)dr,

and it is clear that Eq. (40) is identical with Fermi's
result for the scattering of neutrons by one bound
proton. '

Similarly, for X scatterers with scattering lengths a;,

The potential does not behave like any obvious delta-function,
since this does not lead to a limiting value for a. In the case of
a square well the potential becomes in6nite and the radius zero
in such a manner that the product potentials(radius)' retains a
constant value. The author is indebted to Dr. G. Wentzel for
this remark.

III. DISCUSSION OF THE FIRST APPROXIMATION

We consider first the scattering of a scalar particle
by another particle bound by an external potential. If
the range of the interaction force is very small, Eq.
(26a) shows that U becomes constant. Hence, by
Eq. (28a), cx becomes also constant. ' In this case the
collision of two free particles in the center-of-mass
system is described by the asymptotic wave function

(2m.) ' exp(ikor)
(2n.)

—
& exp(iko r)— n, (37)

52r

one obtains

mexp(ikir) ~ a; rA- —(2~) ' E —
v i*(r)

, „,.J
&&exp[—ir,"(k—ko)]go(r)dr, (41)

the obvious generalization of Fermi's result for S
bound scatterers.

We now turn to the more general case where the
two-body collision cannot be described merely by a
constant a. It is shown in Sec. V that, in general, for
small scattering cross section

1C 0! 1C 1C K

The matrix f describes the ordinary free scattering
problem where "initially" both particles are described

by plane waves. x' is the relative "initial" momentum.
We obtain for the first approximation

(2ir) im exp(ikir)

Z) ~~*(p)

(m,k—mp; m,kp —mp, ')
x

I If'I
m+m; m+m; )

&~(k+p' —ko p ') po(p 'p )dpdp
' (42)

This equation has an intuitive meaning; it represents
the probability amplitude for an initial momentum p;,
times the probability amplitude for a momentum p; in
the final state, multiplied by the scattering function
for the free two-body collision of particles ko, p —+k, p;
with the restriction of momentum conservation inte-
grated over all initial and final momenta. It shows that
in the first approximation the particles are considered
free in the following restricted sense: The total process
0—+l can be represented as a sum of elementary free
collisions, although ultimately the scattering particle
may remain in a bound state t. In classical language
the interaction force U is so much larger than the
binding force V that during the collision the two
particles behave as if they were free, but immediately
after the collision the binding force predominates again
and may retain the particle in its original or another
bound orbit.

For the scattering of slow neutrons by bound nuclei

Eq. (42) can be further simplified. We notice first that
it is necessary here to use the generalization from
simple particles to composite particles discussed in the
introduction. If the scatterer is very small in comparison
to 1/k~, the scattering length would be a constant if the
scattering were due to a potential but not when the
scatterer itself is a complex system. For example, the
scattering of slow neutrons by nuclei may well be
velocity-dependent. Hence, in this case n is not defined

by Eq. (28) but by a more general equation describing
the scattering of a neutron by a free nucleus, an
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equation which we cannot correctly state and much
less solve.

Since the range of interaction is small, the matrix f,
considered as a function of its first argument, will be
substantially constant up to wave numbers of the
order of (range) '. On the other hand, the wave func-
tions &0, describing molecular binding, extend to wave
numbers of about 10' to 10"and drop off exponentially
afterwards. Hence, one can replace the first argument
of f by its value on the energy shell, i.e., such that the
absolute value of the two arguments is equal. We do
not have to consider angular dependence, since only
S scattering is of importance here. If we consider the
scattering length a as a function of the relative momen-
tum Ii, Eq. (42) can be written

exp(ik~r) m I' f'm, k —mp;$

r '»& ( rlym, )
X~(k+p —ko p'')po(p''p )dpdp'' (43)

Equation (43) determines the influence of molecular
binding on resonance scattering of slow neutrons. One
can verify that in the range of the 1/i-law where the
"free" scattering cross section is a constant, molecular
motion has no inhuence on the cross section, which is a
well-known result of more intuitive analysis. In the
resonance region itself an inQuence of molecular motion
exists, but because of the usually small ratio r»/m; it
is very small.

In the more general case where the wavelength is
comparable with the range of the interaction force, the
replacement of f by its value on the energy shell, i.e.,
the E matrix, is not, in general, justifiable.

Taking this step leads to a formula which is equiva-
lent to the "impulse approximation" proposed by
Chew' on more intuitive grounds.

It appears that this formula is the result of three
independent approximative steps: (1) the use of the
first approximation to Eq. (24), (2) the replacement
of n by f, and (3) the replacement of the first argument
of f by the value corresponding to the energy shell,
i.e., replacement of f by the R matrix.

IV. DISCUSSION OF THE HIGHER APPROXIMATIONS

In order to test the merits of diverse approximation
methods for short-range forces we consider their con-
vergence properties for the limiting case of point
scatterers.

It is well known that the second Born approximation
for fixed or free point scatterers is infinite. It is perhaps
not as well known that the same infinity occurs for a
bound scatterer. According to well-known results, the
second approximation is, for a delta-function potential, '

G. F. Chew, Phys. Rev. 80, 196 (1950).
N. F. Mott and H. S. W. Massey, The Theory of Atomic

ColHsiorIs (Clarendon Press, Oxford, Oxford, 1949). Formulas
corrected for normalized incident wave.

m
4"'(r, r)=

I r,+ I p-(r)
(2~)~»k2i - & )

t exp(ik„l r r—'I )

lr —r'I

Xexp(iko r) y„*(r')po(r')dr'. (45)

To investigate the convergence of the sum, we need
only consider the asymptotic forms of wave functions
and energies, since any finite number of terms gives a
finite result. Most wave functions of systems of physical
significance tend towards plane waves in the high energy
limit, and the energies become asymptotically equal to
the kinetic energy. Hence, we set

q„—+(2~) &exp(ip r),

k„=a[(Z—Z„)/2m]& ip,

and the sum to be evaluated becomes

(46)

(47)

~exp(- p I
r-"I)5= ' dpexp(ip r) '

"uo lr —r'I

Xexp[i(ko —p) r'jyo(r')dr', (48)

where po is some large number beyond which the
eigenfunctions may be identified with plane waves.

The integration with respect to the angular variables
in p can be carried out first with the result

S=4s ~l pdp dr'exp[ pr'+iko (—r+r')j

sinpr'
X- q 0(r'+r). (49)

y'2

Since only large values of p matter, only the neighbor-
hood of r'=0 will contribute to the second integral.
Hence,

5= (4~)'A(r) exp(iko r)

X ~t pdp t exp( —pr') sinpr'dr' (50)

= (4~)'p, (r) exp(ikp r) -', dp,
~l yp

and the result is infinite. One can conclude that, more
generally, Born's approximation is unsuitable for short-
range interaction forces.

An alternative approximation method for small scat-
terers has been proposed by Lippmann and Schwinger. '

~ B. A. Lippmann and Julian Schwinger, Phys. Rev. 79, 469
(1950).

the solution of the differential equation

(V'+k ')f (r)=(5'/2m)p *(r)P"&(r, r), (44)

where
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Except for constant factors their second approximation
divers from Born's second approximation by the addi-
tion of a constant term (—3f/2p) to the exponential
in the integrand of Eq. (45). We discuss this corrective
term. Instead of Eq. (49) we obtain

—4xM
— exp(iko r) pdp dr'exp(iko r')

2p J„,
sin pr'

X q 0(r'+ r)dr'. (51)

high energy spectrum is

J,.w(k)+w(p-)-E
w(p') —w(p")

X ~i*(p'+k'-k)&(p'-p")
w(k')+ w(p') —E

' ~(p+ko k' p") po(p)dp (55)
~J

If the second integral is expanded by integration by
parts in descending powers of p, we get

d0 q 0(r)/p =4~po(r)/p,

The integral with respect to p' vanishes, so that the
contribution of the high energy spectrum is zero. The
difference between Eq. (55) and Born's second approxi-
mation for point scatterers is the absence of the ratio

Lw(p') E]/L—w(k')+ w(p')

in the latter. Without it Eq. (55) would give an infinite
result in agreement with the previous calculation in
coordinate representation, as one can easily verify.

It appears that the high energy part of the spectrum
is, in effect, cut o6 from the higher approximations to
Eq. (24). This is not surprising if one recalls the original
motivation of Fermi's calculation, of which the present
transformation is merely the rigorous complement.

Equations of the type (5) or (7) are unsuited for the.
purpose of iteration when U is nearly constant, because
in the language of perturbation calculus the inter-
mediate states have too much importance. Hence, a
transformation is made which takes many of the inter-
mediate states into account at the outset. From the
discussion of the first approximation it is also clear that
these are just the high energy states where the bound
particle can be considered free. Indeed, we found that
the first approximation describes a set of elementary
processes in which the scatterer particle scatters as
though it were free.

The first approximation to Eq. (24) can be inter-
preted by the simple rule: Substitute a pseudopotential

y for U and proceed as in perturbation calculus. A

more general heuristic rule can now be given for the
higher terms: Substitute the pseudopotential y and
proceed by Born's approximation method, cutting oR
all sums (or integrals) over intermediate states at an

energy E, such that

so that the leading term of the sum S+5' is

(1 M)
&+S'=(4~)'q o(r) exp(iko r) pdpI — I, (52)

& i 0 E2p 2')
which converges only for the special case 2p/%=2. io

The same objection does not necessarily apply to
Breit's theory, " because a special limiting process is

used there. However, this theory concerns only point
scatterers.

We now discuss the second approximation to Eq.
(24) for the case of point scatterers, when a becomes
constant. We obtain from Eq. (19a)

(kIqi Ik')= —n pi*(p'+k' —k)q (p')

W(p') E—
dp', (53)

W(k')+ W(p') —E

and the second approximation becomes

Fii'&= —cx' dk'I Q+
~ ) W(k')+E„—E

E, =kinetic energy of the state.

W(p')-E-
X v *(p'+k' —k) q (p'), ,

dp'
J W(k')+ W(p') E—

X ~ *(p+ko—k') q o(p)dp. (54)

Again, asymptotically, the wave functions can be
described by plane waves, and the energy can be set
equal to the kinetic energy. The contribution of the

MKhether the Gnite result found by Lippmann is due to the
special choice of wave functions, which do not belong to the class
considered here, or to the limiting process used in the evaluation
of the integral, remains undecided."G. Breit, Phys. Rev. 71, 215 (194/).

This rule is quite similar to one formulated previously
in connection with fixed scattering centers.

V. EXPRESSION OF THE MATRIX e IN TERMS OF
ORDINARY COLLISION PARAMETERS

If the' particles involved in the many-body scattering
process are elementary particles and their interaction
can be described by two-body interaction operators, the
determination of n can be carried out directly with no
more difhculty than the determination of the ordinary
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scattering amplitudes. However, the main interest of
the present approach lies in the correlation of many-
body scattering when the latter is really an interaction
between more complex systems. In this case 0. can
of ten not be calculated, but the solutions of the ordinary
scattering problem can be, more or less, inferred from
experimental data. Therefore, it is necessary to express
0. in terms of these solutions.

In the center-of-mass system of the two complex
particles the scattering is described by the matrix4

(k I fl k') =&(k I Ul k")(k"
I

O'I k'), (56)

~blare (kl Ulk") is the interaction IIamiltonian in a,

representation which diagonalizes the energies of the
separated systems and the relative momentum of their
centers of mass. (k"

I
4

I
k') is that wave function which

corresponds to the eigenvalue E(k'). The matrix f
satisfies the integral equation

(kl elk') = (kl O'I k")(k"
I
~1k')+2- N-(k) ~-(k') (64)

One obtains then in the usual manner

E(k') —Eo
(k'I c lk")*,

E(k")—Eo
(65)

The matrix q is an auxiliary quantity without direct
significance.

If U has an inverse, which we shall assume, the
bracket vanishes. Multiplication by E(k") Ep—gives

LE(k) —Eoj(kl elk')+2(kl Ulk")(k"
I
elk')

= [E(k)—E,]S(k—k'). (63)

The matrix q is now expanded in terms of eigenfunctions

(kl C lk') in which we must for completeness include

possible bound-state eigenfunctions N„with energies e .

(k U k")(k"lf k')
(klflk')+2 =(kIUIk') (57)

E(k") E(k')—
E(k') —Eo

u„*(k').
~~—~0

(66)

and is connected to the asymptotic scattering amplitude
by Eq. (21) with f substituted for P.

The connection between the wave function C and the
matrix f is given by

(klflk')
(klc lk') =S(k—k')—

E(k)—E(k')
(58)

the meaning of the denominator being defined by the
convention stated in Section I.

Generalizing Eq. (28) we define the matrix n as the
solution of the integral equation

(kl Ulk")(k"
I
nlk')

(kl Ik')+Z „=(klUlk'). (59)
E(k")—Eo

Since n depends on the value of Eo, it should be
written

(klnlk'; Eo),

but the third argument will be omitted. Clearly, f is a
special case of n

By Eqs. (61) and (64) we obtain

(kl ~1k') =Z(kl Ulk")
— .(k"lc Ik"')(k'lc lk'")*&E(k')-Eo)

E(k'") Eo—
E(k') —Eo

~„(k")u„'(k') . (67)
R $~ +0

By Eqs. (56) and (58) and the Schrodinger equation

for N this can be written

E(k') —Ep
(kl ~1k') = (klflk")(k'lc lk")*

E(k")—Ep

[,„—E(k) j[E(k')—E 3

or

(kl lk')=(klflk')
- (k'Iflk") -*E(k')—E

k k")
E(k') —E(k") E(k") Eo-

[,„—E(k)][E(k')—E.j
tb &&

—~0

(klnlk'; E(k')) = (kl fIk'). (60)

We will now express n in terms of f The similarity.
between Eqs. (59) and (57) suggests that in analogy
with Eq. (56) we set

(kl lk')=Z(klUlk")(k"l~lk'»

so that by Eq. (59)

(kl ~lk')
Z(kl Ulk") (k"

I ~lk')+
E(k")—Eo

For small scattering cross sections we may expect the

bilinear terms to be small and set

(70)

—8(k"—k') =0. (62)

(klnlk') =(kl flk'),

a result to be expected from Eq. (59). One can see,

however, that a large difference between E(k') and Ep

will make the corrective terms large.
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The third term in Eq. (69) will become important if
E~ is negative and close to one of the energies e„. It
appears that this term, when introduced into Eq. (18),
describes a rearrangement process, real or virtual, in
which a bound state between the incident and one of
the bound particles is formed. We do not enter upon
this subject here.

It has been pointed out previously" that in using the
n for complex systems in the' equations describing
multiple scattering, the elastic submatrix (eok~ a~ nok')
is to be employed which describes only interaction
processes which do not change the internal coordinates
of the two particles involved (except for spin coordinates
which can be taken into account explicitly).

This is a basic limitation of the method used here.
If, for instance, the collision of a neutron with a nucleus
gives rise to p-ray emission, then the p-ray is not
considered explicitly in this formulation, although the
"p-ray width" of the neutron scattering cross section
is included.

[—(k'/2m) V2+u —E]P=0,

[—(k'/2 p,)V'+ u E7$=0, —
(71)

(72)

for the simplest type of potential interaction, a square
well. The two equations differ essentially by an effective
coupling constant of ratio m/p. Considering only the
S wave and the low energy limit, the cross section is
an erratically varying function of the coupling con-
stant. " Hence, af„, and af;,q may differ by factors

~ H. Kkstein. (to be published).
'3 M. L. Goldberger and F. Seitz, Phys. Rev. ?1, 294 (1947)."E.Fermi and L. Marshall, Phys. Rev. ?1, 666 (1947).
'5 See reference 6, p. 30, Fig. 4.

VI. REFRACTION AND DIFFRACTION OF SLOW
NEUTRONS BY CRYSTALS, INCLUDING ZERO-POINT

MOTION AND ELECTROSTATIC INTERACTION
WITH ELECTRONS

As an application of the method the dynamical
theory of refraction and diffraction of slow neutrons by
large crystals will be presented in a revised form by
including the zero-point motion of the nuclei and'the
electrostatic interaction with electrons.

The theory as developed by Goldberger and Seitz"
shows a somewhat paradoxical feature in that the
nuclei are considered as rigidly fixed, whereas their
scattering length is that of loosely bound nuclei, i.e.,

jeff (m/p)+free++fixed&

where af„, is the scattering length observed in a free
two-body collision' and a,« is the scattering length
characterizing a nucleus in the lattice. But a,« is, in
general, quite different from the scattering length a f

which one would observe if the nucleus were rigidly
fixed.

To see this we compare the equations describing
scattering in the two cases, fixed and free target
nucleus, respectively.

substantially different from m/p, and it becomes
necessary to justify the procedure by considering the
motion of the nuclei.

Another reason for this revision is the gain in sim-

plicity. When the zero-point motion is taken into
account, the wave function does not have any singu-
larities, even if one idealizes the nuclei as point scat-
terers, and one can hence use simpler mathematical
methods.

We consider an infinite crystal in the ground state
and disregard all excited states. In this case the division
into incident and scattered wave has no meaning, and
we omit the inhomogeneous term in Eq. (18), so that
P is now the entire wave function. Equation (18) takes
the form

(W +Eo E)$,0(—k) —p (ki y', ooi k')p;0(k')dk'
jwi

(k~ $;, 00~ k')lp;, 0(k')dk'=0. (73)

so that p pp and p', oo become identical by Eqs. (19)
and (20). Omitting the unnecessary subscripts 0, we
can write for Eq. (73) in view of Eq. (6)

f
(W +Eo E)lp '(k)

J
(k

~

'r,
~

k')p(k')dk'= 0, (75)

and by summation with respect to i

(W.+ED E)f(k) (ki y—ik')p(k')—dk'=0, (76)

with
v=Zv' (77)

Further, by Eqs. (19a) and (39) w'e have for scalar
interaction

a
(& I v I

k') = 2 v'o*(p) ~(&+u' —&'—u'')
(2n.)' ' p;"

&& ~0(p''1 -)du''~f, (78)

where a; and p; are the "free" scattering length and
the reduced mass of the ith nucleus. In coordinate

The energy E is now an unknown eigenvalue and not
given beforehand.

It has been pointed out elsewhere" that this pro-
cedure of going to the limit of an infinitely extended
scatterer is not quite rigorous, but the necessary
correction for radiation damping is very small in most
practical cases.

It will appear in the following that for the relevant
range of wave numbers k

E=EO+W, (k),
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representation Eq. (78) can be written

g
(k [ y (

k') = P—
~

~ q p(r)
~

' exp[ir; (k—k') ]dr. (79)
(2~)' ' ~'"

with

f A2 —
5P+ U,H+ko E($—=0,

&2m
(80)

U ff 2rk'g, (&,/p') ~
~

po(r')
~

'5(r —r, ')dr'. (81)

The integral is the Fourier transform of the probability
for ending the ith nucleus at the point r;.

If Eq. (76) is now written in coordinate representa-
tion, one obtains

wavelength becomes comparable to the zero-point
motion's amplitude, which is usually of the order of
one percent of the interatomic distance. Such wave-
lengths are never used in diR'raction experiments, so
that we 6nd agreement with Goldberger and Seitz for
all practical purposes. A deviation could only be ex-
pected in such extreme cases as solid hydrogen or rather
(since spin alignment is impracticable) solid deuterium.

We next turn to the electrostatic interaction between
neutrons and electrons. It is only necessary to include
the electrons in the p s in Eq. (78), and all other
calculations remain correct if the term corresponding
to the electron interaction is added.

We obtain then a total effective potential to be
introduced into the Schrodinger equation of the neutron

If there are m diferent kinds of nuclei with scattering
lengths g, and reduced masses p, , we obtain

n g
U ff(r) = 2vrA' P —P t

~
&0(r')

~

'5(r r)—dr', (82)
~ p;'~

where the second summation extends over a,ll nuclei of
type j.The sum with respect to i represents evidently
the probability for ending any one nucleus of type j
at the point r, i.e., the expectation value of the density
of nuclei j, viz. , p, . Hence, Eq. (82) may be written

(83)

This result was to be expected; the effective potential
to be used is the Fermi pseudopotential of all nuclei,
averaged with respect to the ground state of the crystal.

Since the potential is now a smooth function, the
wave function has no singularities, and one can proceed
legitimately in the manner of Laue's dynamical theory
without the complications of Ewald's lattice sums. We
do not enter into the details, since the results are well
known. It is a well-known feature of this theory that
the strong waves have wave numbers very close to the
vacuum wave number corresponding to the given
energy, which justifies Eq. (74). One finds, rather
obviously, agreement with the formulas given by Gold-
berger and Seitz for wavelengths which are large in
comparison to the spread of the nuclear wave functions.
A decrease of intensities is found only when the neutron

where g, is the scattering length in a free neutron-
electron collision and p, the reduced mass of the elec-
tron, which is practically equal to the electronic mass
itself.

According to well-known results of the dynamical
theory of x-rays, the integrated intensity of a beam
diffracted by a large, perfect crystal is proportional to
the appropriate Fourier coeKcient of the potential (84).

In addition to the first term which is practically
constant, a second term is obtained from Eq. (84),
which decreases with the increasing Miller index of the
rejecting plane. This decrease, according to experi-
mental results obtained from gases and liquids, is of the
order of a few percent in the practical range, " '

The question arises whether the use of diffraction by
large crystals would provide a more precise determi-
nation of g,. 06'hand, this would seem to be desirable
because the well-dehned state of the crystal eliminates
a number of uncertainties connected with the liquid
state. However, the deviations from rigorous periodicity
in an actual crystal, even at low temperatures, will
substantially aAect the result. In particular, isotope
and spin eGects will tend to decrease intensities while
mosaic structure increases them. The latter e6ect is
particularly dificult to estimate, so that the method
probably has no advantage over those used previously.

"Havens, Rabi, and Rainwater, Phys. Rev. ?2, 634 (1947).' E, Fermi and L. Marshall, Phys. Rev. 72, 1139 (1947).I' Havens, Rainwater, and Rabi, Phys. Rev. 82, 345 (1951).


