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Neutron-Proton Scattering in the Region 0—5 Mev
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The theoretical cross section for scattering of neutrons by protons has been calculated on the basis of a
pure central Yukawa potential with the same range in 'S and 'S states, corresponding to meson mass 200
and 300, respectively. The results indicate that the best over-all fit with most recent scattering experiments
would be obtained with a meson mass of roughly 350 m, . Allowing different ranges in singlet and triplet
states and making use of the deuteron binding energy, we found a "triplet mass" of 290 and a "singlet mass"
of about 380.

A further result of this work is that, at least in the case of Yukawa potential, the "effective range"
approximation is prone to give the total cross section much more accurately than the singlet and triplet
cross sections separately. Accordingly, this approximation ought to be handled with some care in other
problems than n-p scattering.

V~s(r) = —Ae ""/r,

V~s(r)= —Be «/r
jr= pmc/k.

To begin with we take singlet and triplet ranges
equal, simply because it is a natural assumption if we
want to retain the connection between meson theory
and nuclear force theory.

The calculations were performed with two diGerent
values of the meson mass pm: 200 and 300 m (m= elec-
tron mass). In each case the constants A and B were
determined from the singlet and triplet scattering
amplitudes, a. and at, respectively. For these quantities
we have the well-known equations

sag+sate=f, 31lag +s'a, =o'p,

where 00 is the epithermal neutron-proton scattering
cross section and f the coherent scattering amplitude.
Starting from

'HE present work aims at an accurate theoretical
calculation of the neutron-proton scattering in

the energy region up to 5 Mev where influence from I'
and higher states can still be neglected. '

Vfe assume a pure central Yukawa potential with the
same range in the 'S as well as in the 'S state, thus

(M„E;y& M„c) E;

( 25' j k 42M~'J
(6)

(M„=proton mass).
The method of calculating the effective range r,

(singlet) and r~ (triplet) when a, and a, are known will
be outlined below. The results in the present case are
given in Table I. Accepting now the effective range
approximation, we get the following expression for the
total cross section:

1 I 30'= g&a r4, &t)

action corresponding to a bound state), we obtain

a~
——(5.37&0.03) 10 "cm,

a, =(—23.67&0.06) 10 "cm.

According to Blatt and Jackson4 the effective range
can be dehned as a coeKcient in the expansion of k coty
in powers of k, the reduced wave number of the neutron-
proton system, q being the asymptotic phase of the
singlet or triplet S wave function, thus

I

k cotri = —1/a+ ,'rk'+—O(k4), (5)

where a is the scattering amplitude. The quantity k is
related to the energy E; of the incident neutrons in the
laboratory system through the following formula'

f= —(3.78&0.03) 10 "cm'
op=(20.32&0.10) 10 '4 cm' '

and remembering that a& must be positive (triplet inter-

with

0'i =
1+(a,s ar;)k'+ ,'a r—sk4-

*On leave from the University of Oslo, Oslo, Norway. Per-
manent address: Universitetets fysiske institutt, Blindern, Oslo,
Norway.

' See, however, L Hulthen and A. Pais, Physical Society of
London, Cambridge Conference Report (1947), p. 177, Table II.
For meson mass 200 the P states may contribute to the total cross
section by 3—5 percent at 5 Mev, depending on the P interaction
assumed. On the other hand, the contribution does not exceed 5
parts in a thousand for meson mass 300.

~ Ringo, Surgy, and Hughes, Phys. Rev. 82, 344 (1951).
3 This figure differs slightly from the value given by E. Mel-

konian [Phys. Rev. 76, 1744 (1949)j i20.36+0.10l which, accord-
ing to private information kindly given by Professor Rainwater,
is still the best value.

State

Singlet
Singlet
Triplet
Triplet

Meson mass
assumed

200
300
200
300

a 10» cm

—23.67—23.67
5.37
5.37

r 10» cm

4.717
3.006
1.759
1.599

' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
~ Present best values give k'=1.2051 10"Ei(Mev) cm2.

TAsLE I. Scattering amplitude a from (4). Calculated effective
range r (Yukawa potential).
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we have for y(x) the following boundary conditions:

y(0) =1, y(~) =0. (12)
Inserting (11) into (9) we obtain

y"+q'y+ v(x)y= v(x) (cosqx+cotri sinqx). (13)
This is the Euler equation of the following variational

problem. Require

L
—y"+q'y'+ ( ) ( o q

—y)'jd (14)
aJ 0

to be stationary under the accessory condition

v(x) sinqx(cosqx —y)dx= const.
0

(15)

If we introduce a multiplier ), we get a variational
equation

bJ+2XblV =0, (16)
which leads to Eq. (13), with X for cotri Fur. thermore,
it is easy to show" that the integral in (15) can be
expressed in terms of ri if y is an exact solution of (13);
we have

where
X=q(1 —rin cotrl),

1
v(x) sin'qxdx,

q Jp

(17)

P (~eV)
0 2 3 4 5 6 7

FIG. 1. Neutron-proton scattering cross section based on
Yukawa potential with same range in 'S and 'S corresponding to
meson masses 200 and 300, plotted against incident neutron
energy E and compared with various measurements.

The results obtained in this way are compared with
experimental results' " in Fig. 1.

is the eigenphase in Born's approximation. Regarding
y(x) as a trial function which depends linearly on a
number of indeterminate parameters, we obtain from
(16) and (17) a unique approximate solution, if X is
identified with coty. In this way we get a value for
X=cotp which is not stationary; this is however easily
remedied, as will be shown presently. "

De6ne

THE MATHEMATICAL METHOD &dxs )
(19)

We start by recalling the main features of the varia-
tional method as formulated in a previous paper. "Take
the equation

{d'/dx'+q'+ v(x) )y(x) =0, (9)

where v(x) is supposed to be a short-range potential, for
instance, be '/x The bound. ary conditions are

P(0) =0, P(x)-+cotri sinqx+cosqx as x~ee, (10)

ri being the unknown asymptotic phase. Writing p(x) in
the form

Q(x) = cotri sinqx+cosqx —y(x),
6 H. Aoki, Proc. Phys. Math. Soc. Japan 21, 232 (1939).
7 Zinn, Seely, and Cohen, Phys. Rev. 56, 260 (1939).
8 Bailey, Bennet, Bergstrahl, Nuckols, Richards, and Williams,

Phys. Rev. 70, 583 (1946).' D. H, Frisch, Phys. Rev. ?0, 589 {1946).
"W. Sleator, Jr., Phys. Rev. 72, 207 (1947)~

» Lampi, Freier, and Williams, Phys. Rev. 80, 853 (1950).
"Oda, Sanada, and Yamabe, Phys. Rev. 80, 469 (1950).
13 L. Hulth6n, Arkiv. Mat. Astron. Fysik. ABS, No. 25, 1 (1948).

See also the original paper, K. Fysiogr. Sallsk. Lund, Forh. 14, 1
(1944).

+q'+v(x) ~ydx=o.
00 ( ds

)
(22)

'4 See reference 13, pp. 7—9.
's N. Zeilon, Lunds Univ. Arsskr. Avd. 2 (C. W. K. Gleerup,

Lund, 1947), New Series, Sec. 2, Vol. 43,¹.10.

and insert here Eq. (11) for p(x), and we obtain after
partial integrations with due regard to the boundary
conditions (12),

qX+qrisX'+ J+2AN,—(X=cotri). (20)

On an infinitesimal variation of P we get from (19)
after partial integrations

(d'
br=2, by~ + q'+ v(x) ~ydx+qu. (21)

&dxs )
For the exact solution of (9) the integral in (21)

obviously vanishes. We now 6x an approximate solution

by requiring this integral to vanish for all possible bp,
thus (compare Zeilon")
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Then we obtain the equation

8Z =
pbbs, (23)

where 82 and bX denote variations out from the approxi-
mate solution. But J and N in (20) do not depend on X.
Hence (23) can be split up in two equations; the first
one is (16), the second one,

BZ/BX = q,
" (24)

is easily found to be identical with (17) (with cot&= X).
Thus the condition (22) is equivalent with the formalism
quoted in the beginning of this section.

The A-value obtained in this way is not stationary.
However, the first-order deviation from the stationary
value can be obtained from Eq. (23), letting now BZ
and A denote deviations from the exact solution of (9)
and (10). Neglecting second-order terms, we have
BZ=Z, since =0 for the exact solution, and thus
obtain, by using (17) and (20),

67 =Z/q= (J+7N)/q=//q, (25)

J, X, and N being fixed by the approximate solution
determined from (16) and (17). The improved X-value
is then

Xp= X—6/q, (26)
which is stationary because the erst-order deviation
has been removed, the remaining error in Xo being of the
second order (or higher) in By."

Taking for y(x) in (11) a trial function containing a
number of indeterminate parameters c~ c„,we get
from (16) and (17)

BJ/Bc,+2XBN/Bc„=0, v=, 2, 3, , e, (27a)

N=q(1 ~,& (27b)

which determine the approximate solution. If y(x)
depends linearly on the parameters c„,Eqs. (27) are
linear in the c„'sand X, and the solution is unique.

In the numerical calculation of 6 from (25) it is con-
venient to make direct use of (27). With a trial function
depending linearly on the parameters c„,we can write

n m

J=J"&++p„c„+-',g n„.c„c„,

and Eqs. (27) become

Crsc +2K'rs= —Pp, P= 1 2, ' ' ' s
v=1

n

Q y,c.+qp&X =q—Nip&.
v~1

(29)

Thus the quadratic terms can be eliminated from
J+XN, the result being

n
a= J+),1V-J&"+XÃ&'&+sQ P„c„.-

a=1
(30)

Turning now to the Yukawa potential v(x)=be */x,
we have the equation

where
(d'/dx'+ q'+ be /x) rb—(x) =0, (31)

&b =be/sos
M = —s,(M„+Mv).

'b MB/sb, ',
(33)

As a trial function for y(x) in (11) we choose the fol-
lowing expression, which satisfies the boundary con-
ditions (12)

y(x) =e—+(1—e-') P c„e-"' (34)

Inserting this into (14), (15), and (18), putting
n(x) =be /x, we obtain with the notations (28)

J"'= k(1 q )+bkln{(4+q')/3}
——,

' ln(1+4q') j,

q'= ~&//s's'= k'/s', s= ~~c/&." (32)

cV/2 is the reduced mass of the neutron-proton system
and E the total energy in the center-of-mass system
/see Eq. (6)j. pm and m are the masses of meson and
electron, respectively.

Comparison with (1) gives

v=1

N=N"'+Q y,c„a„„=rr„„,
v=1

(28) 2(1+q') (v+2)'((v+2)'+q')
p.= —bin

( +1)( +2) ( +3)'(( +1)'+q')
2g' —2p, v —p,—v

1

(~+v)(~+v+ 1)(~+v+2)

(y+ v+2)'
+b ln

(~+v+1)( +v+3)

N "&= b( ', arctg2q —arc-tg-', q),

b~ arctg- —arctg——
v+1 v+2)

rl& ——(b/4q) ln(1+4q').
"Present best values give 1/s= i386.12/vl 10 "cm.

"See S, S. Huang, Phys. Rev. 76, 1878 (1949) and L. Hulthen
and P. O. Olsson, Phys. Rev. 79, 532 (1950).The identity of (24)
with (17) was 6rst pointed out to us by Dr. P. O. Olsson and Dr.
B. C. H. Nagel (unpublished manuscript). See also T. Kato, Phys.
Rev. 80, 475 ()950)."See reference 13, original paper, pp. 4-6. An explicit stationary
expression for X can be obtained by putting (20) =0 and solving
with respect to X. We then have

UP 'q)' qg
—J3~—), ——1 g

(20a)
fgB 2

the sign of the square root being 6xed for instance by the condition
that X must approach 1/qg (Born approximation) when the
potential v(x) decreases sufIIciently (E((q). Requiring X to be
stationary, we obtain an equation (system) equivalent to (16),
which together with (20a) determines an approximate solution.
This is virtually the same method as that described in the original
paper (1944).

'(35)
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TABLE II. Approximate solutions of (31) from Eqs. (27a, b) and
(26), with trial functions according to (11) and (34). b=1.5.

TABLE IV. Approximate solutions of (31) from Eqs. (27a, b) and
(26), with trial functions according to (11) and (34). b=1.6.

Q
—Cy +C2

0.1 0.4752 ~ ~

0.5246 0.0720
0.5643 0.2076

0.2 0.5090
0.5731 0.0931
0.6248 0.2679

0.3 0.5596
0.6451 0.1229

0.4 0.6211 ~ ~

0.7313 0.1561

05 06880
0.8231 0.1869

0.6 0.7561 ~ ~ ~

0.9147 0.2126
1.0213 0.5312

0.7 0.8220
1.0012 0.2300
1.1184 0.5529

0.8 0.8829 ~ ~ ~

1.0783 0.2360
1.1849 0.4926

—C3

~ ~ ~

0.1104

~ ~ ~

0.1417

~ ~ ~

0.2424

~ ~ ~

0.2347

~ ~ ~

0.1706

1.02192
0.99936
0.99084

0.69803
0.68249
0,67655

0.66521
0.65014

0.69873
0.68242

0.75417
0.73596

0.81752
0.79689
0.78919

0.88373
0.86021
0.85089

0.95099
0.92419
0,91418

0.03742
0.01569
0.00738

0.02616
0,01130
0.00553

0.02564
0,01133

0.02786
0.01243

0.03143
0.01416

0.03600
0.01629
0.00872

0.04169
0.01896
0.00972

0.04878
0.02254
0.01255

Xo g =are cot) g

0.98450
0.98367
0.98346

0.67187
0.67119
0.67102

0.63957
0.63881

0.67087
0.66999

0.72274
0.72180

0.78152
0.78060
0.78047

0.84204
0.84125
0.84117

0.79321
0.79363
0.79374

0.97920
0.97967
0.97978

1.00179
1.00233

0.97989
0.98050

0.94497
0.94559

0.90743
0.90800
0.90808

0.87094
O.S?140
0.87145

0.90221 0.83676
0.90165 . 0.83707
0,90163 0,83708

Q Cl +C2

0.1 0.5232
0.5716 0.0708

0.2 0.5575 ~ ~ ~

0.6199 0.0908

0.3 0.6089
0.6913 0.1188

0.4 0.6714
0,7769 0.1498

0 5 0 7395 ~ ~ ~

0.8683 O.1?87

0.6 0.8090
0.9602 0.2032
1.0671 0.5229

0.7 0.8768 . ~

1.0483 0.2205
1.1645 0.5406

0 8 0 9404
1.1318 0.2316

0.9 0.9974 ~ ~ ~

1,2147 0.2412

—C3

~ ~ ~

0.2434

~ ~ ~

0.2326

0.51566
0.49368

0.43018
0.41517

0.47103
0.45660

0.53760
0.52209

0.61023
0.59297

0.68309
0.66352
0.65582

0.75451
0.73211
0.72287

0.82425
0.79806

0.89286
0.86069

0.03755
0.01638

0.02580
0.01143

0.02491
0.01119

0.02672
0.01202

0.02981
0.01341

0.03377
0.01504
0.00746

0.03865
0.01697
0.00781

0.04461
0.01893

0.05213
0.02023

) g g =are cotho

0.47811
0.47730

0,40438
0.40374

0.44612
0.44541

0.51088
0.51007

0.58042
0.57956

1.12482
1.12547

1.18652
1.18707

1.15117
1.15176

1.09848
1.09912

1.04490
1.04554

0.71586
0.71514
0,71506

0.77964
0.77913

0.84073
0.84046

0.94950
0.94998
0.95004

0.90860
0.90891

0,87171
0.87187

0.64932 0.99490
0.64848 0,99549
0.64836 0.99558

09 09357
1.1316 0.2174

1.0 0.9758
1.5606 0.5744
1.3199 0.3733

~ ~ ~

0.0447

1.01914
0.99012

1.08928
0.99261
1,033865

0.05794
0.02916

0,96120
0.96096

0.80518
0.80531

0.07057 1.01871 0.77613—0.02636 1.01897 0.77600
0.014943 1,01891g 0.776023

1 0 1 0445 ~ ~ .
1.1526 0.1060
1,3101 0.2356

o ~ ~

—0.03143

0.96149 0.06215 0.89934 0,838343
0.94359 0.04423 0.89936 0.838333
0.916483 0,017153 0.89933o 0.838352

TABLE III. Approximate solutions of (31) from Eqs. (27', b) and
(26), with trial functions according to (11) and (34). b=1.55.

e —Ct

0.1 0.498&
. 0.5478

0,2 0.5329
0.5963

0.3 0.5839
0,6680

0.4 0.6459
0.7538

0.5 0.7134
0.8454

0.6 0.7822
0.9371

+C2

~ ~ ~

0.0715

~ ~ ~

0.0922

~ ~ ~

0.1210

~ ~ ~

0.1530

~ ~ ~

0.1829

~ ~ ~

0.2079

0.76260
0.74029

0.56083
0.54553

0.56575
0.55096

0.61619
0.60028

0.68042
0.66268

0.74865
0.72854

0.03754
0.01605

0.02601
0.01137

0.02530
0.01125

0.02732
0.01225

0.03064
0.01380

0.03492
0.01569

0.72506
0.72424

0.53482
0.53416

0.54045
0.53971

0.58887
0.58803

0.64978
0.64888

0.71373
0,71285

g =are cotXp

0.94345
0.94399

1.07968
1.08020

'.07531
1.07589

1.03860
1.03922

0.99458
0.99521

0.95091
0.95150

'9 In Tables II and IV we also Gnd some three parameter results.
"L.Hulthen, K. Fysiogr. Sallsk. Lund, Forh. 14, Nr. 8 (1944).

Equations (29) are then solved for instance by
Gauss' method, and the improved value of coty, Xo, is

obtained from (26) and (30).
Numerical results have already been given in reference

13 for b=1.5 and 1.6. These results are quoted in our

Tables II and IV. In Tables III, V—XI, the calculations

have been extended to some other b-values of immediate

interest. A comparison between the results obtained

with one and two parameters, respectively, gives an

idea of the accuracy of the corrected phase value p."
Moreover, the eigenfunctions were checked by means

of certain integral identities;"" with two parameters
the deviations were about Ave parts in a thousand or
less. This seems satisfactory since the uncertainty in

the corrected phase g is of the second order, errors of

TABLE V. Approximate solutions of (31) from Eqs. (27a, b) and
(26), with trial function (34) Lsee (11)$. b= 1.65.

—Cy +C2 ) o g =are cotkg

0.1

0.2

0.3

0.4

0.5

~ ~ ~

0.5637

~ ~ ~

0.6441

~ ~ ~

0.7153

~ ~ ~

0,8003

~ ~ ~

0.8915

~ ~ ~

0.0224

~ ~ ~

0.0891

~ ~ ~

0.1162

~ ~ ~

0.1459

~ ~ ~

0,1739

~ ~ ~

0.27282

~ ~ ~

0.29075

~ ~ ~

0.36653

~ ~ ~

0.44755

~ ~ ~

0.52651

~ ~ ~

0.03081

~ ~ ~

0.01151

~ ~ ~

0.01109
~ ~ ~

0.01182

~ ~ ~

0.01301

~ ~ ~

0.24200

~ ~ ~

0.27923

~ ~ ~

0.35544

~ ~ ~

0.43573

~ ~ ~

0.51350

~ ~ ~

1.33336

~ ~ ~

1,29850

~ ~ ~

1.22816

~ 0 ~

1,15987

~ ~ ~

1.09641

Q
—Cg

0.1 0.8306
0.8666

0.8 567
0.8941

0.9098
0.9592

0.9746
1.0372

1.0460
1.1218

0.6 1.1204
1.2102

+C2

~ ~ ~

0.0529

~ ~ ~

0.0553

~ ~ ~

0.0723

~ ~ ~

0,0903

~ ~ ~

0.1070

~ ~ ~

0,1225

—1.49943—1.51453

6/q

+0.04729
+0.03286

—0.63878-0.64738
+0.02020
+0.01182

—0.30240—0.31066
+0.01797
+0.00995

+0.01755
+0.00933

+0.01833
+0.00886

+0.01887
+0.00793

—0.10267—0.11147

+0.03968
+0.02992

+0.15137
+0.14014

1.54672—1.54739

—0.65897—0.65920

—0.32036—0.32061

—0.12052—0.12080

+0.02135
+0.02106

+0.13250
+0.13221

q =are cotXg

2.56766
2.56786

2.15345
2.15361

1.88083
1.88105

1.69074
1.69101

1.54945
1.54974

1.43906
1.43935

erst order being removed by the procedure comprised
in Eq. (26)."

"In one particular case (@3=290) we compared the triplet
effective range calculated by the variational method (r&=1.618)
with the value obtained from the integral formula (see reference 4)

TABLE VI. Approximate solutions of (31), with b=2.1. For trial
function see (11) and (34).
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TABLE VII. Approximate solutions of (31), b =2.3. For trial
functions see (11), (34}.

TABLE X. Approximate solutions of (31), b= 2.7. For trial func-
tions see (11), (34).

0.3 1.0636
1.0887 0.0370

—0.56248—0.56657

0.4 1.1271 . ~ ~ —0.31655
1.1604 0.0484 —0.32112

0.5 1.1976 ' —0.14965
1.2393 0.0593 —0.15492

0.6 1.2722 . . —0.02408
1.3238 0.0708 —0.03042

q -Cl

0.2 0.977'2 . . . —2.19459
0.9882 0.0166 —2.19932

0.2 1.0117 . . . —1.00031
1.0285 0.0253 -1.00413

0.02503
0.02036

0.01549
0.01165

0.01317
0.00916

0.01237
0.00788

0.02174
0.00657

0.02072
0.00448

—2.21962—2.22968

—2.01580—1.01578

-0.57565—0.57573
'—0.32892—0.32900

—0.16139—0,16148

—0.03480—0.03490

q =are cotXp

2.71830
2.71832

2,36403
2.36402

2.09312
2.09318

1.88S57
1.88864

1.73081
1.73089

1.60558
1.60568

q —Cg +C2

0.1 1.3894 ~ ~ .
1,3374 —0.0796

0.2 1.4165 ~ ~ ~

1,3641 -0.0800

0.3 1.4538 ~ ~ ~

1.4043 —0.0815

0.4 1.5109
1.4542 —0.0844

0.5 1.5721 ~ ~ ~

1.5127 —0.0862

0.6 1.6412 ~ ~ ~

2.5823 —0.0823

—3.55092—3.53039

—1.70863—1.69765

—1.06657—1.05832

—0.72613—0.71881

—0.50805—0.50097

—0.35296—0.34606

+0.00082
+0.02217

—0.00036
+0.01110
—0.00162
+0.00690

—0,00347
+0.00409

—0.00633—0.00093

—0.01081—0.00379

—3.55174—3.5S2S6

—1.70827—1.70875

-1,0649S—1.06522

—0.72266—0.72290

—0.50172—0.50190

—0,3421S—0.34227

2.86715
2.86721

2.61199
2.61211

2.38764
2.38776

2.29657
2.19673

2.03582
2.03596

1.90046
1.90057

&p q =are cot) p

TABLE VIII. Approximate solutions of (31), b =2.4. For trial
functions see (11), (34).

0.3 ~ ~ ~ ~ ~ ~

1.1596 +0.0142
~ ~ ~ ~ ~ ~

—0.69005 0.00871
~ ~ ~

—0.69876
~ ~ ~

2.18069

0.4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.2274 +0.0224 —0.42178 0.00703

0..5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.3024 +0.0300 —0.24314 0.00531

~ ~ ~

—0.42881

~ ~ ~

.
—0.24845

~ ~ ~

1.97589

~ ~ ~

1.81431

TABLE IX. Approximate solutions of (31), b=2.5. For trial func-
tions see (11},(34).

q —C1

0.1 1.1633
1.1484

0.2 - 1.1954
1.1834

0.3 1.2440
1.2353

0.4 1.3038
2.2982

0.5 1.3713
1.3688

0.6 1.4444
1.4471

+C2

~,~ ~

—0.0226

~ ~ ~

—0.0181

~ ~ ~

-0.0129

~ ~ ~

—0.0083

~ ~ ~

—0.0036

~ ~ ~

+0.0039

—2.86521—2.85907

—2.35168—1.34908

—0.81369—0.81231

—0.52169—0.52094

—0.33002—0.32971

—0.19027-0.19060

0.01513
0.02138

0.00885
0.0114S

0.00682
0.00818

0.00540
0.00616

0.00364
0.00395

0.00094
0.00061

Xp

—2.88034—2.88045

—1.36053—1.36056

—0.82051—0.82049

—0.52709-0.52710

—0,33366—0.33366

—0.19122—0.19121

g =are cotXp

2.80743
2.80744

2,50776
2.50777

2.25792
2.25792

2,05588
2,05589

1.89284
1.89284

1.75973
1.75973

q —c& +Cp d,jq )«p =are cotXp

0.1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~

1.0651 —0.0022 —2.52963 0.02098 —2.55061 2.76795

0..2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.1032 +0.0055 —1.17711 0.01163 —1.18874 2.44221
TABLE XI. Approximate solutions of (31), b= 2.9. For trial func-

tions see (11), (34).

q —C1

0.1 1.6697
1.5657

0.2 1.6877
1.5796

0.3 1.7173
1.6026

0.4 1.7571
1.6336

0.5 2.8072
2.6751

0.6 1.8681
1.7316

+C2

~ ~ ~

—0.1617

~ ~ ~

-0.2674

~ ~ ~

—0.1759

~ ~ ~

—0.1863

~ ~ ~

-0.1920

~ ~ ~

-0.1931

—4.28703—4.24796

—2.08825—2.06673

—2.33209—1.31542

—0.93784—0.92259

—0.69034—0.67489

—0.51744-0.50189

—0.01979
+0.02285

—0.01297
+0.01043

—0.01272
+0.00532

—0.01472
+0.00161

—0.01865—0.00262

—0,02499—0,00878

g =are cothp

2.91140
2.91159

2.69256
2.69291

2.49303
2.49352

2.31624
2.31682

2.16206
2.16267

2.02839
2.02892

—4.26724—4.27080

—2.07528—2.07716

—1.31937—1.32072

—0.9232 2—0.92420

—0.67138—0.67227

—0.49245—0.49311

we then put, as in Eq. (5),

q) p= 1/sa+ ,'srq—,'-
neglecting higher powers than q'.

(36)

TABLE XII. CoeKcients uo(b) and a2(b), deaned by (36) and
(37), calculated by variational method, using trial function (34)
t see lttlj.

correction 6 in (25) is also an even function, and so
becomes D.o. These statements are, in fact, more
generally valid and agree with the theory of the
"effective range" approximation. ' For small energies

EXPANSION IN O'. COMPARISON BETWEEN "EXACT"
AND "EFFECTIVE RANGE" METHOD

1 param.
Cp

2 param. 3 param.
Qp

1 param. 2 param.

Equation (35) shows that J is an even function of q

(or k), whereas 1V and gg are odd functions. From (27a)
and (27b), which are linear in the parameters c, and X,

we then obtain c„and kX as even functions of k. The

where &&&0& is the eigenfunction for zero energy. With two param-
eters in the trial function @&( & the result was r~=1.642, which
differs from the variational value by 1.5 percent. As a test of the
accuracy of the eigenfunction, this must be considered satis-
factory'since the integrand contains the square of the eigen-
function. It should be remembered that the value of rt, obtained
from (37) is a stationary quantity and must therefore be expected
to be more accurate than a value obtained from an integral formula
without stationary properties. Concerning the accuracy of the
variational method see also P.-o. Lowdin and A. Sjolander,
Arkiv Fysik. 3, nr. 11,pp. 155—166 (1951).

1.5
1.55
1.6
1.65
1.7
1.75
1.8
1.9
2.0
2.1
2.2
2.25
23
2.35
2.4
2.5
2.6
2.7
2.8
2.9
3.0

0.086200
4 ~ ~

0.036537
~ ~ ~

—0.008749
~ ~ ~

-0.050534

~ ~ ~

—0.161439—0.195306
~ ~ ~

—0.228337
~ ~ ~

—0.260915—0.293412—0.326209—0.359706-0.394343—0.430625—0.469138

0.086135
0.060695
0.036475
0.013346—0.008807—0.030086—0.050585—0.089572-0.226362—0.161460—0.195316—0.211908—0.228339—0.244660—0.260915-0.293420—0.326243—0.359794—0.394529—0.430975—0.469748

0.086117
~ ~ ~

0.036455

~ ~ ~

—0.161491

~ ~ ~

—0.228377
~ ~ ~

~ ~ ~

-0.293465
~ ~ ~

—0.359846
~ ~ ~

—0.431033
~ ~ ~

1.23231
~ ~ ~

1.13373
~ ~ ~

1.04459
~ ~ ~

0.96330

~ ~ ~

0.75542
0.69564

~ ~ ~

0.63985
~ a ~

0.58783
0,53957
0.49522
0.45521
0.42026
0.39153
0.37083

1.23074
1.18021
1.13227
1.08670
2.04328
2.00182
0.96216
0.88767
0,81883
0.75490
0.69533

~ ~ ~

0.63974
0.61335
0.58789
0.53973
0,49540
0.45529
0.42008
0.39089
0.36945
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TABLE XIII. Singlet, triplet, and total cross sections (0-„0.~, and o.) in effective range approximation, based on Yukawa potential with
range corresponding to meson mass 300 (p,,——p& ——300). 6 is the difference between the "exact"-value (i.e., the value obtained from an
accurate phase calculation, without expansion in k') and the "effective range" value.

B~",(Mev)

0.2
0.6
1.0
2.0
3.0
4,0
5.0
6.0

27.838 10~4
12.502
8.007
4.153
2.763
2.048
1.613
1.322

0.007 10-24
0.011
0.014
0.')17
0,021
0.023
0.025
0.027

3.455 10~4
3.158
2.907
2.418
2.063
1.795
1.585
1.415

0.000 10~'
—0.000—0.001—0.004—0.007—0.008—0,009—0.010

9.551 10 '4

5.494
4.182
2.852
2.238
1.858
1.592
1.392

0.002 10~
0.002
0.002
0.001
0.000—0.000—0.001—0.001

By expanding (26), (29), and (30) in powers of q,
retaining terms up to q' in J and q' in X, we obtain
through the procedure described in the preceding
section the coeflicients in (36) as functions of the
binding parameter b Lsee (33)]:

1/ma= a—o(b), —,'zr = a2(b). (3&)

In this way ao and a2 are turned into stationary
quantities. It should, however, be noted that this is
true for a2 only if the parameters c, are computed to
the order of q'. In Table XII ao and a2 are given for a
succession of b values in the most interesting region.

Using the figures given for a, and a, in (4), inter-
polations in Table XII give us the quantities 'b, 'b, r„
and r~ for diferent meson masses.

We are now ready to compare the results of the two
methods: the "eRective range" approximation and the
ordinary phase method. In both cases the same trial
function (34) with two parameters has been used and
the resulting technical errors in the cross sections are
believed to be much smaller than the diRerences
between "exact" results and "eRective range" values,
except at low energies, of course. Examples are found
in Tables XIII (meson mass 300), XIV (meson mass

200), an.d XV, which give the singlet and triplet cross

sections separately as well as the total cross sections,
all based on the "eRective range" approximation. The
quantities denoted by 6 are the diRerences between the
0 s calculated directly (i.e., without expansion in
powers of k) and the 0's in the table.

Some comments may be called for. We see that the
differences in the total cross sections are small, less than
one part in a thousand for meson mass 300 and 1 percent
for 200. On the other hand, the diRerences between the
singlet cross sections obtained with the two methods
run up to 2 percent for meson mass 300 and 7 percent
for mass 200. The differences in the triplet cross sections
are smaller and have the opposite sign. This fact, in
connection with the different weight factors of singlet
and triplet states, makes the diRerences in the total
cross sections so small. The conclusion is that the
"eRective range" approximation is very accurate in
calculating the total scattering cross section, the
accuracy increasing with decreasing range (i.e., in-

creasing meson mass), as is well known. This accuracy,
however, is to a certain extent fortuitous, and therefore
it is well advised to use the eRective range" method,
even the "shape-dependent" version, with caution in
other problems than neutron-proton scattering.

TABLE XIV. Same quantities as in Table XIII, with meson mass 200 (p,,= pt, =200).

Z~ (Mev)

0.2
0.6
1.0
2.0
3.0
4.0
5;0
6.0

26.694 10~4
11.693
7.372
3.705
2.398
1.733
1.333
1.069

0.018 10~4
0.036
0.044
0.058
0.066
0.071
0.074
0.076

3.461 ~ 10~4
3.175
2.930
2.448
2.094
1,824
1.611
1.439

—0.000 10~4
—0.001—0.003—0.006—0.009—0.011—0.012—0.012

9.270 10~4
5.304
4.040
2.762
2.170
1.801
1.542
1.346

0.004 10~4
0.008
0.009
0.010
0.010
0.010
0.010
0.010

TABLE XV. Same quantities as in Table XIII, "triplet meson mass" @&=290 and "singlet meson mass" p, =380.

8.258 10 '4

4.327
2.905
2.171
1.724
1.423

0.007 10~4
0.009
0.010
0.011
0.012
0,014

2.909 10~'
2.421
2.067
1.798
1.587
1.418

—0.001 10~4
—0.004—0.007
-0.009-0.010—0.010

4.246 10 24

2.898
2.276
1.891
1.622
1.419

+0.001 ~ 10~4
—0.001—0.003—0.004—0.004—0.004
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DISCUSSION

Figure 1 shows that a meson mass 300 gives a better
agreement with the experimental results than meson
mass 200, but it is not possible to obtain a very good
over-all Qt with a meson mass between 200 and 300. A
rough estimate, based on a comparison with the most
recent and probably most accurate measurements, those
of Lampi, Freier, and Williams, "indicates that a meson
mass of about 350 would give the best agreement with
present experimental knowledge. This value is rather
far from the m.-meson mass, 276 m„and it would of
course be interesting to see what meson mass would
come out if noncentral, forces are taken into account
with the proper distance dependence. Such calculations
are in progress at this institute.

So far the calculations were based on low energy
scattering data exclusively Lsee (3)]. Taking now the
deuteron binding energy Eo into accouilt we have a
possibility to determine the triplet range, and thus the
corresponding meson mass. With ~EO~ =2.226&0.003
Mev" and a,=(5.37+0.03) 10 " cm Lsee (4)], we

obtain, making use of Table I2' in the paper of Hulthen
and Laurikainen, '4 combined with Table XII above,

6' (baI"py)

+ AOKI
0 ZINN SEELY and COHEN
~ BAIL'r, BENNLT, BERS STRAHL,

NUCOLS, RICHAROS and
Q ILLIA bI S

& FRI SCH

(1939 )
( 1939 )

(1946 )
C 1946 )
(1947 )

1950 )
1950 )

p, &
——290+15. (38)

Having thus fixed a "triplet mass, "we look at Fig. 1
and find again that we should not get a very close fit
with recent scattering data by assuming the same
"singlet mass. " In fact, to obtain a good agreement
with the results of Lampi, Freier, and Williams, we
must choose

E (WeV)
6 7

FIG. 2. Neutron-proton scattering based on Yukawa potential with
"triplet mass" 290 and "singlet mass" 380 (see Fig. 1).

p, =380+50,25 (39)

the cross sections being rather insensitive to variations
of the singlet mass. The results obtained with p, &

——290
and p, =380 are indicated in Table XV and compared
with experimental results in Fig. 2. The corresponding
effective ranges are, in units of 10 "cm,

rg = 1.62&0.03 r.=2.33&0.35. (40)

In this connection it might be of interest to mention

~ R. C. Mobley and R. A. Laubenstein, Phys. Rev. 80, 309
(1950).

~' With a= ME0/h'g', we get with present best values
(—a) & 89.46 /p."L.Hulthen and K. V. Laurikainen, Revs. Modern Phys. 23, 1
(1951).

~~ The 'values (38) and (39) do not quite agree with the results
of E. E. Salpeter, Phys. Rev. 82, 60 (1951), Eqs. (12) and (14).
Part of the difFerence is probably due to the fact that the underly-
ing experimental data are not identical (compare Salpeter's Eqs. (5)
and (6) with Eq. (3) above). A more detailed discussion of the
shape-dependent efFective range theory is deferred to a forth-
coming paper on the photodisintegration of the deuteron by
Q. Hulthen and B. C. H. Nagel.

the results obtained by P. O. Brundell and B.Enander. '
Using an exponential potential with the same range
(real, not "effective") in singlet and triplet states and
determining the parameters (range, triplet and singlet
binding constants) from the low energy scattering data
and the deuteron binding energy, they get a perfect
agreement with the results of Lampi, Freier, and
Williams. Thus in the case of an exponential potential,
all the experimental data in question can be accounted
for by three constants only, instead of four with other
known potential forms, including Yukawa, as we have
seen above.
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