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The theoretical cross section for scattering of neutrons by protons has been calculated on the basis of a
pure central Yukawa potential with the same range in 1§ and 3S states, corresponding to meson mass 200
and 300, respectively. The results indicate that the best over-all fit with most recent scattering experiments
would be obtained with a meson mass of roughly 350 m,. Allowing different ranges in singlet and triplet
states and making use of the deuteron binding energy, we found a “triplet mass” of 290 and a “‘singlet mass”

of about 380.

A further result of this work is that, at least in the case of Yukawa potential, the “effective range”
approximation is prone to give the total cross section much more accurately than the singlet and triplet
cross sections separately. Accordingly, this approximation ought to be handled with some care in other

problems than #—p scattering.

HE present work aims at an accurate theoretical
calculation of the neutron-proton scattering in
the energy region up to 5 Mev where influence from P
and higher states can still be neglected.!
We assume a pure central Yukawa potential with the
same range in the 35 as well as in the 1S state, thus

Vig(r)=—Ae /7,

k= umc/ k. 1)
Vag(r)=—Be™"/r,

To begin with we take singlet and triplet ranges
equal, simply because it is a natural assumption if we
want to retain the connection between meson theory
and nuclear force theory.

The calculations were performed with two different
values of the meson mass um: 200 and 300 # (m=elec-
tron mass). In each case the constants 4 and B were
determined from the singlet and triplet scattering
amplitudes, a; and a;, respectively. For these quantities
we have the well-known equations

fart3a=f, 3mal+tmal=oy, (2

where oo is the epithermal neutron-proton scattering
cross section and f the coherent scattering amplitude.
Starting from

f=—(3.78+0.03)-10~%5 cm 2

3
o= (20.320.10) - 1024 cm?, ®)

and remembering that ¢, must be positive (triplet inter-

*On leave from the University of Oslo, Oslo, Norway. Per-
manent address: Universitetets fysiske institutt, Blindern, Oslo,
Norway.

1 See, however, L. Hulthén and A. Pais, Physical Society of
London, Cambridge Conference Report (1947), p. 177, Table II.
For meson mass 200 the P states may contribute to the total cross
section by 3-5 percent at 5 Mev, depending on the P interaction
assumed. On the other hand, the contribution does not exceed 5
parts in a thousand for meson mass 300.

2 Ringo, Burgy, and Hughes, Phys. Rev. 82, 344 (1951).

3 This figure differs slightly from the value given by E. Mel-
konian [Phys. Rev. 76, 1744 (1949)7] (20.36-4-0.10) which, accord-
ing to private information kindly given by Professor Rainwater,
is still the best value.

action corresponding to a bound state), we obtain
a;=(5.3740.03)-1071% cm,
a,=(—23.6740.06) 10713 cm.

According to Blatt and Jackson* the effective range
can be defined as a coefficient in the expansion of % coty
in powers of &, the reduced wave number of the neutron-
proton system, 5 being the asymptotic phase of the
singlet or triplet S wave function, thus

k cotn=—1/a+3rk*4O(RY), ©)

where @ is the scattering amplitude. The quantity £ is
related to the energy E; of the incident neutrons in the
laboratory system through the following formula®

M pEi i M 0 Ei H
=) T Gn) O
2h? B \2M . ‘
(M ,=proton mass).

The method of calculating the effective range 7,
(singlet) and 7, (triplet) when @, and a; are known will
be outlined below. The results in the present case are
given in Table I. Accepting now the effective range

approximation, we get the following expression for the
total cross section:

€))

o=tot+ioy, ()
with
471'(142

0= .
1+ (diz— d,?'i)kg-{—%aiz?izk‘l

)

TaBLE I. Scattering amplitude ¢ from (4). Calculated effective
range 7 (Yukawa potential).

Meson mass

State assumed a-1013 cm 7+1013 cm
Singlet 200 —23.67 4.717
Singlet 300 —23.67 3.006
Triplet 200 5.37 1.759
Triplet 300 5.37 1.599

4J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
5 Present best values give k2=1.2051-10%¢ E;(Mev) cm™2.
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Fic. 1. Neutron-proton scattering cross section based on
Yukawa potential with same range in 1§ and %S corresponding to
meson masses 200 and 300, plotted against incident neutron
energy E and compared with various measurements.

The results obtained in this way are compared with
experimental results®~? in Fig. 1.

THE MATHEMATICAL METHOD

We start by recalling the main features of the varia-
tional method as formulated in a previous paper.!® Take
the equation

{&/d2*+¢"+v(x)}o(2) =0, 9

where v(x) is supposed to be a short-range potential, for
instance, be—*/x. The boundary conditions are

¢(0)=0, ¢(x)—coty singx+cosgx as x— o, (10)

7 being the unknown asymptotic phase. Writing ¢(x) in
the form
¢ (x) = coty singx+-cosgxr—y(x), (11)

6 H. Aoki, Proc. Phys. Math. Soc. Japan 21, 232 (1939).

7Zinn, Seely, and Cohen, Phys. Rev. 56, 260 (1939).

8 Bailey, Bennet, Bergstrahl, Nuckols, Richards, and Williams,
Phys. Rev. 70, 583 (1946).

9D, H. Frisch, Phys. Rev. 70, 589 (1946).

10 W. Sleator, Jr., Phys. Rev. 72, 207 (1947).

1 Lampi, Freier, and Williams, Phys. Rev. 80, 853 (1950).

2 Oda, Sanada, and Yamabe, Phys. Rev. 80, 469 (1950).

13 1. Hulthén, Arkiv. Mat. Astron. Fysik. A35, No. 25, 1 (1948).
?leg 43‘1)50 the original paper, K. Fysiogr. Sillsk. Lund, Forh. 14, 1
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we have for y(x) the following boundary conditions:

y(0)=1, 3(«)=0. (12)
Inserting (11) into (9) we obtain
9"+ ¢*y+v(x)y=1v(x) (cosgx+cotn singx).  (13)

This is the Euler equation of the following variational
problem. Require

J= f [—y"+¢*y*+v(x) (cosgr—y)*Jdz  (14)
0
to be stationary under the accessory condition
N= f v(x) singx(cosgx—y)dx=const.  (15)
0

If we introduce a multiplier A\, we get a variational
equation

8J+2NN =0, (16)

which leads to Eq. (13), with X for coty. Furthermore,

it is easy to show!® that the integral in (15) can be

expressed in terms of 7 if ¥ is an exact solution of (13);
we have

N=g(1—13z coty), (17

1 ]

np=-— f v(x) sin’gxdx,
q Y

is the eigenphase in Born’s approximation. Regarding
y(x) as a trial function which depends linearly on a
number of indeterminate parameters, we obtain from
(16) and (17) a unique approximate solution, if A\ is
identified with cotn. In this way we get a value for
A=cotn which is not stationary; this is however easily

remedied, as will be shown presently.!*
Define

where
(18)

0 dz
e[ ¢(—+q2+v(x>)¢dx,
0 dx?

and insert here Eq. (11) for ¢(x), and we obtain after
partial integrations with due regard to the boundary
conditions (12),

L=—qAgneN+J+2AN, (A=cotn).  (20)

On an infinitesimal variation of ¢ we get from (19)
after partial integrations

(19)

0 d2
6£=2f 6¢(;+q2—|—v(x))¢dx+q6)\. (21)
0 X

For the exact solution of (9) the integral in (21)
obviously vanishes. We now fix an approximate solution
by requiring this integral to vanish for all possible 8¢,
thus (compare Zeilon®)

© d2
f 3¢(——~+q2+v(x))¢dx= 0.
0 dx?

14 See reference 13, pp. 7-9.
15 N. Zeilon, Lunds Univ. Arsskr. Avd. 2 (C. W. K. Gleerup,
Lund, 1947), New Series, Sec. 2, Vol. 43, Nr. 10.

(22)
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Then we obtain the equation
0L=qoM, (23)

where 6£ and 6\ denote variations out from the approxi-
mate solution. But J and N in (20) do not depend on A.
Hence (23) can be split up in two equations; the first
one is (16), the second one,

0L/ IN=g,1® (24)

is easily found to be identical with (17) (with cotp=2X).
Thus the condition (22) is equivalent with the formalism
quoted in the beginning of this section.

The A-value obtained in this way is not stationary.
However, the first-order deviation from the stationary
value can be obtained from Eq. (23), letting now 6L
and 6\ denote deviations from the exact solution of (9)
and (10). Neglecting second-order terms, we have
8L=¢, since £=0 for the exact solution, and thus
obtain, by using (17) and (20),

SN=28/q=(J+AN)/q=4/q, (25)
J, A, and N being fixed by the approximate solution
determined from (16) and (17). The improved A-value
is then

which is stationary because the first-order deviation
has been removed, the remaining error in A\g being of the
second order (or higher) in &y.1"

Taking for y(x) in (11) a trial function containing a
number of indeterminate parameters ¢ :-c,, we get
from (16) and (17)

J/3c,42N0N/dc, =0, v= ,2,3,---,m, (27a)

N=g(1—n5 (27b)

which determine the approximate solution. If y(x)

depends linearly on the parameters ¢,, Egs. (27) are
linear in the ¢,’s and A, and the solution is unique.

In the numerical calculation of A from (25) it is con-

venient to make direct use of (27). With a trial function
depending linearly on the parameters c¢,, we can write

n n
]=](°)+Z ,3,,6,,"}—% Z 0uyCuCy,y
y=1 B v=1

) (28)
N=N(0)+Z YsCvy Olpy™= Aoy,

=1

16 See S. S. Huang, Phys. Rev. 76, 1878 (1949) and L. Hulthén
and P. O. Olsson, Phys. Rev. 79, 532 (1950). The identity of (24)
with (17) was first pointed out to us by Dr. P. O. Olsson and Dr.
B. C. H. Nagel (unpublished manuscript). See also T. Kato, Phys.
Rev. 80, 475 (1950).

17 See reference 13, original paper, pp. 4-6. An explicit stationary
expression for X\ can be obtained by putting (20)=0 and solving
with respect to A. We then have

_ 1 q 1.2
)\_—HB(N—E—[<N~EQ) anJJ*), (20a)

the sign of the square root being fixed for instance by the condition
that A must approach 1/9p (Born approximation) when the
potential v(x) decreases sufficiently (N<g). Requiring \ to be
stationary, we obtain an equation (system) equivalent to (16),
which together with (20a) determines an approximate solution.
This is virtually the same method as that described in the original
paper (1944).
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and Egs. (27) become

Z anvcv+2)\7u= _614; ,U'=17 27 e,

v=1
. (29)
2 7v0»+q?73)\=<1“N(°)-

y=1

Thus the quadratic terms can be eliminated from
J+AN, the result being

A=J+>\N=’J(O)+>\N(O)+% i 61461'-

=1

(30)

Turning now to the Yukawa potential v(x)=be~*/x,
we have the equation

(&/do2+g*+be=2/x) p(x) =0, (31)
P=ME/P=F/:, (32)

M/2 is the reduced mass of the neutron-proton system
and E the total energy in the center-of-mass system
[see Eq. (6)]. um and m are the masses of meson and
electron, respectively.

Comparison with (1) gives

h=MA/xH,
b= M=1(M,+M)).
%=MB/xI,

where
k=umc/h.18

(33)

As a trial function for y(x) in (11) we choose the fol-
lowing expression, which satisfies the boundary con-
ditions (12)

(@)= e~ (1— ) 21 ce. (34)

Inserting this into (14), (15), and (18), putting
v(x)=be~*/x, we obtain with the notations (28)

JO=—1(1—¢*>)+b[In{(4+¢2)/3}
—1In(1+4¢) ],
24e) DA+
= n !
E+DE+2) e+
2¢*—2uw—p—v
%aw:
(w o) v+ 1) (utr+2) H(35)
(u+r+2)?
+b In )
(ut+r+1) (utv+3)
N©=p(} arctg2g—arctglq),
Y =-—b(arct —q———‘arct _q_)
’ gv—{—l gl’+ ,
na=(b/4q) In(144¢?). g

18 Present best values give 1/k=(386.12/x)-10713 cm.
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Tasik I1. Approximate solutions of (31) from Egs. (27a, b) and
(26), with trial functions according to (11) and (34). b=1.5.
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TasBLE IV. Approximate solutions of (31) from Egs. (27a, b) and
(26), with trial functions according to (11) and (34). b=1.6.

q —c1 +c2 —c3 A A/q Ao 7m=arc cotio q —c1 “+c2 —c3 A Alq No  n=arc cotdo
0.1 0.4752 cee . 1.02192 0.03742 0.98450 0.79321 0.1 0.5232 [ ce 0.51566 0.03755 0.47811 1.12482
0.5246 0.0720 e 0.99936 0.01569 0.98367 0.79363 0.5716 0.0708 v 0.49368 0.01638 0.47730 1.12547
0.5643 0.2076 0.1104 0.99084 0.00738 0.98346 0.79374
0.2 0.5575 oo oo 0.43018 0.02580 0.40438 1.18652
0.2 0.5090 e s 0.69803 0.02616 0.67187 0.97920 0.6199 0.0908 s 0.41517 0.01143 0.40374 1.18707
0.5731 0.0931 e 0.68249 0.01130 0.67119 0.97967
0.6248 0.2679 0.1417 0.67655 0.00553 0.67102 0.97978 0.3 0.6089 s e 0.47103 0.02491 044612 1.15117
0.6913 0.1188 see 0.45660 0.01119 0.44541 1.15176
0.3 0.5596 ce oo 0.66521 0.02564 0.63957 1.00179 '
0.6451 0.1229 e 0.65014 0.01133 0.63881 1.00233 0.4 0.6714 e e 0.53760 0.02672 0.51088 1.09848
0.7769 0.1498 “e 0.52209 0.01202 0.51007 1.09912
0.4 0.6211 e 0.69873 0.02786 0.67087 0.97989
0.7313 * 0.1561 0.68242 0.01243  0.66999 0.98050 0.5 0.7395 s 0.61023 0.02981 0.58042 1.04490
0.8683 0.1787 0.59297 0.01341 0.57956 1.04554
0.5 0.6880 s 0.75417 0.03143 0.72274 0.94497
0.8231 0.1869 0.73596 0.01416 0.72180 0.94559 0.6 0.8090 s 0.68309 0.03377 0.64932  0.99490
0.9602 0.2032 Lo 0.66352 0.01504 0.64848 0.99549
0.6 0.7561 s 0.81752 0.03600 0.78152 0.90743 1.0671 0.5229 0.2434 0.65582 0.00746 0.64836 0.99558
0.9147 0.2126 ce 0.79689 0.01629 0.78060 0.90800
1.0213 0.5312 0.2424 0.78919 0.00872 0.78047 0.90808 0.7 0.8768 e 0.75451 0.03865 0.71586 0.94950
1.0483 0.2205 N 0.73211  0.01697 0.71514 0.94998
0.7 0.8220 s 0.88373 0.04169 0.84204 0.87094 1.1645 0.5406 0.2326  0.72287 0.00781 0.71506 0.95004
1.0012 0.2300 I 0.86021 0.01896 0.84125 0.87140
1.1184 0.5529 0.2347 0.85089 0.00972 0.84117 0.87145 0.8 0.9404 e 0.82425 0.04461 0.77964 0.90860
1.1318 0.2316 0.79806 0.01893 0.77913 0.90891
0.8 0.8829 e 0.95099 0.04878 0.90221 0.83676
1.0783 0.2360 Lo 0.92419 0.02254 0.90165 0.83707 0.9 0.9974 e 0.89286 0.05213 0.84073 0.87171
1.1849 0.4926 0.1706 0.91418 0.01255 0.90163 0.83708 1.2147 0.2412 0.86069 0.02023 0.84046 0.87187
0.9 0.9357 s 1.01914 0.05794 0.96120 0.80518 1.0 1.0445 3 0.96149 0.06215 0.89934 0.83834s
1.1316 0.2174 0.99012 0.02916 0.96096 0.80531 1.1526 0.1060 se 0.94359 0.04423 0.89936 0.838335
1.3101 0.2356 —0.03145 0.91648s 0.01715s 0.899330 0.838352
1.0 0.9758 e 1.08928 0.07057 1.01871 0.77613
1.5606 0.5744 s 0.99261 —0.02636 1.01897 0.77600
1.3199 0.3733 0.0447 1.03386s 0.01494¢ 1.018915 0.77602s

Equations (29) are then solved for instance by
Gauss’ method, and the improved value of cotn, Ao, is
obtained from (26) and (30).

Numerical results have already been given in reference
13 for 5=1.5 and 1.6. These results are quoted in our
Tables IT and IV. In Tables IIT, V-XI, the calculations
have been extended to some other d-values of immediate
interest. A comparison between the results obtained
with one and two parameters, respectively, gives an
idea of the accuracy of the corrected phase value n.'®
Moreover, the eigenfunctions were checked by means
of certain integral identities;!$* with two parameters
the deviations were about five parts in a thousand or
less. This seems satisfactory since the uncertainty in
the corrected phase 7 is of the second order, errors of

TasLE III. Approximate solutions of (31) from Egs. (27a, b) and
(26), with trial functions according to (11) and (34). b=1.55.

q —c1 +co A A/q Ao 7 =arc cotXe

0.1 0.4988 e 0.76260 0.03754 0.72506 0.94345
. 0.5478 0.0715 0.74029 0.01605 0.72424 0.94399

0.2 0.5329 e 0.56083 0.02601 0.53482 1.07968
0.5963 0.0922 0.54553 0.01137 0.53416 1.08020

0.3 0.5839 e 0.56575 0.02530 0.54045 1.07531
0.6680 0.1210 0.55096 0.01125 0.53971 1.07589

0.4 0.6459 s 0.61619 0.02732 0.58887 1.03860
0.7538 0.1530 0.60028 0.01225 0.58803 1.03922

0.5 0.7134 see 0.68042 0.03064 0.64978 0.99458
0.8454 0.1829 0.66268 0.01380 0.64888 0.99521

0.6 0.7822 e 0.74865 0.03492 0.71373 0.95091
0.9371 0.2079 0.72854 0.01569 0.71285 0.95150

19 Tn Tables II and IV we also find some three parameter results.
20 L. Hulthén, K. Fysiogr. Sillsk. Lund, Forh. 14, Nr. 8 (1944).

TaBLE V. Approximate solutions of (31) from Egs. (27a, b) and
(26), with trial function (34) [see (11)]. 5=1.65.

q —c1 +c2 A A/q Ao 7 =arc cotio
0.1 “ee “ee PRy e .. e
0.5637 0.0224 0.27282 0.03081 0.24200 1.33336
0'2 e Y .o Y .o .o
0.6441 0.0891 0.29075 0.01151 0.27923 1.29850
0.7153 0.1162 0.36653 0.01109 0.35544 1.22816
0.4 “e .o
0.8003 0.1459 0.44755 0.01182 0.43573 1.15987
0.5 .o Py e ven .o .o
0.8915 0.1739 0.52651 0.01301 0.51350 1.09641

TaBLE VI. Approximate solutions of (31), with 6=2.1. For trial
function see (11) and (34).

q —c1 +c2 by Alg o 7 =arc cotAo

0.1 0.8306 s —1.49943 -+0.04729 —1.54672  2.56766
0.8666  0.0529 —1.51453 40.03286 —1.54739  2.56786

0.2 0.8567 s —0.63878 +4-0.02020 —0.65897  2.15345
0.8941  0.0553 —0.64738 +0.01182 —0.65920 2.15361

0.3 0.9098 [ —0.30240 +0.01797 —0.32036  1.88083
0.9592 0.0723 —0.31066 -+0.00995 —0.32061 1.88105

04 0.9746 [ —0.10267 +0.01755 —0.12052 1.69074
1.0372  0.0903 —0.11147 <40.00933 —0.12080 1.69101

0.5 1.0460 ce +0.03968 -+40.01833 +0.02135 1.54945
1.1218 0.1070 -+0.02992 +0.00886 +0.02106 1.54974

© 0.6 1.1204 e +0.15137 +0.01887 -+0.13250 - 1.43906
1.2102  0.1225 -40.14014 +40.00793 +0.13221 1.43935

first order being removed by the procedure comprised
in Eq. (26).2
2 In one particular case (u;=290) we compared the triplet

effective range calculated by the variational method (r,=1.618)
with the value obtained from the integral formula (see reference 4)

=2 j; ”{(1—;"@)2—[@(‘”(@?}@,
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TaBiLE VII. Approximate solutions of (31), =2.3. For trial
functions see (11), (34).
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TasLE X. Approximate solutions of (31), b=2.7. For trial func-
tions see (11), (34).

q —c1 +ca N Alg Ao 7 =arc cotho q —c1 +ca by Alq No  m=arc cothe
0.1 09771 —2.19459  0.02503  —2.21962  2.71830 0.1 1.3894 .. —3.55092 40.00082 —3.55174 2.86715
09882 00166 ~—2.19932 0.02036  —2.21968  2.71831 1.3374 —0.0796 —3.53039 -0.02217 —3.55256 2.86721
0.2 10117 —1.00031 001549  —1.01580  2.36403 02 1.4165 —1.70863  —0.00036 —1.70827 2.61199
1.0285 0.0253 —1.00413 0.01165 —1.01578  2.36402 1.3641 —0.0800 —1.69765 +0.01110 —1.70875 2.61211
0.3 1.0636 —0.56248  0.01317  —0.57565  2.09312 0.3  1.4538 ~1.06657 —0.00162 —1.06495 2.38764
1.0887 0.0370 —0.56657 0.00916  —0.57573  2.00318 1.4043 —0.0815 —1.05832 +40.00690 —1.06522 2.38776
0.4 11271 —0.31655  0.01237  —0.32802  1.88857 04 15109 —0.72613  —0.00347 —0.72266 2.19657
1.1604 0.048¢ —032112 0.00788  —0.32900  1.88864 14542 —0.0844 —0.71881 -+-0.00409 —0.72290 2.19673
05 1.1976 —0.14965 001174  —0.16139  1.73081 0.5 1.5721 —0.50805 —0.00633 —0.50172 2.03582
1.2393  0.0593  —0.15491  0.00657  —0.16148  1.73089 1.5127 —0.0862 —0.50097 —0.00093 —0.50190 2.03596
0.6 12722 —0.02408  0.01072  —0.03480  1.60558 0.6 1.6411 —0.35296 —0.01081 —0.34215 1.90046
1.3238  0.0708  —0.03042 0.00448  —0.03490  1.60568 1.5823 —0.0823 —0.34606 —0.00379 —0.34227 1.90057
TasLe VIII. Approximate solutions of (31), b=2.4. For trial correction A in (25) is also an even function, and so
functions see (11), (34). .
becomes kM. These statements are, in fact, more
. - e N A/a N pearccotr, Senerally valid and agree with the theory of the
o - “effective range” approximation.* For small energies
" 1.0651 —0.0011 —2.52963 0.02098 —2.55061 2.76795
0.2 e TaBLE XI. Approximate solutions of (31), 5=2.9. For trial func-
1.1032  40.0055 —1.17711 0.01163 —1.18874  2.44221 tions see (11), (34).
0_3 .o .o e e e e
1.1596  +0.0141  —0.69005 0.00871 —0.69876  2.18069 B —a s N Aq M pearc cothe
0.4 o o e "y o Yoy 0.1 - 1.6697 ‘e —4.28703 —0.01979 —4.26724 2.9114
12274 +00224  —0.42178 0.00703  —0.42881  1.97589 IS657 —01617 —424796 1002285 427080 291159
0.5 0.2 1.6877 —2.08825 —0.0129 —2.0752 .
1.3024 400300  —0.24314 0.00531 * —0.24845  1.81431 15796 —01672 _206613 Fo0loas —20riie 39900
0.3 1.7173 ‘e —1.33209 —0.01272 —1.31937 2.49303
< A ) £ (31), b=2.5. For trial § 1.6026 —0.1759 —1.31541 +0.00532 —1.32072 2.49352
TasLE IX. roximate solutions o =2.5. For trial func-
L PP tions see (11) (34)’ 04 17571 —0.93784 —0.01472 —0.92312 2.31624
’ : 1.6336 —0.1863 —0.92259 +0.00161 —0.92420 2.31682
0.5 1.8072 .- —0.69034 —0.01865 —0.67138 2.16206
—c1 +ca A A/q Ao 7 =arc cotho 1.6751 —0.1920 —0.67489 —0.00262 —0.67227 2.16267
0.1 1.1633 vae —2.86521 0.01513 —2.88034  2.80743 0.6 1.8681 N —0.51744 —0.02499 —0.49245 2.02839
1.1484  —0.0226  —2.85907 0.02138  —2.88045 2.80744 17316 —0.1931 —0.50189 —0.00878 —0.49311  2.02892
02 1.1954 —1.35168  0.00885 —1.36053 2.50776
1.1834 —0.0181 —1.34008 0.01148 —1.36056 2.50777
0.3 1.2440 —0.81369  0.00682  —0.82051  2.25792 we then put, as in Eq. (5),
1.2353 —0.0129 —0.81231 0.00818 —0.820490  2.25791
0.4 1.3038 —0.52169 0.00540  —0.52709  2.05588 Ao=—1/ka+Lkrg? 36
12982 —0.0083 —0.52094 0.00616 —0.52710  2.05589 q /Kkat3ur, (36)
0.5 13713 +-- 033002 0.00364 —0.33366 1.89284 neglecting higher powers than ¢
1.3688 —0.0036 —0.32971 0.00395 —0.33366 1.80284
0.6 1.4444 <. 0 —0.19027 0.00094 —0.19121  1.75973 .
14471 400039 —0.19060 000061 —0.19121 1.75973 TasLE XTI. Coefficients ao(b) and a,y(b), defined by (36) and

EXPANSION IN k2 COMPARISON BETWEEN “EXACT”
AND “EFFECTIVE RANGE” METHOD

Equation (35) shows that J is an even function of ¢
(or k), whereas N and g5 are odd functions. From (27a)
and (27b), which are linear in the parameters ¢, and A,
we then obtain ¢, and kX as even functions of k. The

where ¢, is the eigenfunction for zero energy. With two param-
eters in the trial function ¢:©® the result was 7,=1.642, which
differs from the variational value by 1.5 percent. As a test of the
accuracy of the eigenfunction, this must be considered satis-
factory ‘since the integrand contains the square of the eigen-
function. It should be remembered that the value of #; obtained
from (37) is a stationary quantity and must therefore be expected
to be more accurate than a value obtained from an integral formula
without stationary properties. Concerning the accuracy of the
variational method see also P.-O. Lowdin and A. Sjolander,
Arkiv Fysik. 3, nr. 11, pp. 155-166 (1951).

(37), calculated by variational method, using trial function (34)
[see (11)7.

ao asz
b 1 param. 2 param, 3 param. 1 param. 2 param.

1.5 0.086200 0.086135 0.086117 1.23231  1.23074
1.55 oo 0.060695 IS see 1.18021
1.6 0.036537 0.036475 0.036455 1.13373  1.13227
1.65 s 0.013346 s 2o 1.08670
1.7 —0.008749 —0.008807 1.04459 1.04328
1.75 eee —0.030086 e sev 1.00182
1.8 —0.050534 —0.050585 e 0.96330 0.96216
1.9 oo —0.089572 s oo 0.88767
2.0 see —0.126361 see oo 0.81883
2.1 —0.161439 —0.161460 —0.161491 0.75542  0.75490
2.2 —0.195306 —0.195316 aee 0.69564 0.69533
2.25 .o ._0.211908 e e .o
2.3 —0.228337 —0.228339 —0.228377 0.63985 0.63974
2.35 oee —0.244660 [N e 0.61335
2.4 —0.260915 —0.260915 s 0.58783 0.58789
2.5 —0.293412 - —0.293420 —0.293465 0.53957 0.53973
2.6 —0.326209 —0.326243 N 0.49522 0.49540
2.7 —0.359706 —0.359794 —0.359846 0.45521 0.45529
2.8 —0.394343 —0.394529 oee 0.42026 0.42008
2.9 —0.430625 —0.430975 —0.431033 0.39153 0.39089
3.0 —0.469138 —0.469748 oo 0.37083 0.36945
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TasrE XIII. Singlet, triplet, and total cross sections (o5, o1, and o) in effective range approximation, based on Yukawa potential with
range corresponding to meson mass 300 (us=u,=300). A is the difference between the “exact”-value (i.e., the value obtained from an
accurate phase calculation, without expansion in 4?) and the “effective range” value.

Ei"(Mev) os As ot At o A
0.2 27.838-1072¢ 0.007-102¢ 3.455-10~% 0.000-1072¢ 9.551-1072¢ 0.002-10~2
0.6 12.502 0.011 3.158 —0.000 5.494 0.002
1.0 8.007 0.014 2.907 —0.001 4.182 0.002
2.0 4.153 0.017 2.418 —0.004 2.852 0.001
3.0 2.763 0.021 2.063 —0.007 2.238 0.000
4.0 2.048 0.023 1.795 —0.008 1.858 —0.000
5.0 1.613 0.025 1.585 —0.009 1.592 —0.001
6.0 1.322 0.027 1.415 —0.010 1.392 —0.001

By expanding (26), (29), and (30) in powers of g,
retaining terms up to ¢* in J and ¢® in NV, we obtain
through the procedure described in the preceding
section the coefficients in (36) as functions of the
binding parameter & [see (33)]:

—1/ka=ao(b), 37

In this way ao and as are turned into stationary
quantities. It should, however, be noted that this is
true for a; only if the parameters ¢, are computed to
the order of ¢% In Table XII ¢o and a; are given for a
succession of & values in the most interesting region.

Using the figures given for a; and @, in (4), inter-
polations in Table XII give us the quantities !, 3b, 7,
and 7, for different meson masses.

We are now ready to compare the results of the two
methods: the “effective range” approximation and the
ordinary phase method. In both cases the same trial
function (34) with two parameters has been used and
the resulting technical errors in the cross sections are
believed to be much smaller than the differences
between “exact” results and “effective range” values,
except at low energies, of course. Examples are found
in Tables XIII (meson mass 300), XIV (meson mass
200), and XV, which give the singlet and triplet cross

Lir=ax(b).

sections separately as well as the total cross sections,
all based on the “effective range” approximation. The
quantities denoted by A are the differences between the
o’s calculated directly (i.e., without expansion in
powers of %) and the ¢’s in the table.

Some comments may be called for. We see that the
differences in the total cross sections are small, less than
one part in a thousand for meson mass 300 and 1 percent
for 200. On the other hand, the differences between the
singlet cross sections obtained with the two methods
run up to 2 percent for meson mass 300 and 7 percent
for mass 200. The differences in the triplet cross sections
are smaller and have the opposite sign. This fact, in
connection with the different weight factors of singlet
and triplet states, makes the differences in the total
cross sections so small. The conclusion is that the
“effective range” approximation is very accurate in
calculating the total scattering cross section, the
accuracy increasing with decreasing range (i.e., in-
creasing meson mass), as is well known. This accuracy,
however, is to a certain extent fortuitous, and therefore
it is well advised to use the “effective range’” method,
even the “shape-dependent” version, with caution in
other problems than neutron-proton scattering.

TasLE XIV. Same quantities as in Table XIIT, with meson mass 200 (u,s= u:=200).

E; (Mev) os As ot At o A
0.2 26.694-1072¢ 0.018-1072¢ 3.461-1072 —0.000-10724 9.270-1072¢ 0.004-102
0.6 11.693 0.036 3.175 —0.001 5.304 0.008
1.0 7.372 0.044 2.930 —0.003 4.040 0.009
2.0 3.705 0.058 2.448 —0.006 2.762 0.010
3.0 2.398 0.066 2.094 —0.009 2.170 0.010
4.0 1.733 0.071 1.824 —0.011 1.801 0.010
5.0 1.333 0.074 1.611 —0.012 1.542 0.010
6.0 1.069 0.076 1.439 —0.012 1.346 0.010

TasLE XV. Same quantities as in Table XIII, “triplet meson mass” u;=290 and “singlet meson mass” u,=380.

E; gs As ot At 4 A
1 8.258-1072¢ 0.007-1072¢ 2.909-107% —0.001-1072¢ 4.246-1072 +0.001-1072¢
2 4.327 0.009 2.421 —0.004 2.898 —0.001
3 2.905 0.010 2.067 —0.007 2.276 —0.003
4 2171 0.011 1.798 —0.009 1.891 —0.004
5 1.724 0.012 1.587 —0.010 1.622 —0.004
6 1.423 0.014 1.418 —0.010 1.419 —0.004
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DISCUSSION

Figure 1 shows that a meson mass 300 gives a better
agreement with the experimental results than meson
mass 200, but it is not possible to obtain a very good
over-all fit with a meson mass between 200 and 300. A
rough estimate, based on a comparison with the most
recent and probably most accurate measurements, those
of Lampi, Freier, and Williams," indicates that a meson
mass of about 350 would give the best agreement with
present experimental knowledge. This value is rather
far from the w-meson mass, 276 m,, and it would of
course be interesting to see what meson mass would
come out if noncentral forces are taken into account
with the proper distance dependence. Such calculations
are in progress at this institute.

So far the calculations were based on low energy
scattering data exclusively [see (3)]. Taking now the
deuteron binding energy E, into account, we have a
possibility to determine the triplet range, and thus the
corresponding meson mass. With |E,|=2.2260.003
Mev® and @,=(5.37240.03)-10"13 cm [see (4)], we
obtain, making use of Table I?? in the paper of Hulthén
and Laurikainen,?* combined with Table XII above,

pe=290=15. (38)

Having thus fixed a “triplet mass,” we look at Fig. 1
and find again that we should not get a very close fit
with recent scattering data by assuming the same
‘“‘singlet mass.” In fact, to obtain a good agreement
with the results of Lampi, Freier, and Williams, we
must choose

ps=380-£50,% (39)

the cross sections being rather insensitive to variations
of the singlet mass. The results obtained with u,=290
and p,=380 are indicated in Table XV and compared
with experimental results in Fig. 2. The corresponding
effective ranges are, in units of 1073 cm,

7:=1.6240.03, 7,=2.33+0.35. (40)
In this connection it might be of interest to mention

( ”SR). C. Mobley and R. A. Laubenstein, Phys. Rev. 80, 309
1950).

28 With e=ME)/h%? we get with present best values
(—a)t=289.46:/u.

( 2; L) Hulthén and K. V. Laurikainen, Revs. Modern Phys. 23, 1
1951).

25 The 'values (38) and (39) do not quite agree with the results
of E. E. Salpeter, Phys. Rev. 82, 60 (1951), Egs. (12) and (14).
Part of the difference is probably due to the fact that the underly-
ing experimental data are not identical (compare Salpeter’s Egs. (5)
and (6) with Eq. (3) above). A more detailed discussion of the
shape-dependent effective range theory is deferred to a forth-
coming paper on the photodisintegration of the deuteron by
I,. Hulthén and B. C. H. Nagel.
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Fi16. 2. Neutron-proton scattering based on Yukawa potential with
“triplet mass” 290 and “singlet mass” 380 (see Fig. 1).

the results obtained by P. O. Brundell and B. Enander.?
Using an exponential potential with the same range
(real, not ““effective”) in singlet and triplet states and
determining the parameters (range, triplet and singlet
binding constants) from the low energy scattering data
and the deuteron binding energy, they get a perfect
agreement with the results of Lampi, Freier, and
Williams. Thus in the case of an exponential potential,
all the experimental data in question can be accounted
for by three constants only, instead of four with other
known potential forms, including Yukawa, as we have
seen above.
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