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TABLE I. The internal pair formation coefficient&(104. e is the y-ray
energy in mc' units. Z is the atomic number of the radiating nucleus. Calcu-
lation by Jaeger and Hulme (see reference 1) and the present author.

Dipole case

Zi 2 257 3 4

0 0 1.40 2.98 6.7p
28 0 091
84 0 0.75 1.84 5.3p

10.0
~ ~ ~

8.6p

Quadrupole case

ZX 2 2 57 3 4

0 0 0.38 1,00 3.08
28 0 027
84 0 022 076 2 52

5.62
~ ~ ~

4.42

the results of the new calculations.
The new calculations show that the dependence on Z of the

internal pair formation coeKcient is not even roughly linear.
Within about 10 percent one can, however, get an estimate of the
value of the coeScient at different Z in the energy region 2—5 mc'
by means of the following interpolation formulas. They are rather
easy to handle and might be of some use for experimenters.

2maZ 4.76Z&(e—2) f'&'+' ~' ct.
ID= exp—

{2(~—2) }& 1+16(e—2) ' xc'

dx
X)2e(xs—1)&+(es+2—2xe) }nlx+(xs—1)&}],

(-,'c'+1—xe) &'

2maZ 2 53ZIis(e —2) "+ ~' 0.
Jq =exp — 1—

{2(e—2}}& 1+4(e—2) 'l4 ' 3m.c4

X $8&(x2—1)&(xe—2)+3c~(c2—2xe) ln{x+(x'—1)&}]

dx
(-', c'+1—xe) &'

where a=fine structure constant=1/137; Z=atomic number of
the p-radiating nucleus; e =p-ray energy in mc~ units; and
x= [E(e 8)+1]/e, where 8= to—tal electron energy in rxss units.
The definite integrals which appear in these expressions are the
results of oppenheimer and Nedelsky for Z=O mentioned above.
In Table II the values of the internal pair formation coeKcient
are computed according to the above formulas in order to make a

TABLE II. The internal pair formation coeKcient)(10', according to the
interpolation formulas. & =the p-ray in mc2 units. Z =atomic number of the
radiating nucleus.

Dipole case

Z~ 2 257 3 4 5

Quadrupole case

ZQ 2 2.57 3 4 5

0 0 1 46 3 04 6 96 104&
P P 92 ~ ~ ~ ~ ~ ~ ~ ~ ~

84 0 0.74 2.00 5.45 8.64

0 0
28 0
84 0

0.35 1.05 3.46 6.06
0 255 ~ ~ ~ ~ ~ ~ ~ ~

0.20 0.76 2.54 4.34

This problem has become of interest in connection with some
measurements by Slatis and Siegbahns on internal pair-formation
for determining p-ray multipole orders in the neighborhood of the
threshold. Jaeger and Hulme' only made numerical calculations
for Z=O and 84 with y-energies 3, 5, and 7 mc~, and consequently
their extrapolation to 2 mc' in a diagram must be regarded as a
little uncertain. Further, the dependence on Z is not easily seen.
Therefore, a new numerical calculation has now been carried out
with the "exact" theory of Jaeger and Hulme as a basis, where the
p-ray energy 1.31 Mev=2. 57 mc' and Z=28 has been used—
corresponding to the nuclear reaction

2yCo' —+2sNi"*~28Ni"
P v

(More recent measurements indicate an energy 1.34 Mev=2. 63
mc', but this figure was not known to me when the calculations
started. ) Jaeger and Hulme presented their results only in a dia-
gram, from which it has not been possible to obtain the actual
numbers which they had computed. The figures for Z=O and 84
at p-ray energies 2.57, 3, 4, and 5 mc' have been taken from their
diagram, but all these figures are, of course, somewhat uncertain
on account of the breadth of the curves and the extrapolation to
lower energies. In Table I these figures are presented together with

Electroluminescence of Single Crystals of ZnS: Cu)
WILLIAM W. PIPER AND FERD'E. WILLIAMs

General Electrfc Research Laboratory, Schenectady, Neer York
(Received May 9, 1952)

S INGLE crystals of ZnS: Cu have been prepared' and found to
luminesce upon application of ac or dc voltages. Ac electro-

luminescence of powdered sulfide phosphors is well known. 2 Dc
electroluminescence in SiC,' Ge, and Si4 has been studied and
attributed to the optical recombination of electrons and holes in
an N —P junction. The mechanism of electroluminescence of
single crystals of ZnS: Cu is quite different.

With a dc potential applied to a single crystal clamped between
metal electrodes, the light output increaSes exponentially with
applied voltage reversible to breakdown. The luminescent in-
tensity is proportional to the current. Diferent electrode materials
alter the brightness-voltage characteristic and permit the identi-
fication of the region near the cathode as the origin of the electro-
luminescence. Pronounced photoconductivity occurs when the
cathode side of the crystal is irradiated with ultraviolet.

With an ac potential applied to the single crystal, the light
output was determined as a function of the voltage cycle by
synchronizing on an oscilloscope the photomultiplier output with
the voltage. For low applied voltages two pulses of light per cycle
appear out of phase with the voltage (Fig, 1).The pulse width in
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FIG. 1. Voltage and light output versus time.

electrical degrees does not change appreciably from 60 to 6000 cps.
The average light output varies linearly with frequency. Each
pulse is characteristic of a particular electrode and originates
when that electrode is becoming negative during the cycle.

At higher critical voltage, pulses in phase with the applied
voltage appear and increase rapidly in intensity with voltage
(Fig. 1). Electrodes of high work function such as Pt exhibit a
higher threshold voltage for the in-phase component than elec-
trodes of low work function such as Al. With different metals
used for the two electrodes, the in-phase pulse typical of a particu-
lar electrode material appears when that electrode is negative.

comparison with the corresponding results of Jaeger and Hulme's
theory presented in Table I.
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These observations can be correlated on the basis of the ZnS: Cu
crystal being an F-type semiconductor with donor levels dis-
tributed over an energy range and with an exhaustion barrier at
each electrode. When a voltage is applied, the cathode barrier
will widen as donor levels are emptied until most of the voltage
appears across the cathode barrier. An ac applied potential V
depletes and replenishes the two barrier layers alternately. Above
a critical potential V& quantum-mechanical tunneling through the
cathode barrier occurs. Below Vt conduction electrons originate
only within the crystal. With a local Geld larger than the 6eld E;
necessary to ionize deep-lying donor levels and for E;&E„, the
critical 6eld for acceleration of conduction electrons, electrons can
be extracted from these deep-lying levels and accelerated to kinetic
energies great enough to impact excite activator ions. With V& Vt
only light out of phase with the voltage will appear; with V& Vt
electrons will tunnel with the electrodes producing additional
light in phase with the voltage.

For example, assuming a semiconductor with a work function
less than the metal electrode work function and with a homoge-
neous concentration of predominantly shallow donors, a Mott-
Schottky barrier appears at each electrode. The local Geld E is
linear with the distance from the barrier boundary reaching a
maximum at the crystal surface. A two-volt barrier requires a
Geld of 10' vjcm for appreciable penetration. ' For a donor concen-
tration of 3&&10' cm, a dielectric constant of 10, and an applied
potential of 10' volts, the required Geld for tunneling exists at the
cathode surface. The barrier thickne'ss is then 2)&10 4 cm. Deep-
lying donor levels 0.5 ev below the conduction band can be Geld
excited with 10' v/cm, a field which exists at the surface when
10 volts is applied to the crystal and which is sufficient to accel-
erate conduction electrons.

Further experimental and theoretical work are in progress to
test and re6ne the proposed mechanism.
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&HE energetics of nuclear reactions are commonly computed
using atomic masses. In a reaction in which the nuclear

charge changes, the difference in electronic binding energies of the
6nal and initial atoms is thus properly taken into account {aside
from the small energy difference between the final atom, which is
charged, and the corresponding neutral atoms). There does,
however, seem to exist some confusion' as to the mecha-
nism of the transfer of electronic binding energy to the incoming
or outgoing nuclear particles, despite the fact that this mechanism
is of the simplest kind: the effect on a charged particle of the elec-
trostatic Geld produced by the cloud of electrons.

Let us ask how the energy of an atom changes if the nuclear
charge is changed from Z to Z+dZ. The reason there is a change
is that the nucleus is in a region of negative electrastatic potential
produced by the electrons; if we call the electrostatic potential
produced by the electrons at the position of the nucleus q (Z), the
energy change is just edZq(Z), and the energy of the atom E(Z)
satisfies the equation

dE(Z)/dZ= eq (Z).

Equation (1) is used in the Fermi-Thomas model of the atom to
obtain E(Z) from the calculated value of q(Z); conversely,
(1) may be used to obtain q (Z) from an empirical determination
of E(Z). The Fermi-Thomas relation, with a constant adjusted to
give agreement with the known energies of light atoms, is E(Z)
= —15.73Z't' ev, which gives

eq (Z) = —36.70Z'~' ev. (2a)

According to Foldy, ' a better representation for heavy atoms is
E(Z) = —EZ")' {8=13,6 ev), which gives

ey(Z) = —32.64Z"t' ev. (2b)

If we consider, as an example, a case of P-decay, the P-particle
at the nucleus is also in the potential q (Z), and gains from this a
kinetic energy —eq (Z) in passing through the atom. This gain is,
of course, just the negative of the change in atomic energy dis-
cussed above, and one sees quite clearly the mechanism by which
the energy conservation law is satisfied.

The energy gain —eq(Z) does not represent a lower limit to
the energy of the emerging P-particle. It must be remembered that
the emerging P-particle feels the Coulomb field of the nucleus as
well as the Beld due to the electrons, and its total potential energy
as it passes through the atom is always negative. Thus there is no
energetic reason why it should not come out with zero energy.
The effect of the field due to the electrons on the shape of the
P-spectra is properly represented by using a screened Coulomb
potential, rather than the potential of a bare nucleus, in calculating
the Coulomb wave functions for the P-particle. '

The foregoing remarks are not quite accurate, in that the
change in nuclear charge was considered infinitesimal, rather than
a multiple of e, and any effect of a redistribution of the electron
cloud between initial and 6nal atom was thus ignored. If, in any
nuclear reaction, the charged particles entering or leaving the
nucleus have velocities high compared to the electronic orbital
velocities, the electron cloud will not have time to readjust, and
the particles feel just the electronic potential of the initial atom.
The net energy transfer to incoming and emerging nuclear par-
ticles, due to their interaction with the atomic electrons, is then
just —e(Z' —Z) q (Z), where Z' is the atomic number of the 6nal
nucleus. On the other hand, if the process were adiabatic, the
energy transfer to the nuclear particles would be —(E(Z') —E(Z)].
The latter difference can be evaluated by integration of (1) with
respect to Z; it represents the energy change if the nuclear charge
is altered by infinitesimal steps, allowing the electron cloud to
readjust after each step. The difference

nE= t'E(Z') E—(Z) g+e(Z—' Z) y(Z)— (3)

would therefore be lost to the emerging nuclear particles in a com-
pletely nonadiabatic transition; this energy appears as excitation
energy of the 6nal atom. In any particular event the final atom is
left in a definite stationary state, and the energy loss to the
nuclear products is the energy difference between this state and the
ground state. There will be a probability distribution for ending in
any given 6nal state, and DE represents the average energy loss,
averaged over this probability distribution. In a partially adiabatic
transition, the mean excitation energy of the final atom will of
course be less than b,E.

If E(Z') —E(Z) is expanded in a Taylor series in Z' —Z, we
obtain

5E= —-'(Z' —Z) d~E(Z)/dZ =—~e(Z' —Z) dq(Z)/dZ.

Using (2a) or (2b) we 6nd

AE =24.47Z't3(Z' —Z)' ev,

d E=22.85Z'~'(Z' —Z)' ev.

(4)

(4a)
(4b)

For Z= 90,
~

Z' —Z
~

= 1, (4b) gives DE= 138 ev, whereas —ev (90)
=17.8 kev.

Another simple estimate of d,E can be made by using hydrogenic
wave functions for each of the electrons. An electron in a state of
principal quantum number n, which feels an effective nuclear
charge Z,rre, contributes to E(Z) an amount —Z,nsE/I', to


