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In the first five sections the dispersion theory is developed with
an internal region ¥ whose boundary S is quite close to the nuclear
surface. Two types of quantities then occur: those like the deriva-
tive matrix R, which connect the values and derivatives of the
wave function at S, and those like the collision matrix U which
give the asymptotic behavior of the wave function. These latter
are, of course, independent of the position of S. Because of the
proximity of S to the nuclear surface, the wave function in the
closed channels and its derivative remain appreciable at .S. They
may, however, be eliminated from the formalism, and this is
done in Sec. II, leading to a reduced R which connects the values
and derivatives of the wave function in the open channels only.
In the next section this reduced R is used to obtain expressions
for the S-independent quantities, in particular, for the collision
matrix. These expressions are given more explicit, but approxi-
mate form in Sec. IV. The development shows that the quantity,
which in the usual formulas for the cross sections is interpreted as

the nuclear radius, need not be equal to this at all, but is the dis-
tance at which two opposite effects compensate. The fifth section
gives exact expressions for the poles and residues of some .S-
independent quantities, which are then compared with the poles
and residues of the approximate expressions of the previous
chapter. In this way criteria are derived for the accuracy of these
approximate expressions.

The last sections contain derivations of two sum rules for the
parameters in the original R. The consequences of these sum rules
are traced for the reduced R and for the S-independent quantities,
in the light of the development of the first five sections. The first
sum rule gives a maximum for the partial widths of levels, while
the second leads to the well-known proportionality of reduced
level width and level spacing. The meaning and validity of this
is discussed in some detail, both for the single particle and many
particle pictures.

I. INTRODUCTION

EASUREMENT of the cross section for a nu-

clear reaction in which a pair of nuclei denoted

by s collide to form a compound nucleus, which subse-

quently disintegrates into a pair of nuclei ¢, shows that

near certain ‘“resonance’” energies E, of the colliding

pair, this cross section can be represented in the rather
simple form

T TasTa

O = ©)
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where k; is the wave number of the colliding pair (in
the center-of-mass system), E their energy, and T,
T, T\ are parameters called “widths” which are only
mildly energy dependent.

Both time-dependent perturbation theory treat-
ments,!? and stationary state methods,?~5 lead one to
results of this type: in each case the E, are characteristic
energies of a suitably restricted compound system, and
the T, are proportional to the square of the matrix
element between the corresponding proper functions
and the wave function of the emitted (or colliding)
pair s.

In the most general stationary treatment,5¢ the
configuration space of the problem is arbitrarily di-
vided into two regions, the “internal region” V, to
which the compound state, and all specifically nuclear
effects, are restricted, and the remaining external re-

* This work was assisted in part by the AEC.
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gion in which the various pairs s, ¢, etc., are presumed
to behave like two-particle systems. The E, are then
the proper values of the quantum-mechanical system
in the internal region V satisfying certain self-adjoint
boundary conditions on the surface S of V; these
boundary conditions are independent of energy but
involve an arbitrary parameter b. The T, are then
given by I'ns=2k.Psyass, where P, is the penetration
factor for the two-particle system s at S, while v,, is
essentially the value of proper function X, correspond-
ing to Ex on the part of .S which correspond to the
emission of the pair s.

The internal region is generally taken to be of ap-
proximately nuclear size, but from the mathematical
point of view no such restriction is necessary. It can be
shown” that the general formula obtained for o, is
quite independent of the size of V and of the parameter
b occurring in the boundary condition.

It is the purpose of this paper to indicate more com-
pletely the relation between the empirical parameters
which occur in (0), and those which arise from the
mathematical formalism. This question, together with
that of the most suitable choice of V, is discussed in
Secs. II to VI. The dependence of the parameters on
the boundary conditions (i.e., on d) is dealt with in
Sec. VII, and this allows simple derivations of sta-
tistical properties (i.e., “sum rules”) of the v), in the
remaining sections. A table of experimental values is
included.

Only the basic results of the underlying theory'?
are stated below, particularly since the various deriva-
tions have been published in several forms. For further
details the reader is referred to the references mentioned
above, where further bibliography may also be found.

7T. Teichmann, Phys. Rev. 77, 506 (1950), and Ph.D. thesis,
Princeton University, 1949.
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II. ELIMINATION OF CLOSED CHANNELS

In defining the basic set of characteristic functions
X in the internal region of configuration space,® one
can use a great variety of boundary conditions. If the
characteristic value problem

HX\=E\X, (1)

for the X, is self adjoint, the most general boundary
condition can be given the form

f ((gradX») n+b.Xa)¥:dS=0 2)
8

in which 45 indicates a surface element of the boundary
of the internal region; the integration in (2), as in all
similar expressions, is to be extended over this boundary
S. The ¢, ¥:, -+ are a set of orthonormal functions

f S =5, (22)
S

defined on S'; the &, are real constants. It is most reason-
able to identify the ¥, as far as possible with the re-
action products so that

2ol Qo)lesFo(rs)+¢5'Gs(75) ] @

with arbitrary c;, ¢/, represents a solution of the
Schrodinger equation in the external region. The s,
for which such an identification is possible, are the
products of a spherical harmonic, which depends on
the direction @, of the line connecting the centers of
mass of the reaction products s, with the product of
the real normalized internal wave functions of these
products. i, denotes the internal coordinates of the
two particles which constitute the reaction products s;
7, is the distance of their centers of mass. Because of
the normalization (2a), the ¥, also contain a factor

1/r, so that the F, and G, which describe possible

motions of these nuclei with respect to each other, are
so-called radial wave functions, i.e., solutions of the
radial Schrédinger equation multiplied by 7,. They are
so normalized that E=G-iF and [=G—1iF represent
outgoing and incoming waves of flux /M. Hence

F'G—G'F=1. ()

F’" and G’ denote the components of gradF and gradG
normal to the surface S—the same components that
occur in integrals over S, such as (2).

The above definition of the ¢, will be assumed below
for all open channels, i.e., for all reaction products
which are energetically possible in the energy range
considered. The rest of the ¥, can be arbitrary except
that, together with the open channel y,, they must
form a complete orthonormal system on .S which will
be assumed to be real.

The b, in (2) are still arbitrary. The simplest choice
is b,=0 if one does not want to restrict the energy in-
terval under consideration. We shall see, however, that
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in the case of a restricted energy interval a different
choice of the b may provide some simplification.

The energy dependent R matrix which we shall define
gives a relation between the values and normal deriva-

~ tives of an arbitrary ¢ on the surface .S, provided ¢

satisfies the equation Heo=E¢p in the internal region.
We define

o= (12/2M)} | Ys0dS, ®

8
Be=(W*/2M)? ‘lls(gra'dﬂ") A (Sa)

8

and obtain in the usual way5’

ae=ZtRst(ﬁt+btat), (6)

for which we shall also write
a=R(B+ba). (6"

In this last expression, a and 3 are vectors with com-
ponents a;, 85, and b is a diagonal matrix with diagonal
elements b,. The R, in (6) are

YAsYNE

R, =Z (63-)
12 : E)—-E’
for which we shall also write symbolically;
TaX T
R=Y . (6a’)
A E)\—E

The R.; depend on E only on through the E in the de-
nominationators; both the Ej, defined in (1), and the ya,,

ra= (/2101 f XedS, (6b)
S

are independent of E. The integration in (6b) is to be
extended over the surface S of the internal region.

Given the « and 8 which satisfy (6), the wave func-
tion ¢ can be expressed in the internal region in terms
of the X,

Zs’YXs(ﬁs+bsaa)
—_—X
A E)‘—E

A )

o=

One calculates from (7) that the square integral of ¢
in the internal region is

fl ¢[2dV=Z Z R(E)st(ﬁs+bsas)*<;3t+bga¢). (73,)
14 8,¢

R(E) is the derivative of R(E) with respect to E.
(Note that F,’ and G,/ were derivatives with respect
to 7,.) For (7a) we shall also write

| f o2V = (8-+ba, R(E)B+0ba).  (7a))
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Naturally, the R,; depend on the b, because the X
and the v» do so. Hence (6) gives apparently different
relations between the « and the 8 for different values
of the b,. It should be clear, however, that these rela-
tions are only apparently different. If we denote by R°
the R for the set of & which all vanish, the R for another
set of & is given by

R=RO(1+bR)1, (7b)

and the validity of (6), (7), (7a) is an immediate conse-
quence of (7b) and the validity of the same equations
for RO.

The above formulas are all rigorous if the summa-
tions over s, ¢ are extended over the whole orthonormal
set; hence R, is an infinite dimensional matrix. It is,
of course, possible to place .S so far out that the wave
function dies out almost completely where a closed
channel intersects S. In this case @ and § are very small
for closed channels and (6) and (7) become valid with
the summation over s and ¢ extended only over the
open channels. For reasons which will appear at the
end of Sec. IV, this will not be assumed at present.

“One can eliminate explicit reference to the closed
channels in the preceding formulas by introducing the
energy dependent logarithmic derivative K; (a negative
quantity) of the exponentially decaying solution. This
gives B;= K a, along the channels to be eliminated and
permits the elimination from (6a) of the a and B re-
ferring to these channels. In order to carry this out,
one subdivides R into submatrices

Rrr Rre
) 0
R, R,

The index 7 refers to retained, the index e to channels
to be eliminated. In general, the closed channels will
belong into the latter category. The R,., R,., etc., are
matrices themselves. R,, and R,. are real symmetric
square matrices, R, is the transposed matrix to R.,.
These are real but not square. The elimination leads to
a reduced ® which permits one to express the « corre-
sponding to the retained channels in terms of only
those 8 which also correspond to retained channels
(these are, in general, the open channels)

as‘_‘Zt,(Rst(Bt_"btat)' (9)

The reduced ® can be expressed in terms of the sub-
matrices of the original R:

(R=Rrr+Rre[(K+be)—-1"‘Ree]—lRer- (93:)

K is a diagonal matrix with diagonal elements K,; its
rows and columns correspond, of course, only to elimi-
nated channels.

The reduced & given by (9a) does not have as simple
properties as the original R. In particular, like the
collision matrix to which we shall turn later, it has
essential singularities in addition to poles if it is re-
garded as a function of the complex variable E. These
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essential singularities include branch points at those
(real) values-of E= Ey,, which constitute thresholds
for a type of nuclear reaction which is energetically
impossible at a lower E. One can see this immediately

from (9a) since a K, is proportional to (Ew,—E)} in

the neighborhood of Eg,. (Similar statements apply to
the collision matrix.) However, if the K can be replaced
by constants or linear functions of E in which the co-
efficients of E are positive (in general “R functions”®
of E), the approximate & obtained in this way will be
a finite matrix which permits an expansion of the form
(6a) with vx; and E, which are independent of E
though different from the quantities which occur in (6a).
It may be worth while to carry out such an expansion
in detail and, at the same time, to estimate the magni-
tude of the second term of (9a). The omission of this
term corresponds to disregarding the eliminated chan-
nels altogether. The ® can easily be calculated if one
approximates R,., R,,, and R.. by a single term in the
expansion (6a). The ® then becomes equal to R,.
except that the E, therein has to be decreased by

Zt,(Kt+bt)7xt2,

where the summation over ¢ is over all eliminated
channels. The v», corresponding to retained channels
do not change, neither the E, with u3=\. The situation
is less simple if one does not approximate R,., R.,, and
R,. in the above way, but ® will be essentially equal .
to R,, if the expressions (10) are small compared with
the level spacing for every . The sum )2 can be
estimated on the basis of a sum rule which will be de-
rived later and is given in (29). It applies if the position
of the surface .S is quite close to the nuclear surface.
If the surface S is at a distance o’ from the nuclear
surface, the v»; will contain a factor expK.a’ as can be
seen from (6b): the wave function X contained therein
decays outside the nuclear surface exponentially (K is
negative). Thus, (10) can be crudely estimated to be of
the order (K+5)(3#%/2Ma,) exp2Ka' where K is an
average K, and @, is the nuclear radius. In order to
reduce (10) for =0 to a small fraction of an electron
volt, one must place the surface .S almost 10! cm from
the nuclear surface. This distance can be reduced
considerably by choosing the b, in the boundary condi-
tions (2) for the closed channels to be equal to the
average K, for the energy region of interest. Actually,
an estimate of the effect of specifically nuclear forces
on the wave function of a nucleon outside the nucleus
proper indicates that the effect of these forces remains
significant for about 1072 cm. This gives at any rate

(10)

~a lower limit on the distance of .S from the nuclear

surface. As a result, the use of the more general bound-
ary conditions (2), instead of (gradX)),=0, offers only
limited advantages.

One is tempted, at this point, to consider energy
dependent boundary conditions, as has been done by

8 E. P. Wigner, Ann. Math. 53, 36 (1951).
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Kapur and Peierls.® For the closed channels K;=2b,
would be the natural choice and we shall see that, for
the open channels, b,=G./G, would seem to offer
simplifications (this is not what was used in reference
3). It seems to the present writers, however, that the
advantage resulting from the Hermitean orthogonality
of the X, and the simple properties of the R matrices
overbalance the disadvantages inherent in the transi-
tion from the original R to the reduced ® and from this
to the Q of the next section.

III. CONNECTION BETWEEN DERIVATIVE MATRIX
AND COLLISION MATRIX

Several equivalent formulas have been given in the
past to express the collision matrix U in terms of R.
We now believe that the most natural way uses an
intermediate expression Q, in terms of which

U=(1+iQ)/(1—4Q). (11)

This Q is —= times Heitler’s K-matrix.? By the defini-
tion of the collision matrix, the functions

QY= "//sls_ z tUst‘x&tEt,
1,=G,—iF,, Ey=GtiF,

are, for all s, solutions of the wave equations and al-
though they are defined by (12) only in the external
region, they can be continued into the internal one in
such a way as to satisfy He= E¢. It then follows from
(11) that the same holds also for

§0=§1’8Fs(rs)+Ztht¢th(7t)- (123,)

The functions (12a) are linear combinations of the
functions (12), but (12a) can suitably be taken as the
definition of Q, instead of (11). U as well as Q is sym-
metric, U is unitary, Q real. They are both independent
of the choice of the internal region, but depend, of
course, on the energy in a more complicated way than
does R. In fact, the number of the dimensions of U and
Q depend on the energy, it being equal to the number
of open channels. Q can be expressed in terms of the
reduced ® by applying (9) to (12a) to give

Q=—(F'+bF)/(G'+5G)
+[G(G'+6)— (G'+G)R(G'+6G) T, (13)

where b=b—(1/a), a being the radius of the relevant
portion of S. This completes the calculation of U. In
(11a) b, F, G, F’, G’ are diagonal matrices with rows
and columns which correspond only to open channels;
their diagonal elements are b,, Fs, Gs, etc. The only
special property of F and G used when going from
(12a) to (13) was (4). Hence an expression similar to
(13) can be obtained also for

U= (I'+b1)/(E'+bE)+2i[ E(E'+bE)
—(E'+bE)R(E+DE)T, (13a)

¢ W. Pauli, Report on International Conference on Fundamental
Par;icles and Low Temperatures I (The Physical Society, London,
1947), p. 5.

(12)
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and for

—Q'=(G'+bG)/(F'+bF)+[F(F'4bF)
— (F'+BF)R(F'+BF) T (13b)

The calculation of Q, U, etc., from ® is a matter of
finite dimensional matrix algebra.

The above form of the dispersion theory differs from
older formulations by not assuming that the wave
function in closed channels has died out where these
channels reach S. In this regard, the above are very
similar to the formulas which appear necessary for the
investigation of the behavior of the collision matrix
near a threshold for a “new” reaction.® They differ
from these by allowing the use of more general boundary
conditions on S—a possibility which will be made use
of later. The derivation of (13) consists of the applica-
tion of (9) to the wave function (12a) and need not be
given in detail.

It should be remarked that while U and Q are inde-
pendent of the position of the surface .S dividing in-
ternal and external regions, the R, as well as ®, are
dependent thereon as well as on the values chosen for
the b. If one permits a row and column of R to corre-
spond to every member of the orthogonal set ¢, the
above formulas are, naturally, rigorous. However, the
evaluation of ® by (9a) then becomes the real problem,
along with the determination of the K.

IV. APPROXIMATE EQUATIONS

If we treat the K; which occur in (9a) and the F,,
Gs, F/, G, which are implicit in (13) as constants, Q
permits an expansion similar to (6a):

*+e, (14)

R

o X o
H\—
with energy independent w, H, and ¢.!° [Actually, K,
need not be constant; see the remarks after (9a).]
It must be realized, however, that the expansion (14)
will represent Q only in the energy range in which the
actual K, F, G, etc., are still close to the constants which
were chosen for these quantities when making the ex-
pansion (14). Outside this range, (14) will not represent
Q and, in particular, the resonances Hy which are out-
side this range have no physical significance. Neither
is the expression (14), outside of its range of validity,
independent of the location of S. It is true that one
can represent  in almost every sufficiently narrow
energy range by an expression like (14) but the H, w,
and ¢ will be different for different energy ranges. A
representation like (14) valid for every E is impossible
because Q (as well as U), as analytic function of energy,
will have not only poles but also branch points and it is
not clear that all the poles of Q are real. The possibility
of the expansion (14) under the stated assumptions
10 The effect on the resonance cross sections of the energy varia-

tion of the F’s and G’s has been investigated by R. G. Thomas,
Phys. Rev. 81, 149 (1951).
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follows,® however, from the fact that the bilinear form
of the Q, as defined in (13) and (9a) with constant K,
F, G, etc., is an analytic function of E, the imaginary
part of which has the same sign as the imaginary part
of E. We shall now determine the constants in (14).

In order to determine the H,, we may note that the
determinant of the square bracket of (13) must vanish
where Q becomes infinite. Hence, the linear homogene-
ous equations for the wy,,

Zt[G_ (G,‘*—EG)(R(H“)]”(G"{— 5G>[€0M=O, (153.)

will have a nontrivial solution. One can then calculate
the reciprocal of the square bracket of (13) in the neigh-
borhood of H, and obtain

0 X0y

Q= (15)

H,—E
in which Q, is regular at E=H,. The w, of (14) are the
solutions of (15a) so normalized that the scalar product

Yo wus (G'+H0G) R(H,) (G +bG) Jswwue=1.  (15b)

The dot again signifies differentiation with respect to
the energy.

The above determines the H, and w. In order to
determine the ¢ of (14), one may insert for E a very
large imaginary value. The ® then vanishes in (13)

and one obtains
g=—F/G. (16)

It is possible to simplify the above formulas con-
siderably by choosing b,= —G,'/G;. One sees from either
(12a) or (15a) that the H, then become equal to the
E, and one has also

H,=E,; w,;=G;y,, for b,=—G,//G. (17)

In order to calculate the collision matrix U from (14),
it is customary to assume that only one term of the
infinite sum of (14) is significant, the one closest to E.
The others are then neglected in comparison with
q=—F/G. With the b, as chosen for (17), this gives

1=iF/G | (HiF/G) X (1+iF/G) o
T14iF/G ' Hy— E—i(op (14iF/G) e,

+Qus

(18)

Squaring (18) one obtains the usual potential scatter-
ing, resonance, and interference terms. The level H, is
shifted to H,+A, and has partial and total widths,
Tu,and Ty

I‘,‘5=2(GSZ+FS2)_1'Y”S2; Pu=ZsPus;

A,=2s(Fs/G)Tys. (182)

The first term of the approximate expression (18) for
U clearly depends on a, while the actual U is, of course,
independent thereof. The approximation which is least
justified, and which is directly responsible for the de-
pendence of this expression on a;, is the neglect of all
but one term of the infinite sum in' (14). The most
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significant contribution of the A==u terms, in the neigh-
borhood of E=H,, comes not from the H, which are
close to H,, but from the cumulative effect of the
distant resonances and these are the ones which com-
pensate for the a, dependence of ¢. That the close
resonances are in general less important can be seen by
a comparison of the quantities ¢,= —F,/G; and w,,?/D
~v,2/G2D where D is the level spacing. On the basis
of the well-known estimate!® for v,.2/D~1/K, which
will also be derived in the present article, the ratio of
these quantities is of the order F,G.K, where K is of
the order of 10® or 10" cm—. The quantity F.G, can
be estimated from (4) to be of the order of the re-
ciprocal of the wave number %, for disintegration into
the pair s in the energy range in question. Hence ¢ is,
in general, several times larger than any single term of
the sum. Naturally, this holds only in a general way
and the effects of adjoining resonances on each other
cannot always be neglected.

The cumulative effect of the distant resonances is
not very important as far as the nondiagonal elements
of Q are concerned: the wy.wx; are as likely to be posi-
tive as negative for s and they cancel on the average.
However, as far as the diagonal elements are concerned,
the positive contribution of the large H) terms can be
expected to be larger than the negative contribution
of the H\<E terms. The cumulative effect of the Af=pu
terms on the diagonal elements of Q7is probably quite
appreciable.’? Hence, the proper significance of the
radius a, which one finds by fitting the experimental
data to (18) is the value at which —F,/G,=Q, s It
would therefore be more accurate not to replace the
Q. of (15) by —F/G but to assume simply that it is a
diagonal matrix which varies but slowly with E. The
form of U is then still given by (18), but the F therein
no longer represents the value of the regular solution of
Schrédinger’s equation at any particular point but
simply G.Q, where @ is the diagonal part of Q,. As the
preceding paragraph shows, this quantity depends but
little on p. This change permits one to write U in terms
of quantities which are all at least approximately inde-
pendent of a,:

g 1ti@ (1= 0 X (i),
1=4Q Ey—E—i(o, (1—iQ)"0,)
N _ i (18b)
_1+iQ 2 (1—1Q) Gy, X (1—1Q)G 'y,
T 1=iQ | By— E—i(G v, (1—iQ) G y,)

The fact that the w,,=G;y,, are practically inde-
pendent of a, will be verified again in the next section.
Naturally, F/G remains a reasonable estimate for — @),
though, in general, it will be an overestimate.

The difficulty of bringing Q and U into a simple form
which would be valid for all E entails the difficulty of
interpreting experimental data in a simple but rigorous

11 Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 1451 (1947).
2 E, P. Wigner, Proc. Cambridge Phil. Soc. 47, 790 (1951).
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fashion without having recourse to (13). This equation
is difficult to handle, particularly if there are several
open channels, i.e., if Q and U have more than one
dimension. Although most of the formulas of this sec-
tion are only approximate, they are a good representa-
tion as long as K, F, F/G, etc., vary only slowly with
energy. This will be the case only if the @, can be chosen
rather > small—which explains the endeavor of the
previous sections to lay S as close as possible to the
nuclear surface.

V. THE SINGULARITIES OF S-INDEPENDENT
QUANTITIES

The Q and U considered in the previous section
represent the actual Q and U only in a restricted energy
region because it was assumed that the K, G, G/, F, F’
are independent of energy. It is this assumption which
assured the possibility of the expansion (14) for Q.
In the present section we shall derive rigorous formulas
for the poles of Q. The positions and residues of these
poles are, naturally, entirely independent of the size
and shape of the internal region and we shall obtain
relatively simple expressions for them. However Q’s
poles and their residues do not determine Q in the way
in which R was determined by the corresponding quan-
tities. Thus the exact expressions for (’s poles and
residues will be used only to compare them with the
corresponding quantities of the Q and U of the pre-
ceding section. This will provide an orientation of how
closely the latter approximate the actual Q and U.

At the energy values H, which are poles of Q, there
is a stationary state ¢, which consists only of the irregu-
lar solutions G in the external region. This follows from
(12a). If Q becomes infinite at a real H,, the deter-
minant of the square bracket of (13) must vanish, i.e.,
the linear equation (15a) for w,; must have a nontrivial
solution. Hence this last equation is also correct® for
the actual Q'if the G, G’ therein are given their actual
values rather|than treated as constants. One can verify
on the basis of this equation that in the external region
@y is given by

Pu= Z swus\bsGs(ys)7

i.e., has the amplitude w,G; in the sth channel. This
gives the physical interpretation of the ratios of the a,,.

One can again expand Q in the neighborhood of H,
and find that its singular part remains the expression
given in (15) which is, therefore, also accurate. In this
calculation, one must take into account that F and G
also depend on energy and this leads, for the normaliza-
tion of w,, to

> ¥ wu[G'G—GG
+(G'+bG)R(GC'+BG) Jowe=1 (20)
instead of (15b). This equation which determines the

absolute value of the w,; can be interpreted in the fol-
lowing way. By (7a), the term which contains ® is

19)
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equal to

@M /1) f 02dV, (21a)
174

the integration to be extended over the internal region
V. Furthermore, because of the identity

— (M /R) f Gr,=[G,G,— GG, Juso™, (21D)

the other two terms of (20) are equal to the negative
integral of (2M /)¢, from the ay at which G,/G,
—@G,/=0 to the boundary of the internal region;
@uc is the function which has the form (19) everywhere.
This shows that (20) amounts to the normalization of
S 0.2dV="h*/2M, the integration to be extended inside
the surface .Sy which intersects the s channel at aq,
if .Sp lies in the external region. If Sy does not lie en-
tirely in the external region (which is most unlikely),
¢, and hence the w are normalized by

S 8
f 02dV— | . 2dV=1/2M. (21)
8o

The first integral is to be extended over the internal
region, bounded by S; the second over the region be-
tween So and S. ¢, is generally not a solution of the
quantum-mechanical equations but is defined every-
where by (19). On the other hand, ¢, is a solution of the
quantum-mechanical equations and represents a state
of energy H,. In the external region, ¢, has the same
form (19) as @, so that (21) is clearly independent of
the position of S as long as .S is in the external region.
This then holds also for (20), which is only another
form of (21).

The as which correspond to closed channels are
infinite because, in this case, G; and all its derivatives
vanish only at infinity. Hence the part of the second
integral of (21) which refers to these channels is always
positive. Since, for a free particle, k,a;0~1! the same will
be true in those channels s which represent disintegra-
tions into particles without long-range interaction and
high relative angular momentum, or with repulsive
interaction. It is possible, however, for the second term
of (21) to be negative and larger than the first term.
In this case w, will be imaginary and the sign of the
singular term of (15) will be opposite the usual one.

The above considerations may be also carried out
using instead of F¥ and G a different set of linearly inde-
pendent solutions, ' and G, of the external (two-
particle) motion:

F=¢tF+1G,
G=¢F+xG.

Using the same normalization as before, one must then
have

E—ne=1.
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The above arguments then go through in an analogous
way, with Q replaced by

Q= (—n+£0)/(x—¢0).

In particular, if one places n=1, {=—1, £=x=0, the
as all become zero, and both integrals in (21) have to
be extended over the whole internal region. One may
even put £={=1, x=—n=1, in which case

Q= U>

so that U itself appears on the left side of (15). How-
ever, the roots H, of (15a) all become complex in this
case, and the F and G are highly singular at infinity.

In the energy interval in which boundary conditions
used in the previous section are not substantially dif-
ferent from those used here, (15a) will lead to the same
-H, with the constant G, G’ used there as with the
variable G, F’ used here. The question as to how nearly
the Q, will be independent of energy—and independent
of y—is more difficult to decide. It is clear that (15)
cannot be used just between resonances and nobody
will want to use it there. It may be useful to remark,
however, that at the point H,+A,, where Q, was set
equal to @, this will remain justified except at very
high energies because A, is generally well below the
level spacing D. This follows from the formula quoted
before, viz., v’~D/K, whence A,~(FD/G)/K (F*+G?).
The denominator of this expression is by (4), of the
order of K/k,, ie., well in excess of 1 while F/G is
usually less than 1. Finally, the G'G— GG’ term in (20)
will be much smaller than the term with ®, and can be
neglected as in (15b), unless the radii a; are chosen
extremely large or unless the ~? are close to their
maximum possible values, to be discussed below. If
neither of these conditions obtains, the quantities
defined by (15), (15a), (15b) will be very nearly equal
to the w of the present section and, hence, within
limits independent of the a,. Since (17) is a direct
consequence of Egs. (15), this also verifies that, for
bs=—G//G;, the G;ly,, are independent of a,, as
claimed in the preceding section. One can see this also
more directly from (19): calculating v,s from (19) by
(6b) we find (5*/2M)*w,,Gs(rs) divided by the square
root of the integral of ¢, over the internal region (the
X in (6b) is normalized). This square integral is given
in (21) as %%*/2M plus a quantity which, though de-
pendent on S, is in general much smaller.

VI. SUMMARY OF THE ABOVE SECTIONS

The purpose of the above sections was to establish
the connection between observed level widths and the
reduced widths which occur in the R matrix and which
are given by (6b). The connection is given approxi-
mately by (18a); the T',; of that equation is, also ap-
proximately, independent of the size of the internal
region. ’

The singularities of Q, which defines U by (11), are
rigorously given by (15). They are situated at those
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energy values at which there is a solution ¢, of the
wave equation in the internal region, the continuation
of which in the external region (19) contains only
waves with a phase shift Zm/2. The w, of (15) is
given by

Gs(’ﬂ)“’#s:fﬂaﬂ\bst’ (22)

which is the analog of (6b) but gives a normalization
which is strictly independent of the size of the internal
region. The normalization of ¢, is given by (21)
[which also takes care of the absence of the (h2/2M)}
factor in (22)]. The position of the surface .Sy is defined
by the condition that G"G— GG’ vanish on it. This then
gives a natural size to the internal region. One is led
back to the formulas quoted in the first paragraph of
this section if the second integral in (21) can be neg-
lected as compared with the first one. This will be the
case if the width of the resonances is considerably
below the upper limit to be derived in the following
section.

The potential type term Q, of (15) contains, in
addition to —F/G, the effect of other resonances. It
appears that the cumulative effect of distant resonances
is more important than that of the close-by ones and
contributes mainly to the diagonal elements of Q,.
Both parts of Q, depend on the size of the internal re-
tion, but their sum is independent of it. The radii ¢, as
determined from a fitting of the experimental data to
the formulas derived from (15), such as (18a), have
no other significance but that the second part of Q,
vanishes for this choice of a,.

The reduced R matrix ®, the Q, and U all have
singularities in addition to the poles discussed above.
In particular, they all have a branch point at every
reaction threshold. Hence the cross sections will have
singularities at the thresholds which generally turn out
to be cusps.®

Since it is impossible to observe the phase of the out-
going wave directly, neither U nor Q can be determined
experimentally without some recourse to theory. The
theory, however, remains simplest, and the determina-
tion of the U, Q, etc., most unique, if one has widely
separated sharp resonances. In this regard, the present
more general formulation of the dispersion theory does
not differ from older and more simple formulations.

VII. EFFECT OF THE VARIATION OF THE b,

The purpose of the remaining sections is to derive
sum rules which permit an order of magnitude estimate
of the vxs. The expression (6b) for these has, apart from
the factor (4*/2M)3%, the same form as a transition
probability. However, the two sets of functions X and
¢ are defined in different spaces: the former in the
internal region, the latter on the surface thereof. As a
result, no mathematically rigorous formulas can be
derived for them in general. The sum rules to be de-
scribed below both involve assumptions which have
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Fic. 1. b is the negative logarithmic derivative of the internal
wave function in one of the channels. The abscissa is that value
of the energy at which R has a pole when the boundary condition
in Eq. (2) is bs=>. Hence Ey, Ext1, Exyo,- - - are energy values
at which R has a pole for the boundary condition b;=0. The value
of the normalized wave function at the boundary is proportional
to s, and its derivative to 8.

only approximate validity. The only simple interpreta-
tion of (6b) which is free of special assumptions is to
regard it as an integral over the whole internal region.
This is possible after replacing ¢.(é;, Q) by ¢, times
the § function of the distance of 7, from S in configura-
tion space. Then, (6b) becomes an expansion coefficient
of this function in terms of the X). The sum of the
squares of all expansion coefficients is equal to the
square integral of the function. Hence

2E= 0, (23)

because the square integral of the & function is infinite.
On the other hand, the integral of ¥/, vanishes over
S and one infers from this that

2omarae=0 if s¥2 (23a)

This equation means that the signs of the v, fluctuate
irregularly with A so that (23a) may be true for all s
and ¢. It is this property of the y\s which enabled us to
approximate Q, of (15) by the diagonal matrix . The
argument leading to (23), (23a) was given in more
detail elsewhere,” where the derivation of (32) was
also given on a similar basis.

It will be useful for the subsequent developments to
investigate the dependence of the Ej and X on b, in
some more detail. We shall keep all b, fixed, except one,
b., and look for the energy values at which &, assumes
a given value b. The calculation will be carried out by
means of the formulas of the first section which in
principle permit the solution of every boundary value
problem. We shall have, therefore, a basic set of X, Ey
which obey (2) with fixed b, and which define the R
to be used in the calculation. There will be another set
of X, E and v (but not of R) for which b, are all equal
to the corresponding b, of the basis set, except the
b,=b which will be variable. The &, of the basic set
will be chosen zero for convenience. The characteristic

TEICHMANN AND E. P. WIGNER

values E, and characteristic function Xy of the set
with variable b, will be called Ey(d) and X»(0) and a
similar notation will be adopted for the yx,.

A comparison of (5), (5a), with (2) shows that we
are looking for a ¢ =X\(d)] for which b;0;+8:=0 for
t#u and ba,+B.,=0. As a result of the former rela-
tions, only the # term will remain in the summations
in (6) and since 4,=0 in the basic set, we have

—Bu/b=0y=Ry.Bu. (24)

The last equation shows that the E,(d) is that value
of E between E, and E,;; at which R,, becomes
—1/b. There is always one and only one such E which
we shall call Ex(b); the Ry, in (24) is supposed to be
taken at this E. It then gives all the 8 in terms of 8.
The corresponding wave function, when normalized,
is called X,(b). From (7) and (7a) we have

YuuX, .
X)\(b) =Z _“iw_fm(Ruu)_%'
w E,—E\()
Again, R,, should be taken at E=E)(b). From (6b)
we further have

(25)

'Y)\u(b) = Ruu(Ruu)—%- (26)

This is actually the a; for a normalized ¢ satisfying
the above boundary conditions. The corresponding 8
will be denoted by Bx:(8). They are

ﬂ)\u(b) = '—b’Y)\u(b) = (Ruu)_§- (27)

Hence, the qualitative picture which emerges is as
follows (see Fig. 1): As one increases b,=b, the E\(b)
will also increase. At the same time X,(b) and hence
also the va, will change. E5(b) will remain finite as &
becomes infinite and in order to further increase E,,
one must let b jump to — e and let it increase again.
By the time b has reached its original value, E,(b) will
have shifted to where the next higher E, was originally.

Concurrent with the change of E\(b), both v).(5)?
and B (b)? will change, their ratio remaining, of course,
1/8%. For =0, the $).(0) vanishes and v,,(0) is close
to its maximum value. As b increases, B,(b)? will in-
crease and come close to its maximum value for b= - .
At this point y),(b)? is zero. As b starts to increase
again from — o, v,,(0)? becomes again finite and, when
b has again reached its original value, both v,,(b) and
Bru(b) will have assumed the values of the yay1 . and
Bxr+1 u, Tespectively. At the same time X,(b) will have
changed to =4=X);1. The same picture holds for every
u, except that one may arrive at different signs for
X1 by changing different b,. Also, if ¢, is a very
highly excited state, practically all the increase of
E\(d) will take place in a very narrow range of b. It
may be remarked finally that all the other v\, will
change concurrently with v,,. One can see, in fact,
that if (23a) is valid, some of them must have gone
through zero and changed their sign during the above
process.
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VIII. THE SUM RULES

If S is chosen close to the nuclear surface, the inte-
grands of

(72/200) f |X,(0)|%dS and

(/20 f |grad XA(8)|?dS  (28)

will be just about as large on the surface as inside the
nucleus on the average over a reasonably large range
of Ex(d). The latter averages are, however, clearly
B/2MV4 and T/V4, where V is the volume of the
nucleus, T the total kinetic energy, and 4 the number
of nucleons in the nucleus. On the other hand, the sums

ZS'Y)\s(b)2 and Zsﬁ)\s(b)g; (2821)

extended over all those states s which correspond to
the same nuclear products, irrespective of their state
of excitation, are equal to the integrals (28) over the
corresponding part of the surface S. The area of this
part of S is V4~4mra?, the first factor arising from the
integration over the internal coordinates of the re-
sidual nucleus, the second factor from integration over
Q. Hence on the average over E,(b)

S ovne(0)2=4ma 2V AR/ 2M VA= 312 /2Ma,.  (29)
3 Bre(8)2=(1/34)4ma VAT /VA=T/Aa,. (29a)

The factor § in this last expression originates from the
fact that (5a) contains only one component of the
grad, that perpendicular to S. On the other hand, all
three components enter into the expression for the
kinetic energy. T/A is, of course, the kinetic energy
per nucleon.

The above formulas were derived without regard to
the identity of the particles in the nucleus. If one
takes this into account, one obtains a further factor vV
or Z in (29) and (29a), depending on the nature of the
particle (neutron or proton) that constitutes the extra
particle in the pair s. This extra factor is undoubtedly
present in (29), (29a), if one extends the summation
over all states of excitation of the residual nucleus, in-
cluding those in which a neutron from one of the very
low levels is missing. If one restricts the summation
to the not too highly excited levels, the sum rule as
given above should be valid. There is a similar phe-
nomenon in the sum rule of atomic spectra. Strictly
speaking, one can only claim that the sum of the f
values is Z if one considers the transitions to all possible
levels from the level in question. However, if one only
considers transitions of a single electron, the sum of the
fis close to 1 and, in particular, the f of a single transi-
tion from the normal state is probably never greater
than 1. Similarly, no single vx,(5)? can be expected’
[on the average over E\()] to be larger than the right
side of (29). Hence 4*/(34%*/2Ma;) will play a similar

3 R. de L. Kronig and H. Kramers, Z. Physik 48, 174 (1928).
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role for the reduced width as the f value dues for optical
transitions. This quantity is given in the sixth column
of Table I.

Considering the accuracy with which the nuclear
density remains constant, the writers believe that (29)
is accurate within about 25 percent if it is averaged
over a sufficiently wide range of energy. Because of the
fluctuations which even the maxima of v»;(b) show, the
range may have to extend over several resonances.
However, what is needed for the earlier formulas is the
value of v, for a definite value of b, such as =0 for
slow neutron resonances. This can be only estimated
from (29). If the energy of the nuclei which constitute
s is below Ey, one would expect that v,,(8)?, as function
of E,(b), is a function similar to the sine, as illustrated
in Fig. 1, with the maxima and minima about equally
broad. One can assume for the energetically possible s,
and hence also for their sum, that the maxima are about
twice as high as the averages given in (29). Together
with dyxs(0)+Bxs(0) =0 this then gives-

61T/ Aa,

2B <——————
e 3+ 2M T/ A

(30)

as the upper limit of the sum of v,(5)? for energetically
possible s. We call (30) the first sum rule.

One can describe the first sum rule in less mathe-
matical language. According to (6b), the reduced width
a is (apart from the factor #2/2M) equal to the
probability, for the state X, that (a) the distance 7,
of the pair of nucleons constituting s be in a unit
interval at a,, and (b) that the state of the products
be described by ¢,. Hence the sum of all y,,? is simply
the probability that 7, be between a; and a.+1. This
probability depends on the boundary condition for
X, that is, on b. It is zero for infinite &; for =0 it is
twice as great as the ratio of the volume of a spherical
shell of thickness 1 to the volume of the whole sphere
of radius a,. This is the meaning of (30). If s consists
of a residual nucleus and a single extra particle, the
left side of (30) will contain only one significant term
if the total wave function X is the product of the wave
function for the stationary state s of the residual nu-
cleus and of a function of the distance of the extra
particle from the residual nucleus, ie., if the single
particle picture applies for X,. Hence in this case
vt will be close to the maximum value given by the
right side of (30). It will not be exactly equal to this
value because the probability distribution of the extra
particle is not uniform throughout the volume of the
nucleus if the single particle picture is valid. However,
(30) will be valid in this case approximately with the
summation sign omitted on the left side and the
< replaced by the ~ sign.

In the opposite extreme case of a many particle
picture we can still expand the compound state wave

function
X)\=Z ZmCMnKbtun(h)- (31>
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TasiLe I. Widths and spacing of nuclear reaction resonance lines.

E\ T Yhe? D /D 2May)2/3%
Reaction kev kev 10713 kev cm kev 10713 cm o ev References
He'+n 1150 1550 9810 49 a
Li"n 270 45 3500 1000 3.5 17 b
Li’(p, v) 440 12 1300 1000 1.3 6.3 20 ode
Li"(p, n) 2230 200 410 1000 0.41 2.0 fe
Be'+-n 625 35 290 1000 0.29 1.5 b
2600 800 1180 1000 1.2 6.2 i
Bed+p 305 164 1200 1000 1.2 6.3 d
988 94 500 1000 0.50 2.6 e
1077 4 21 1009 0.02 0.11 °
2420 150 310 1000 0.31 1.6 k
Bilt-n 430 45 1000 1000 1.0 5.6 i
Bi4-p 162 5 1420 1000 1.4 7.9 a1
Ci24-p 453 35 3180 1000 3.2 18 de
Ci34-p 550 40 2060 1000 2.1 12 de
N¥4(n, ) 2200 260 340 500 0.67 2.0 m
Olb4-p 440 45 760 500 1.5 49 i
1000 100 660 500 1.3 4.3 i
1300 40 170 500 0.34 1.1 i
1900 30 90 500 0.18 0.5 n
2370 120 180 500 0.36 1.0 n
O164-p 550 ~5000 3000 1.7 33 °
3110 48 3000 0.01 0.32 °
Fo4-pn 100 15 90 100 0.90 0.60 i
Na?+n 3 0.17 7.1 100 0.07 0.05 P
Mg*+n 85 23 1780 400 44 13 a
275 145 2360 400 5.9 17 a
430 62 590 400 1.5 4.2 a
860 50 230 400 0.58 1.6 a
2540 150 210 400 0.52 1.5 1
Si%+4n 195 66 340 400 0.85 2.5 a
570 38 250 400 0.63 1.9 a
S32+tp 111 18 130 300 0.41 0.98 r
375 12 45 300 0.15 0.35 r
585 2 12 300 0.04 0.11 r
700 12 30 300 0.10 0.24 r
S32(n, p) 2390 80 120 300 0.39 1.0 s
2800 8) 110 300 0.36 0.90 s
3100 200 270 300 0.89 2.2 s
3460 200 240 300 0.81 1.9 s
S3%(n, ) 3020 390 390 300 1.3 3.1 m
ev ev 10718 kev cm kev 10718 cm %
Cl354-n —175 2.63 1.38 10 0.10 0.011 t
Viltp 2700 780 68.4 100 0.68 0.62 u
76,000 19,000 155 100 1.6 1.4 u
Mnb55+4-n 345 5 0.66 2 0.33 0.006 2 v
2400 300 13.9 2 6.9 0.13 w
Co%4-n 126 5 1.0 2 0.50 0.008 x
Ni+n 15,000 4000 74 50 1.48 0.70 y
Zn+n 500 1.2 0.12 2 0.06 0.001 1.7 =
Ge+n 95 0.37 0.085 0.1 0.85 0.0008 as
Br+n 36 0.16 0.118 0.1 1.18 0.0009 x
ev Mev 10713 ev/cm ev 10713 cm 1074 9, ev
Ru-+n 9.0 0.4 0.3 20 0.02 0.03 bb
Rh104p 1.3 0.33 0.65 20 0.03 0.08 0.14 co
Pdstpn 24 49 23 50 0.46 2.7 0.14 dd
Agi®4-n 5.1 11 12 50 0.24 1.4 0.12 ee, ff
13 4.8 3 50 0.06 0.35 ee
Agl74-n 45 13 4.5 50 0.09 0.52 e 3
Cdi34-n 0.18 0.6 3.2 50 0.06 0.38 0.11 v eg
Intto4-n 1.4 2.7 5.2 10 0.52 0.62 hh
3.8 3.7 5.0 10 0.50 0.60 bh
8.6 21 16 10 1.6 1.9 bh
Sb+n 5.8 1.1 1.0 15 0.06 0.12 v
15 8.1 4.8 15 0.32 0.58 v
21 113 5.7 15 0.38 0.60 v
Tel?4-n 2.2 15 2.3 10 0.23 0.28 ii
11274 20 2.3 1.2 20 0.06 0.15 i
Sm14+n 0.096 0.024 5.5 40 0.14 0.72 0.03 co
Eu+tn —0.011 0.008 0.17 10 0.02 0.02 0.08 e
0.54 1.25 3.8 10 0.38 0.49 0.07 co
Gd+n 0.03 0.29 3.8 10 0.38 0.50 0.05 ce
Dy+n —-1.01 29 6.7 10 0.68 0.88 bh




SUM RULES IN DISPERSION THEORY

133

TaBLE 1.—(Continued).

E) T TS D INE/D  2Mav) /34
Reaction ev ev 10718 ev cm ev 1078 cm % ev References
Taldl4-n 4.1 1.4 1.5 10 0.14 0.21 hh
10 1.9 14 10 0.14 0.20 hh
13 0.3 0.19 10 0.02 0.03 hh
22 1.4 0.66 10 0.07 0.09 hh
W+n 4.0 24 2.7 10 0.26 0.38 hh
74 1.7 1.4 10 0.14 0.20 hh
Re+n 24 0.18 2.6 10 0.26 0.36 bb
Os+n 6.5 3.1 2.8 20 0.14 0.39 kk
8.8 15 11 20 0.55 1.5 kk
20 24 12 20 0.60 1.7 Kk
Ir+n 0.64 0.29 0.79 10 0.08 0.11 0.07 v
1.28 0.56 1.1 10 0.11 0.15 0.07 v
5.2 4.4 44 10 0.44 0.62 v
8.7 6.7 5.1 10 0.51 0.72 v
Pt+n 11.5 13.9 8.9 20 0.44 1.3 hh
18.2 12 6.4 20 0.32 0.91 bh
Aul4-n 4.8 15 16 40 0.40 23 hh, dd
Hg'%%4-n —2.0 27 31 50 0.62 4.4 1
U284 11 8.6 59 0.89 mm
kev kev 10718 kev cm kev 10718 cm %
Ph20s|-5 250 10 70 400 0.18 0.029 nn
525 10 50 400 0.13 0.021 on
720 10 40 400 0.10 0.017 nn
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In the sum, it is necessary to consider only those ¢
which correspond to the separation of the compound
state into the same constituents though in different
states of excitation. We shall consider the case of the
separation into a residual nucleus and a single extra
particle; the summation has to be extended then over
all the stationary states of the residual nucleus and ¢ in
(31) enumerates these stationary states. In contrast to
the single particle picture, many of the terms are now
of about equal significance in (31). The #,(r;) denotes
the various single particle wave functions of the extra

nucleon. The ), now becomes
no= (12 2M)} 3 nonsnttn(as). (31a)

If a; is the nuclear radius, the amplitude of the single
particle wave functions #,(r;) may be taken at least
roughly constant over the volume of the nucleus.
Hence, because of the normalization condition, the
integral of the square of #,(a;) over Q; will be of the
order of 3/as, its magnitude also depending on the
boundary condition at as, i.e., on b. If (31) consists of
substantially only one term, the corresponding ¢, will
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be unity and (31a) leads us back to the formula valid in
the case of the single particle picture. However, if
many of the ¢,, are finite, the square of (31a) can be
estimated to be

’Y)\sz= (3h2/2Mds)ZnC)\sn2. (31b)

In (31b), the cross terms have been neglected because
they are as likely to be positive as negative. The sum
in (31b) must be expected to be considerably smaller
than 1 because the normalization of (31) demands that
the sum of cy? over # and ¢ be 1 and the terms with
t=s constitute only a small fraction of all the terms.
We must therefore expect that the values in the seventh
column of Table I drop from a value close to unity, in
the region in which the single particle picture is at
least approximately valid for the compound states, to
a very small fraction of this value in the region where
the many particle picture is appropriate for the com-
pound nucleus. This is in fact what is observed, the
vxs: which amounts to several percent of 342/2Ma, for
light elements, dropping to a few parts per million of
this quantity in the slow neutron resonances of heavier
nuclei. It is interesting to note in this connection that,
atlow 4,~2generally decreases with increasing excitation
of the compound nucleus. This is what would be ex-
pected from our picture, because the single particle
model becomes less accurate with increasing excitation.
We may remark parenthetically, though it does not
have much to do with our subject proper, that there are
indications of a decrease of level density as one passes
the magic numbers, and that this is particularly evident
at the end of the table.

In fact, (31b) permits a somewhat closer estimate of
vxs’. Because of the orthonormal property of the X,
the sum of the cx;»2 over N must be unity. There is,
however, nothing special about any particular state A
and it will have to share about evenly in the finite sum
of ¢xsa? with all other resonances nearby. Let us assume
that cs.? is about evenly distributed over the N for
which E, is within the energy range W,. The average
value of one cys.? will then be D/W, where D is the
level spacing around E,. Naturally, we know very little
about W,. The smallest length that we can give it will
be the difference between the energy values of the single
particle levels 7 and n+-1. This gives W,~nh*r*/Ma,.
Under this assumption, only one 7 contributes to the
sum (31b) and we obtain the estimate

vi~3a,D/2nn=3D/2rK’, (32)

where K'=nn/a, is the average wave number of the
particle in the nucleus. One recognizes in (32) the well-
known estimate of Bethe, and Feshbach, Peaslee, and
Weisskopf.!! If W, is larger than the above estimate,
every term in (31b) will be correspondingly smaller,
but several terms will be finite and the result will not
be much altered.

In the derivation above, the origin of the estimate
(32) is the sum rule for 3 cas»? while the sum 3~ 3~ sucasn?
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was significant for (30). One may call (32), therefore,
the second sum rule. The present interpretation thereof
uses the wave functions in configuration space rather
than the semiclassical picture or the single particle
picture employed in earlier derivations. Its result, how-
ever, differs in only one important respect from the ones
given before. One would expect from our picture that
the v»s* show considerable fluctuations from resonance
to resonance. While the earlier work is not outright
inconsistent with the existence of such fluctuations,
one would at first rather expect, on the basis of the
picture on which they are predicated, that the v, are
all very closely alike. The present experimental évi-
dence, summarized in the sixth column of Table I
seems to indicate that individual v,,> may deviate
considerably from the average given in (32). It also
indicates that the average value of v\2/D shows a
considerable decrease from its value of around 2X10—%
cm at the light elements, where the single particle pic-
ture is approximately valid, to about a tenth of this
value for the resonances of heavier elements where an
opposite picture may be more appropriate. While such
a behavior does not obviously follow from our picture,
it can be easily interpreted on the basis of the point of
view here adopted. It is possible, for instance, that one
relatively low-lying level, for which the single particle
picture still applies, is closely approximated by y.u, so
that relatively little of the sum _xcxs»® remains for the
states responsible for slow neutron resonances. The
aforementioned decrease of the vi,2/D along Table I
becomes even more pronounced if one multiplies the
right side of (32) by a further factor 2(1+43%#%%*4/
2MT)™ in order to take into account the dependence
on b at least approximately. The v?/D is particularly
small at the slow neutron resonances for which 5=0.

A more mathematical derivation of the second sum
rule is implicit in Egs. (27). Written out in more detail,
it reads

’)’Ms2
6)\3 b)~2= - . (33
@ % [E.—~E(D)T :

In the sum on the right side, the terms p=2X\ and p=A4-1
will be, in general, considerably larger than the other
terms. If b has a value which places Ex(b) midway be-
tween E, and Ey;i, the sum on the right side will be
close to m(va+var1s2)/2D? with D~E, 1—E,. If we
assume in the sense of the above developments that
Brs(0)2~(2MT/AW?)v»s the above equation becomes

Lyt a1 d)(D/mh) 2M T/ A)*~D/rK, (32a)

with K the average wave number of a nucleon. This
argument seems also to show that there is a connection
between individual values of the level spacing D and
the strengths of the resonances at the two sides there of.
Such a connection also seems to follow from earlier
work.” !
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IX. DISCUSSIONS OF THE APPROXIMATIONS

Throughout the considerations of the last section the
boundary of the internal region was placed quite close
to the nuclear surface. Since the nuclear forces have a
finite range, the wave function will not have the form
(3) in the external region. This circumstance may im-
pair the results of the preceding section to an extent
which is not easy to estimate. If the sole effect were a
departure of the external region interaction from Cou-
lomb’s law, it would only affect b which does not enter
any of the formulas in the crucial fashion. This then
means that the v,,? which occur in the preceding sec-
tion and which refer to an internal region of the size of
the nucleus cannot be calculated accurately in practice
from the observed width.

The impossibility of writing the wave functions in
the external region in the form (3) with any F and G,
i.e., the possibility of a nuclear reaction outside the
very small internal region of the last section, might
limit the validity of the formulas of the preceding sec-
tion more severely. Reactions of the nature just men-
tioned, such as the Oppenheimer-Phillips process, the
stripping and pick-up processes* do in fact play a
dominant role under certain conditions, and they cer-
tainly invalidate the sum rule of the preceding section.
Somewhat fortunately, if these processes become im-
portant, the considerations of the first five sections,
although perfectly valid with a sufficiently large inter-
nal region, cease to give significant results. Hence there
is little temptation to apply either the dispersion theory
or the sum rules to interpret the aforementioned
processes.

A second point which should be brought up is the
fact that the v, in terms of which the widths were
calculated in the third and fourth sections, referred to
the reduced matrix ® rather than the original R. As
far as the sum rule (32) is concerned, this circumstance
is without significance. The average value of v»:2/D is
equal? to 1/7 times the imaginary part of R(E4-iE’)
where E’ is large as compared with the level spacing
but small enough so that D and the average v\, do
not change appreciably in an energy interval E’. Be-
cause of (23a), the value of Ry, (E-+1E’) becomes zero
for s={ for such an E'. It then follows from (9a) that
® and R,, are equal at E4¢E’ so that the average
v»2/D has the same value, no matter whether the vy
occur in the expansion (6a) of R or in the similar ex-
pansion of ®.

It is not difficult to convince oneself that the level
spacing of ® is smaller than that of R. The reason is

“J. R. Oppenheimer and M. Phillips, Phys. Rev. 43, 500

(1935); R. Serber, Phys. Rev. 72, 1008 (1947); S. T. Butler,
Proc. Roy. Soc. (London) A208, 559 (1951).
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that the boundary conditions in the closed channels
become more favorable!® with increasing energy. Since,
according to the preceding paragraph v2/D is the same
for ® and for R,,, it follows that the average of the
vus® Which occurs in the expansion of R is smaller than
the similar quantity in the expansion of R,,. However,
the effect is not very large. It is in the direction to make
(30) more valid.

Table I gives the relevant data for all reactions in
which the width of a resonance line has been measured.
We intended to include all data published up to the
fall of 1951. The first column gives the colliding par-
ticles, i.e., the s of our notation. The position of the
level above the normal state of the constituents of s is
given in the second column, the third gives the observed
partial width T',,. The v, of the fourth column were
calculated by the first of the Egs. (18a), using as
radius a; (the variable in G24F?) the radius of the
residual nucleus augmented by the “radius of the neu-
tron (or proton),” 1.4X 10~ c¢m. This convention was
adopted to conform with the calculations of Christy
and Latter'® and with our own earlier work on the sub-
ject. As was emphasized above, the sum rules refer to
the ¥? for a position of S which hugs the residual nucleus
so that the ‘“proton radius” should not have been
added to that of the residual nucleus. In the case of a
neutron with zero angular momentum, G2+F2=1/k,
is independent of 7, so that for most of the Table the
choice of a; is irrelevant. This is not so in the case of
the proton resonances at the beginning of the Table.
In these cases the % calculated at the smaller radius
would be considerably higher than the values given in
the fourth column. Such a change would further in-
crease the values in the sixth and seventh columns.
However, as was mentioned before, the Coulomb po-
tential is probably not unaffected in so close a neighbor-
hood of the nucleus and the calculation of the penetra-
tion factor in the region in which specifically nuclear
forces are significant is at present impossible.

The fifth column gives the level spacing. It was
attempted to take into consideration the isotopic
constitution of the elements involved and the possible
spin values of the compound nucleus. The values given
refer to the average spacing of the levels with a definite
J of a particular isotope. However, we found it very
difficult to estimate this quantity from existing data.
The significance of the sixth and seventh columns has
been mentioned before. The radiation width is given in
the eighth column in the cases in which it has been
measured.

18 P, M. Morse and H. Feshback, Methods of Theoretical Physics
(Technology Press, Cambridge, Massachusetts, 1946), Chap. VL.

16 R, F. Christy and R. Latter, Revs. Modern Phys. 20, 185
(1948).



