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A brief treatment of spinors in general coordinates is given. The mathematical results are used to derive
the Hamiltonian for a spinor field interacting with the gravitational field. The Hamiltonian formulation
follows a method developed by Dirac, which has been used by Pirani and Schild to treat the free gravitational
field. The Dirac method is further used here to carry out a reduction of the Hamiltonian to a form suitable
for quantization. The quantization procedure is actually given, and the problems arising in connection
with it—such as the factor ordering ambiguity and the vacuum expectation value of the spinor stress
density —are discussed.

1. INTRODUCTION

HK Hamiltonian formulation of Einstein's gravi-
tational field equations, which has recently been

accomplished by Pirani and Schild' and independently

by Bergmann' and his co-workers, has enabled workers
in general relativity to consider seriously the possi-
bility of carrying out a rigorous quantization of Ein-
stein's theory. Bergmann and his group hope to develop
a quantum theory of the motions of point singularities
(particles of matter) in an otherwise "free" gravitational
field; i.e., a quantum version of the work of Einstein,
Infeld, and Hoffmann. ' Schild's group, on the other

' hand, take the more direct course of describing gravi-
tating matter (as well as electromagnetic radiation) by
means of additional fields which interact with the
gravitational field. The present paper is written in the
latter vein.

The addition of fields having tensor transformation
properties introduces no difficulties, as is evident from
the brief treatment of the electromagnetic field in C"PS].

Spinor fields, however, require special handling. In this

paper the Hamiltonian for a spinor 6.eld interacting
with the gravitational field will be derived, In addition

to the problems arising in the course of this derivation,

a number of others will appear when the attempt is

made to pass to the quantum theory. All these will be
discussed.

In this paper Latin indices range over the values 1,2,3 and
Greek indices over the values 1,2,3,4. Use of three real coordinates
x' and one imaginary coordinate x4 will be made from the outset,
with an eye toward facilitating the direct transcription of the

~ Fulbright Fellow in India, 1951—1952.
t Maitre de Recherches, Centre National de la Recherche Scien-

tifique, Paris, France.' F. A. E. Pirani and A. Schild, Phys. Rev. 79, 986 (1950); this
paper will be referred to as LPS].

~ Bergmann, Penfield, Schiller, and Zatzkis, Phys, Rev. 80, 81
(1950);J. Heller and P. G. Bergmann, Phys. Rev. 84, 665 (1951).
In the latter paper the Hamiltonian formulation has been carried
out in spinor form. The result is entirely equivalent to the more
usual formulation in terms of the metric tensor. It is to be em-
phasized that the work of the present authors differs from that of
Heller and Bergmann in that the spinor quantities which appear
here are extra quantities (added to the gravitational field quan-
tities) and have no metric significance.

' Einstein, Infeld, and Hoffmann, Ann. Math. 39, 1, 66 (1938);
A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).

results obtained here into an eventual quantum perturbation
theory of electron-graviton interactions. With this convention
the determinant g of the metric tensor g„„is positive; the invariant
volume element is g&dx'dx'dx'dx', where x'= —ix'; and the con-
jugate of a tensor T~"'„... is defined by

f" '-=(-) (T" '-)*,
where q is the number of times the index 4 occurs among thep, ~" . In the case of c-numbers the asterisk denotes the ordi-
nary complex conjugate; in the case of operators or matrices it
denotes the Hermitian adjoint.

2. SPINORS IN GENERAL COORDINATES

Spinors are most conveniently treated in general
coordinates after the manner of Pauli. ' Since the details
of Pauli's formalism will be of importance, we present
it here in a modified version which is specially adapted
to the present problem.

One generalizes the Dirac matrices y„by introducing
a set of matrices F& satisfying'.

(r", r") =2gl'" (2.1)

As corollaries of (2.1) one may readily derive the
identities'

[r, Lr r ]]=4(g"r.—g"r ) (2.2)

r; Lr, r ])=-;Lr; r, r.]. (2.3)

The I'& may be constructed so as to be diGerentiable'
matrix functions of the coordinates by observing that
the contravariant metric tensor will be altered by an
infinitesimal amount Bgl"" if the F& are altered by
infinitesimal amounts given by

$'fe —p /gal (2.4)

By keeping the Bg&" always diGerentiable the I'~ may
be built up continuously from the Dirac matrices p„,
while the metric tensor is built up from its value 8,, „ in
orthonormal rectilinear coordinates in Rat space-time.

4 W. Pauli, Ann. Physik 18, 337 (1933).' The following bracket notation is used here:

{A)Bl=AB+BA, LA, B]=AB BA, —
[A, B, C]=A [B,C]+B[C,A]+CPA, B].

In Sec. 4 the notation (F, G) will be used to denote the Poisson
bracket of Ii and G.' We mean differentiable up to any order required in the dis-
cussion.
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It is evident that the I"& have the same group theo-
retical properties as the y„, namely, (I) there exists only
one irreducible family of equivalent representations of
the F" (which is 4-dimensional); (II) if [X, I'„]=0 for
all p, then X is a multiple of the unit matrix; (III) if
(F'&, r'"}= 2g&", then there must exist a matrix function
5 such that

r'o=S-'roS, (S~ =1. (2.5)

Equation (2.5) defines a "transformation in spin-space. "
It is important in what follows to keep a clear distinction
between spin-space transformations and coordinate
transformations. Under coordinate transformations the
F& will transform like the components of a contra-
variant vector.

The I'& are not uniquely determined by the con-
struction (2.4) since the expression on the right is not
an exact diGerential. The 6nal form for the I'& will

depend upon the path of integration taken in the 10-
dimensional space of the g„„.If we adopt some integra-
tion convention, however, then we may write'

ro =gg p, y, (2.6)

where the coeflicients gg"„are certain functions of the

g„„, satisfying
v'g""v'g"" =g"". (2 7)

Indices which are not tensor indices have been written
with a prime.

The process of choosing an explicit form (2.6) for the
I'~ is equivalent to completing the di6erential form
(2.4) by adding a suitable term. Such an additional
term must correspond to an infinitesimal spin-space
transformation S=1+F p8g p, where the F p are
certain matrix functions of the g„„having vanishing
traces. Using the identity

Og""/Og-p= l (g" g"'—+g"'g" ), (2 8)

we may therefore write

»"/og-p= —l(~" r'+g"'r )—LF', r"] (29)

The necessary identity O' F&/Og pOg» O' r&/Og—=»Og p

leads, with the aid of (2.2), to the following condition
on the functions P t"

OF P/Og„o OF»/Og, p [F—oP, F»]-
= (I/64)(g-~[r p, ro]+g»[r-, r~]

+g-o[r p, r~]+g»[r-, r']). (2.10)

In terms of the coefficients gg", , F P has the explicit
form

(2.11)F'= sv'g" (Ov'g "/Og«p) L7;, v"t.
~ For example, we may choose the straight-line path of integra-
tion from 5„„ to g„„.We may then expand the "inverse square
root" gg"„according to the binomial theorem

13 135
v g Y'=sop kopov+g 4opoaopav 2 4 6roaÃapv'pv+ 7

where g„„=b„„+q„„.The expansion converges whenever the
eigenvalues of

~) io»]) are all less than unity in absolute magnitude.

F (g, x)=Qg"„So 'y„So, (2.13)

F'(g, ~)= sV'g" (Ov'g' /Og. p)So '[v', v"]So
+So '(OSo/Og p). (2.14)

In any given coordinate system the dependence of the F's on
the g's and x's will now have a particular functional form. Owing
to the fact, however, that the coordinate transformation law of
the F's is given by

rather than by

r'&= (ax'~/ax") r"(g, x) (2.15)

F"~=F&(g', x'), (2.16)

this functional form will be altered whenever we carry out a
coordinate transformation. A fixed functional form can be main-
tained only if every coordinate transformation x—+x is accom-
panied by a spin-space transformation S such that S 'r'I'S= F"l".
For the in6nitesimal coordinate transformation

x'&= x&—W &(x) (2.17)

one may readily show that the corresponding spin-space trans-
formation is given by

S=1 a„gA"+(2F„"+g'—[r„, r "])gA.",„, (2.ig)
where

a&=sag. (BV'g", /Bo:")So 'Ly, , v„)So+So '(&So/»"), (2.l9)

satisfying
La„, r"g= —ar"/axo. (2.20)

Equation (2.18) is the generalization to general coordinates of
the familiar spinor transformation law in Minkowski space. In
the subsequent discussion, however, nothing will be gained by
imposing (2.18), and we shall leave coordinate and spin-space
transformations completely independent of one another. In this
way the matrices F~~ will transform under x~x' like the com-
ponents of a contravariant tensor and under spin-space trans-
formations S according to

F'~P=S 'F~~S+S '(BS/~gap)s (2 21)

while the matrices b,„will have the transformation laws

a„'= (Bo:"/Sx'")h.—{Bo."r/Gap) (Sos~/Ba'o'ao. "")
X(;Lr, rP j+2F P} {2.22)

and ~„'=s-ia„s+s- (ss/a~:).

The integration convention leading to the explicit
form (2.6) may be chosen differently at each point of
space-time. The functional form of the gg&„will
therefore, in general, involve the x& as parameters.
That is, the gg"„, and hence the F", will have an ex-
plicit dependence on the coordinates in addition to an
implicit dependence through the g„„.In order to discuss
this type of situation it will be convenient to distinguish
between "total" and "partial" coordinate diGerentia-
tion Th. e symbol O/Oa& will be allowed to act only on
the explicitly occurring x's. If f is an explicit function
of the x's as well as of a set of 6eld variables y~, then
its total derivative with respect to x' is dined by

f,.= (Of/—Oy~)y~, .+Of/Ox' . (2.12)

y&, is the gradient of y&. Repeated total diGerentiation
is denoted by f, „..., etc

In addition to allowing the functional form of the
Qg"„ in (2.6) to vary from point to point, one may also
impose an arbitrary spin-space transformation So which
has an explicit dependence on both the g's and the x's.
The F's and P's then take their most general forms
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The identities B2I'~/Bg&ag p=a~i'~/ag pag& and Bsi'~/Bg"Bg"
=—a r'/ax"ax" lead to the conditions

Ba„/Bg p BF—P/Bg" pa—„,P Pj=o, (2.23)

BA„/ag" —aa„/agv —pn„, A„7=0. (2.24)

Pauli4 introduces a convenient definition for the
covariant derivative of I'& by observing that the

p
matrices F'v=F&+e

1
F&, + F 1, where e' is an

arbitrary infinitesimal contravariant vector, satisfy
(F'&, F'")=2g"". This means that there exists a spin-
space transformation 5=1+a'0, such that S 'F"S=F'".
Since e' is arbitrary, this implies

0=F .+ F.+[0., F ]v
0!0'

The adjoint spinor is defined by

and transforms according to

P'= PS.

(2.33)

(2.34)

4'—=k.+0A, (2.35)

Spinors may be combined with the F", as in $F&F"f, to
form ordinary tensors which are invariant under spin-
space transformations.

The covariant derivative of a spinor is defined by
invoking the condition that covariant differentiation
be distributive over factors in a product. Writing
(gF"P).,= P.,F"P+gF"f.„e pxadni gnthe left-hand side
according to the usual rules, and using (2.25), one finds

= (aI"/Bg.p) g.p, .+BI"/ag + ~1. P.,—=P,.—Q0, . (2.36)

0 '=S '0 S+S-'S (2.27)

Pauli calls the right-hand side of (2.25) the covariant
derivative of F&. Vsing a subscript dot to denote the
covariant derivative of any quantity, we may write

I'. =0. (2.28)

Now, if the conjugate to Eq. (2.1) is taken in the
form 2g&"= {—F&, —F"},one is led to infer the existence
of a matrix A with the property

(2.29)

Equation (2.29) and its conjugate together imply the
commutability of A* 'A with the F~. This means A~ 'A
is equal to some multiple c of the unit matrix. Evidently
c*c=j., and A may, without loss of generality, be
multiplied by c ', thereby making it Hermitian. A is
invariant under coordinate transformations, but it has
the following spin-space transformation law:

A'=S*AS, (2.30)

which leaves its Hermitian character undisturbed. H
the F& are constructed via (2.13) from a unitary-Her-
mitian set of Dirac y's, then A has the explicit form

A =+So*y4Sp. (2.31)

A spinor if is a 1-column matrix which is invariant
under coordinate transformations and has the spin-
space transformation law.

O'=S V (2.32)

+L0., I'"]. (2.25)

The solution of (2.25) is readily found to be

0 =-,'g „,,LF", F"]+F&"g„...+A.. (2.26)

Under coordinate transformations the matrices 0,
transform like the components of a covaria, nt vector,
while under spin-space transformations they transform
according to

g———p &gigv&1

np 1 pv

p

pp I. )

p tgi(g~sgp'g —Yr 2g~sgprg Y~'+—2g&vgprgs&'

gpg'g")g-p, g—s;r 'I e'&FAFV—..-
y', „AF P+ y*((AF—.F'+ F"r.A)g„„,.

+A F'A,+B„F'A+ 2']P), (3.1)
'Using the algebraic identities satisfied by the curvature

tensor, one may prove R„„,F"F"F1"=2R, where R is the cur-
vature scalar.

If we write f. =f*.A+/*A. =(P*,,+/~0 )A+/*A. ~, we
are led to a convenient definition for the covariant derivative of A

A..=—A, .—AO.—n.A. (2.S7)

Taking the conjugate of (2.25) and using (2.27) and (2.29), we
may infer —Q~ =A A~A '—A, ~A '. Multiplication of this equation
on the right by A gives A.,=O. This result makes it easy to take
the conjugates of tensor quantities of the form &I""P.„, etc. It also
leads, in conjunction with the explicit form (2.26), to the identities

~A/~gIpv =A ~~v+EPvA (2.38)
BA/Bx =Ah~+h~A. (2.39)

Spinors with tensor indices are readily introduced into the
general coordinate formalism. For example, the vector-spinor P„,
which transforms as a covariant vector under coordinate trans-
formations and as a spinor under spin-space transformations, has
a covariant derivative given by

f +&oP„. (2.40

This enables us to calculate the commutation relation for indices
induced by repeated covariant diGerentiation. We find

|p v. Iv) =(&p, v &v,
—
v f&v~ n.3)0— —

sItvvarL—I"& I"3|Pi
where R»« is the curvature tensor 8

e

3. THE LAGRANGIAN AND THE FIELD EQUATIONS

The Lagrangian density for the combined gravita-
tional and spinor fields is conveniently taken in the form
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where
li= 16rrGc 4, (3.2)

G being the Newtonian gravitational constant and c
the velocity of light. The Geld equations are

F"»t» „+.»»/=0, Q.„F" K$=—0,

g ( eev Sg»ev~) 2PO»eve

(3 3)

(3 4)

OH@V =0. (3.6)

where 0„,is the symmetric stress density of the spinor
6eld

0„,= 'ttcg'-(»lF„»t , »t' .„F—„»tv+. »t'F„f „Q.„F—„»t').. (3.5)

In virtue of Eqs. (3.3) the stress density satisfies the
divergence condition'

and momenta

where
y=0, y*=0, y~=0, (4.8)

P—= tr+ —', t'tcg'it eA I' I„
qP=—s*—-', t'tcgfA F'Pl. ,

(4.9)

(4.10)

»t»»e=rr»et„+rp rg»e
—
(2g rtp gaptr)T p „

+,'t'tcgif-*(AF F~"+F~"I"A)pl,l„, (4.11)

(4.12)T prt= gpss—tt —, g pttq=, gpl (—I 'qtt
~
I std)

Dirac [D] distinguishes between "strong equations"
(—=) and "weak equations" (=), as explained in [PS].
The g-equations (4.8) are weak equations. Following

[PS] we construct the strong equations

4. THE HAMILTONIAN FORMULATION

In this section we use the notation of [PS]"with a
few minor modi6cations. Owing to the presence of an
imaginary coordinate x', the Iacobian of the trans-
formation x&~u', t will be de6.ned

C&"C„„=—0, C'=—0,

where C=—g„„Ct"",from the weak equations

C~"=~~" B(J—z)/Bd „„=0

The Hamiltonian may now be written"

(4.13)

(4.14)

J= ti—t(x—)/it(u, t)

The normals to the space-like surfaces

(4 1) H= (x&'A„+—j prr p+rr»t+tterr*)du L—
(4 2)

are time-like covariant vectors having lengths il given
by

~x (X»e+ 3 gap, +s»v»tv, »v+ 3t', »e'tr t»»eiv)du

P= —
g &I lp. (4.3) + '

x t„Pt 'g '*(C PC p ', C')du—-
The canonical momenta for the present problem are

X„=8(Jz)/Bi~,

s ""=fi(J2)/Bj„.= (ct 2/Bg„...)t,
p Ig (2gvjgp vat 'e2gra»eg rvtp 2g vg a'jetpr

(4.4)

where

(x»'»p„2Jl 'g P[nP—, tt]$"+»tv/+/*»t»*)du, (4.15)

+.2g rg»vtpa+g erg pt»vpgaP regaptr 2gapg»evp)g p

', ttcg'*(*(AI"F—~"+-F~"F A)gt. , (4.5)

ip„—=X„+K„=0,

BC =l—'m+. t'L&T~p~„—2l 'l„g&'7r+ &T~p~g

(4.16)

s.= (it 2/B»t»)l. = ,', t'tcg—'»t*—A F-'I,

x*=(it2/it/*, .)t = ,'hcg'AF'fl-
(4 6)

(4 7)

9 The current density s"=kg&QFt'Q also satisfies a divergence
condition s".„=s",„=0.

"We introduce a family of space-like surfaces labeled by a real
parameter $. The points in each surface are labeled by three real
parameters I'. A stroke followed by a Latin index denotes partial
differentiation with respect to a parameter u'. yz~;=—By&/BN'—=yz, x ~;. A dot denotes partial differentiation with respect to
the parameter t:jg= By»i/st= yz, ,x'— —

"P.A. M. Dirac, Can. J. Math. 2, 129 (1950); this paper will
be referred to as LDg.

The momenta x&" are here seen to diGer from those in

[PS] through the presence of a term involving the
spinor Beld.

Equations (4.5)—(4.7) give rise to a number of what
Dirac" calls "p-equations" involving only coordinates

T. =4..t .4', 4 Tu.=—P,.t—. 4'*,.4— —

Gap7t: st g '(gargpt+gatgpr gapgvt) v

aPyter»t l 2g»[ —r (gaegP—r+gargP» gaPger)gee»gN

(4.19)

(4.20)

+rgapget(gprgve»+gpvgre»)] (4.21)
»» The Lagrangian functional is L—J'J Zdn.

+ ,'acgit st.tP(y'AF--T„, -T„,AF-P)—
+ ,'keg:y*(AF F-P+ F-Pr-A)PT.P„„

+t„(pG.p,trr~ Ptr~ '+ p 'X P&'r&'T.p, tT»i—„t)j,'t'tcg'*t„[t 'l (/*A-FPT p TPAFP»t»)—

+P(A F'6,+b.F'A+2 )it ], (4.17)

x "=~"+;beg:P*(AF F"-+F"F A)yt. , (4.18)
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The computation leading to the last line of (4.15) is
lengthy but straightforward. The P-equation (4.16)
could also have been obtained directly from Eq. (4.4)
with the help of Eqs. (4.5)—(4.7). The function X„is the
Hamiltonian density for the interacting fields.

The Poisson bracket relations satisfied by the canon-
ical variables are

(x&(u), li, (u')) =—h„"h(u —u'),

(gp. (u) &"(u')) —= 2(h 'h '+ h 'h ')h(u —u')

(4.22)

(4.23)

(4-(u) (u'))=(4-*(u) *(u'))=—h- h(u —u') (4 24)

All other Poisson brackets between pairs of the vari-
ables x&, g p, p, p*, X„, ~ p, n. , n.* vanish.

5. REDUCTION OF THE HAMILTONIAN

Dirac LD1 distinguishes between "first-class p's"
and "second-class p's. " The Poisson bracket of a first-
class @with any other @vanishes either identically or in
virtue of the @-equations. The Poisson brackets of a
second-class P (or any linear combination of second-
class P's) with the other P's do not all vanish. In the
present example p and g* are second-class p's, for we
have

(y.*(u), yp(u')) =——Acg'(2 I"/.).ph(u —u'). (5.1)

It is sometimes possible to turn a second-class p into a
first-class p by adding supplementary conditions which
Dirac calls p-equations. This is evidently not possible
in the present case, because the right-hand side of
(5.1) cannot be set equal to zero.

It is shown in t D] that whenever second-class g's
are present one can carry out a simplification of the
Hamiltonian scheme which consists essentially in
removing some of the empty degrees of freedom. The
simplification is carried out by introducing a modi-
fication of the ordinary Poisson bracket. We give now .

an outline of the theory.
Denote by @;the members of any set of second-class

P's of any dynamical system. Consider the matrix A

having elements

(5.2)

(F,G)n= (F, G) (—&c) ')")—ll(F, e-(u)), (F, a*(u))ll

X
iÃ-'p. h(u —u')

—~;V ' ph(u —u')

where

(A(u'), G)
X dud u', (5.6)

(&P(u') G)

E=—ig'AF l„
E '=—ig

—
&/ 'l.l ~A —'.

By straightforward computation we find

(x&(u), X„(u'))n=—h, &8(u—u'),

(g..(.), -(')).=—l(h..h. +h. h..)h( -"),

(5.7)

(5 g)

(5.9)

(5.10)

(n.""(u), ~"(u') )n
—=——',~Vie/*

may be observed that the Dirac bracket of a @; with
anything vanishes.

The utility of the Dirac bracket is readily seen by
considering the consistency conditions

0=y, =p.N;, q,)+p, (q;, q;), (5.4)

where the p~ are those p's which are not numbered
among the P;, and the P&, P; are Dirac's "velocity
variables, " the Hamiltonian being given by H=—Pygmy

+P;@;.Solving Eqs. (5.4) for the P;, we may write the
I, derivative of any dynamical quantity Ii in the form

F=P~(F, 4~)+P;(F, 4;)=P~(F, 4~)a. (5.5)

It is evident that we get the same dynamical equations
if we work with Dirac brackets instead of Poisson
brackets. The second-class P's can then be regarded as
vanishing in the strong sense and may be used to
eliminate some of the dynamical variables from the
theory.

The Dirac brackets for the gravitational-spinor
system are readily obtained. For any two dynamical
quantities F and G we have, using (5.1),

XXfh(u —u'), (5.11)Since the p; are second-class p's, the matrix A must be
nonsingular. '3 Otherwise, some of the P; could be com-
bined linearly to form one or more first-class p's.
Introduce now the following bracket notation. '

(4'-(u) A*(u')) —=—i(&c) '& '- h(u —u')

( "(u), P(u')) —=—',S-'(8$/Bg„„)$8(u—u'),

(F G) —= (F G) —(F 4 ')~ '* (O', G) (5 3) ( ""( ) 0'*( ')) —= l0'*(~&/~g .)& 'h( —').

(5.12)

(5.13)

(5.14)

where A ' denotes the inverse of A. We shall call ex-
pression (5.3) the Dirac bracket of F and G. In LD1 it is
shown that Dirac brackets satisfy all the identities
satisfied by ordinary Poisson brackets. In addition it

' More generally, the matrix A is constructed out of "second-
class y's" as well as second-class @'s. The total number of second-
class p's and x's must evidently be even.

The coeKcients multiplying the delta-functions in Eqs.
(5.11)-(5.14) may be evaluated at either u or u'.

At first sight the reduction of the Hamiltonian scheme
seems to be of no advantage, since now the dynamical
variables are somewhat mixed up. The momenta x&" are
no longer dynamically independent of the spinor field
vaiables nor even of each other. The Dirac brackets
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(X„X„)n,(X„,pr")n, (X„,f)n, (X„,f*)n, which have struc-
tures similar to (5.11), (5.13), (5.14), also do not vanish.
However, the situation is really better than it appears.
The Dirac brackets of all other pairs of the dynamical
variables do vanish, and. we shall see presently that
we can redefine the field quantities P, P", pr&", X„ in such
a way that they assume the dynamical properties that
we should expect of them.

We Grst study the structure of the matrix X. When
the I'& and A are given by (2.13) and (2.31), respec-
tively, E has the explicit form

where
Ã=—50~%050, (5.15)

Np=i g&l,gg'„.y py„= cr;,(+i—p, (5.16)

g&l.g—g'„, (i„.)—= (i,, —imp), (5.17)

and e;=—iy4y;. Since /„ is a time-like vector 30 &$;$;, the
matrix Xo has a diGerentiable Hermitian square root
given by

Xp'*=—(2L) «(n f+L) L=—kp&(/p' —i $,)i {5.1&)

We may therefore express the matrix E in the form

X—=M*M, where M=—Ep&Sp. (5.19)

The new dynamical variables which we seek are the
following:

Q—=Mf, lti*=—/*M*, (5.20)

~p"=~s"+-,'Ncg*[M' I(8M*i-ag„„)

{BM/—Bg„,)M I]1', (5.21)

BM*(u')
0 „(u)—=X„(u)+-',Nc &*(u') M*-'(u')

exp(u)

ol
(F, G)n=(iis) '[F, G]

{F G)n=+(ik) '{F G)

(6.1)

(6.2)

according to the statistics required. In the present
example the variables ptI, It*will satisfy anticommutation
relations among themselves. The sign in (6.2) is chosen
positive or negative according as the I|i*'s are placed to
the left or the right of the pti's in the Hamiltonian. The
Grst alternative is customary. We therefore have the
quantum dynamical relations

[x&(u), X„(u')]=i7zb„&a(u- u'), (6.3)

[g„,(u), pp"(u')]- -', N(h„ 8„'+h„'8„')b(u—u'), (6.4)

{e-( ), es'{ ')) = -'h-s~( —'), (6 5)

{0-(u) 4s(u'))={0-*(u) 4s*(u')1=0 (66)

The commutators of all other pairs of the dynamical
variables vanish.

In the reduced Hamiltonian scheme of the preceding
section pp„and & become first-class Q's. is According to
[D] the @-equations corresponding to the first-class g's
become, in the quantum theory, conditions on the state
vector 4' of the system. Thus we have

{6.7)

{6.8)

the variables Itt, itic remain unchanged under spin-space
transformations.

6. QUANTIZATION

Passage to the quantum theory is eGected by making
the identiGcations"

(6.9)

The commutation relation (6.3) allows us to make the

M—i(uI) q(u~)du~ (5 22) identi6cation
bxs(u) X,(u) = —ik8/bx&(u).

One Gnds„by straightforward computation, the fol-
lowing Dirac brackets:

(x&(u), x„(u'))ll =—8„"h(u—u'),

(g"(u) ~"(u')) o—=s(4 ~ '+ ~.'~:)h(u —u'),

(e-( ), us*(")).=-- (& )-'~-s~( -"),
(X„(u),X„(u'))n—=0, (pps"(u), pp"(u'))n =—0,

(pp&"(u), ptI(u'))n—=0, etc.

(5.23)

(5.24)

(5.25)

(5.26)

M'=mS, (5.27)

Since the right-hand sides of the above expressions do
not involve any of the Geld quantities, it is evident that
the new variables may be used directly in passing to an
interaction representation for the purpose of carrying
out a perturbation computation.

It is to be noted that since the spin-space trans-
formation law of the matrix 3f has the form

The state vector is actually a functional 0'[x] of the
functions x&(u) which describe the space-like surface
I= constant. H these functions suffer variations bxs(u),
Eq. (6.7) tells lls 'tllat 'tile col'1'espolldlllg val'la'tloll ill
the state vector is given by

NN [x]= 3.'„(u)bx&(u) du@[x],

'4 It is important to realize that it is the Dirac bracket rather
than the ordinary Poisson bracket which corresponds to the com-
mutator or anticommutator in the quantum theory of any
dynamical system. Dirac, himself, does not seem to have em-
phasized this point clearly in LD).

"The authors have actually carried out an explicit calculation
of the Dirac bracket (@~(u), @'(u'}}D.It vanishes not in the weak
sense but identically. The calculation is straightforwaid but
tedious. One obtains an expression of the form

I""(nl~(n—n'l+II'"" '(n'lz (n)+ I'"& '(nlZ„(n'l jp(;(n —n')

which vanishes on account of the equations (F"""'+F""~'}Z~=—0
and X""+F""'~Q„+F'"& 'Z ~,=—0. In verifying the second equa-
tion, one must make use of the identities l„~;=—(l„e',„—l„e', „}x"~;~
and (I', „l„—I', ,l&}i&—=0, as well as the differential identities satis-
6ed by the matrices FI', F &, A, etc.
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where
(6.11)

Equation (6.10) is the Schrodinger e'quation of the
electron-graviton system. Equation (6.8) is a supple-
mentary condition on the allowable state-vectors.

Two Gnal remarks peculiar to the gravitational
problem must be made concerning the quantization
procedure. First, the Hamiltonian density X„must be
an Hermitian operator. The intrinsically nonlinear
character of the gravitational system rejects itself in
expression (4.17), in which there occur products in-
volving noncommuting factors. One does not know
a priori how these factors should be ordered so as to
symmetrize X„.One could attempt to obtain a quantum
Hamiltonian by using the simplest possible symmet-
rization procedure, but then one would not know
whether or not an equivalent quantum theory would
have been obtained with a similar symmetrization
procedure, if another set of gravitational variables (such
as g'*g"" for example) had been used instead of g„, as the
fundamental field quantities. One of us' has shown how
this ambiguity can be removed in the case of Hamil-
tonians which are at most quadratic in the momenta,
and he has discussed the gravitational case in particular.
We merely quote the result The terms linear in the
momenta are symmetrized by the usual anticom-
mutator rule. The term quadratic in the momenta is
written in the symmetric form Pl„~'&G s»m» [see
(4.20)$. The factor G s» may be interpreted as a "con-
travariant" metric tensor which describes the geometry
of the 10-dimensional space of the g„„.In order that the
Hamiltonian density K„be a truly invariant quantity
under point transformations in this 10-dimensional
space, a divergent term

which vanishes in the classical limit k—+0, must be
added to expression (4.17).

The second remark concerns the vacuum expectation
value of the matter stress density 0„„.In discussing
this quantity we may ignore the dynamical properties
of the gravitational Geld and regard the g„, as given
c-numbers. However, the g„„must be chosen so as to
make space-time Qat, as befits a true gravitational
vacuum. The vacuum expectation value is then given
by'7

(0„,)0 ———,'hca'g&g, h ("(0). (6.13)

We must not couple this physically meaningless diver-
gent vacuum value to the gravitational field. We must
instead redefine the stress density by subtracting ex-
pression (6.13). This corresponds to the subtraction of
a term 2ibcx'g&h")(0) from the Lagrangian density of .

the matter field and hence to the addition of a term

—,'Ac~'1

gizmo)

(0) (6.14)

to expression (4.17).
The necessity of adding the divergent expression

(6.14) to the Hamiltonian density 3.'„has been con-
firmed in actual calculations of the gravitational self-
energies and stress renormalizations of material par-
ticles. ' The procedure is entirely equivalent to the
charge symmetrization procedure in quantum electro-
dynamics in which the vacuum expectation value of
the current is made to vanish.

The physical necessity of adding the divergent ex-
pression (6.12), on the other hand, can be confirmed

only when calculations are carried out on the interaction
of the gravitational Geld with itself.

(85/8)7i'Pl / 'g i[8(u—n) j'
'6 B.S. De%itt, Phys. Rev. SS, 653 (1952).

(6.12) '7 See, for example, J. Schwinger, Phys. Rev. 75, 658 (1949),
Eqs. (1.'77, 78).

'8 B. S. DeWitt, Ph.D. thesis, Harvard University, 1950.


