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A model of a heavy odd A nucleus is used in which the outer nucleon is in the state predicted by the
Mayer scheme, and the core is in a state of zero angular momentum. It is found that the general trend of
the deviations of the experimentally determined magnetic moments from the Schmidt curves is describable
in terms of a linear combination of the three phenomenological interaction moment operators which can
arise from a charge exchange potential in a second order meson calculation. The anal expression for the
interaction moment, matched to the data, is, by and large, independent of any detailed properties of the
radial functions associated with these operators, of the radial function of the outer nucleon, and, except for a
dependence on the relative number of neutrons and protons in the core, of the core structure. The consequent
predictions that, for given / and j, the interaction moments of heavy odd neutron nuclei should be smaller in
magnitude than those of heavy odd proton nuclei and that the addition of two protons to an odd proton
nucleus or of two neutrons to an odd neutron nucleus should push the moments toward the Schmidt curves
are in general accord with the data. Odd-odd nuclei are also considered.

I. INTRODUCTION

HE independent particle model of the nucleus
advanced by Mayer' and by Haxel, Jensen, and

Suess' has been extremely useful in correlating large
bodies of data. In particular, the experimental. values
of the total angular momentum J of odd A nuclei are
in de6nite disagreement with the strict one-particle
interpretation of this model in only three cases, and the

magnetic moments of almost all nuclei lie reasonably
close to the Schmidt values predicted by this model.
The deviations from the Schmidt values are not random;
with the exception of a few very light nuclei, the experi-
mental values lie between the Schmidt curves.

Attempts have been made to explain these deviations

by modifying the model, ' and by dropping the strict
one-particle interpretation to allow for cases in which
three or more particles outside of closed shells are
effective in determining the spin and magnetic moment
of the nucleus. 4 Other attempts have been made using
the strict one-particle interpretation and modifying the
magnetic moment operator instead. If the cases in
which the spin predictions of the one-particle inter-
pretation are at variance with the experimental values
are excluded, it is of interest to see how closely the
data can be matched on the basis of such an approach.

Siegert' pointed out that charge exchange forces
imply the existence of currents which must modify the
magnetic moment operator. AVhile meson theoretical
calculations to determine this interaction moment

*Reported at the Washington Meeting of the American Physical
Society, 1952.
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of the requirements for the degree of Doctor of Philosophy at
New York University.
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operator suffer from the usual difhculties, it is sig-
nificant that Villars7 was able to show that the H' —He'
anomaly could be explained using pseudoscalar meson
theory. Sachs, however, showed that the longitudinal
part of this interaction moment could be expressed in
terms of the space exchange potential, the result being
independent of meson theory. The longitudinal moment
was thus given a firm basis, but calculations carried out
by Sachs for H' and by Spruche for a number of light
nuclei showed that this operator alone could not
account for the deviations from the Schmidt values.

Bloch and de Shalit independently pointed out' that
the data could be qualitatively understood by assuming
that the anomalous magnetic moment of the odd
nucleon is quenched somewhat in the presence of other
nucleons. - This quenching could also be considered as an
interaction contribution. "

Miyazawa" carried through the calculation of the
interaction moment contribution for heavy nuclei, the
core of the nucleus being approximated by a Fermi gas.
The longitudinal part of the moment was treated phe-
nomenologically, while the rest was calculated meson-
theoretically. Miyazawa was able to match the general
trend of the deviations by a small but arbitrary read-
justment of the numerical constants in his final ex-
pl ession.

It is possible to proceed entirely phenomenologically.
Thus, by invariance and symmetry considerations,
Osborn and Foldy" derived the most general operators
which can arise from a charge exchange potential; other
than for the longitudinal operator, however, these can

6 S. T. Ma and C. F. Yu, Phys. Rev. 62, 118 (1942); C. Mgller
and L. Rosenfeld, Kgl. Danske Videnskab. Selskab. Math. -fys.
Medd. 20, No. 12 (1943); %. Pauli and S. Kusaka, Phys. Rev.
SS, 400 (1943).' F. Villars, Helv. Phys. Acta 20, 476 (1947).

8 R. G. Sachs, Phys. Rev. 74, 433 (1948).
9 L. Spruch, Phys. Rev. 80, 372 (1950).
'0 F. Bloch, Phys. Rev. N, 839 (1951);A. de Shalit, Helv. Phys.

Acta 24, 296 (1951).
"H. Miyazawa, Prog. Theoret. Phys. 6, 801 (1951).
'2 R. K. Osborn and L. Foldy, Phys. Rev. 79, 795 (1950).
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be determined only to within arbitrary functions of the
interparticle distances. Under the requirement that
these operators behave properly under time reversal"
and with the arbitrary restriction that they can arise
from a second-order meson calculation, only three
operators remain.

An investigation has been undertaken to determine
the contributions of these three operators and to seek a
combination which leads to agreement with the data.
The calculation differs from that of Miyazawa in that
it is completely phenomenological and in that the shell
model is used to represent the core rather than a Fermi
gas. The Fermi gas approach as used by Miyazawa
has the mathematical advantage that the interaction
contributions are independent of any details of the core
of the particular nucleus under consideration. The shell
model has the physical advantage that it is a closer
representation of the actual situation and should give
a more faithful picture of the trends and of the details
of the variations from the Schmidt lines. Further, since
the interaction contributions do depend upon some of
the details of the core, calculations based on the shell
model should ultimately be useful in the analysis of the
details of the shell model, e.g., the order in which the
shells fill and whether or not nucleons of high angular
momentum "hide. " '

The operators M are encountered in the calculation
of isomeric half-lives" and radiative capture and photo-
magnetic disintegration cross sections, ""as well as
magnetic moments. These other effects have not been
considered.

II. MATRIX ELEMENTS

Only those interaction moment operators are con-
sidered which can arise from a charge exchange poten-
tial, in a second-order meson theory. In particular,
operators which can arise from velocity dependent
forces or from many-body forces are not considered.
There are three operators listed in Osborn and Foldy"
which satisfy the above conditions and which behave
properly under time reversal. After the isotopic spin
dependence has been removed and use has been made
of the operator identity a Xa„Q „=i(a —a„), these
operators can be written in the form"

M, =M~, e
——(ie/2hc)g„g r &&r„V(r „,a, a„)P „,

M~ ——(e/2lc)g, g r 2f~(r „)(a a„)P „, —

M3 ——(e/25c)g„g f3(r „)(r „(a —a„))r „P „,

where V(r „,cr, a„)P„represents the charge exchange

"G. J. Kynch, Phys. Rev. 81, 1060 (1951).
"R.G. Sachs and M. Ross, Phys. Rev. 84, 379 (1951).
"N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951).
"N. Austern, Phys. Rev~ 83, 672 (1951).
"See reference 12. The longitudinal moInent operator, some-

times called the space exchange operator, derived there has the
wrong sign.

' There are certain formal advantages to using a linear com-
bination of these as the basic operators. See the Appendix.

potential and f2(r „) and f,(r „) are undetermined func-
tions of the interparticle distances, which are expected,
however, to have ranges comparable with the range of
nuclear forces. P „and Q „are the space and spin
interchange operators, and it is understood that the
operators (1) are to act on wave functions which have
been antisymmetrized separately in neutrons and
protons.

It will specifically be assumed throughout the article
that

(a) an odd A nucleus consists of an odd nucleon in
the state with radial, orbital angular momentum,
and total angular momentum quantum numbers

n, l, and j, respectively, and a core of zero total
angular momentum. "

The contribution of the outer particle then gives the
Schmidt values and the interaction magnetic moment
$i.e., the sum of the expectation values of the operators
(1)] is found to arise only from the interaction of the
outer particle with the core. It also follows that anti-
symmetrization between the outer particle and the
core is unnecessary, although the core wave function 4
must still be antisymmetrized in neutrons and protons
separately. For the sake of notational convenience in
what follows, the outer particle is taken to be a proton
and is designated by the subscript ~ . The protons and
neutrons in the core are designated by m' and v', respec-
tively.

The potential function V(r 0„, a o, a„) is given as
the sum of a function f~(r 0„) plus a term in a o a„plus
a tensor term. If, in addition to the assumption (a)
that the core has total angular momentum zero, the
further assumption is made that

(b) the spin of the neutrons in the core is zero and/or
the total spin of the core is zero,

then the contributions to M~ of the o 0 o„ term and of
the tensor term vanish and only the first term con-
tributes. It is then found (see Appendix) that

(Mg') =b(l 0')Ig(m, l), (2)

where the various quantities will be defined shortly.
Under the same assumptions (a) and (b), the con-

tribution of M2 is given by

(M2*)= —b(o.o')K~(m, I).

If, in addition to (a) and (b), the further assumption
is made that

(c) the orbital angular momentum of the neutrons in
the core is zero,

then it is found, setting j,=j, that

(M3*)= —b(2j 0+2) 'LE3(n, t)+ 2(rr o l,o)I3(n, l)]. (4)
"The statement that the core has a certain angular momentum

equal to zero will always mean that the core is in an eigenstate of
that particularly angular momentum operator with eigenvalue
zero, and not merely that the expectation value of that angular
momentum operator is zero.
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All magnetic moments are given in nuclear Bohr mag-
netons, b= Jpzzz M/Iz', DiJp and zzz are the effective
strength and range of the space exchange part of the
nuclear potential, and M is the proton mass. D~ gives
the fraction of the total potential which is of the space
exchange type. (l o*) and (zr, o') refer to the odd proton
state T.he factors I (n, l) and E (zz, l), where cz = 1, 2, 3,
are given by the integrals

I (rz, l)=g„drF (rz, l)U(r, , r„),

E (zz, l) =P. drF. (rz, l)W(r.o, r, ),

(5a)

where

F (e, l)=f (r,„)R„z(r o)R,z(r„)(C', P, o, 4'),

U(r.o, r„)= (—4olr(l +1) zzz' Jp)
—'r, or, (1—ztz')&z (zz),

W(r o, r„)= ( 4zrzzz'—Jp) zr, o„'—&z(zz) (5b)

Here, P„' is extended over all neutrons in the core and
integration is indicated over the coordinates of all

nucleons. The inner product symbol refers only to the
core spin coordinates, p=coso 0„, I'~ and I'I' are the
ordinary Legendre polynomial of order / and its
derivative with respect to the argument, respectively,
and E„~ is the normalized radial function associated

with the odd proton wave function. The presence of the

factor 1/zzz'Jp in the integrals is purely formal; it
appears also in the de6nition of b and was introduced to
make the integrals dimensionless. The radial function

fz is that associated with the space exchange part of the
nuclear potential V.

With the restriction noted above as to the operators
to be considered, and under the assumptions (zz), (b),
and (c)

(ltd;„o*)= Q (M *)=b((l o')Iz(rz, l) —(o o')Ep(zz, l)

—(2j„o+2) zLEp(rz, 1)+2(or o' I o)Ip(N 1)]}. (6)

III. SHELL MODEL CALCULATIONS

According to the shell model, the core of a heavy

nucleus consists mainly of complete orbital angular

momentum shells plus or minus a few nucleons. With

the wave function for the core obtained on the basis

of the shell model, the interaction moment breaks up
into the sum of contributions due to each neutron sheH

interacting separately with the outer proton, and for

each of these shells, all of the assumptions made in the

previous section are valid. The contribution to the

moment of the complete orbital angular momentum

shells is therefore given by (6), where the integrals now

reduce to

I (I, l)=(1/4zr) P N(rz', l') dri drpF U(ri, rp),
n'L'

E.(N, l)=(1/4s) Q N(rz', l') drz) drpF W(r„rp),
nl ll

F.=f.(rzp)Rnz(rz)R, z(r2)Rn'z'(rz)R z (rp)&z (zz)

and where N(rz', l') represents the number of neutrons
in the zzV shell, namely, 2(2l'+1). Equation (6) is not
applicable to any incomplete shells, for while these
have a total angular momentum of zero, assumptions
(b) and (c) are not satisfied. However, estimates made
indicate that the use of Eqs. (6) and (7) with N(zz', l')
taken to be the number of neutrons actually present in
the incomplete shell is suKciently accurate for the
determination of the contribution of the incomplete
shell, especially when it is considered that this is only
a small part of the total contribution.

In order to obtain numerical results, it remains only
to assume particular radial functions for the f„R„z,
and R„z. The range and maximum depth of fi, the
radial function associated with the space exchange part
of the exchange potential, are known with reasonable
accuracy. For convenience of integration, it is here
approximated by a Gaussian well. The range is taken
to be 1.5)&10 " cm. fp and fp are also assumed to be
Gaussian wells of the same range, so that the three
radial functions dier only in their respective strengths
which are taken to be in the ratios D~'. D2. D3. Thus

f.(r „)= —D.Jp exp( —r.p/zzzp),

where Jo is taken to be 55 Mev and D~, which is cer-
tainly positive, must be of the order of unity if the
neutron-proton potential is assumed to be primarily
space exchange in nature. D2 and D3 may be positive or
negative but are expected to be roughly of the same
order of magnitude as D~. The radial wave functions
are chosen to be oscillator functions, also for con-
venience of integration.

Subject to these assumptions, E(rz, l) and I'(rz, l)
are found to be roughly independent of rs, l, and A. For
heavy odd proton nuclei,

E =0.25D, I =0.10D, E /I =2.5, (9)

where the ratio E /I is much more reliable than the
values of' either of the two integrals separately. With
the values taken for a~ and Jo, b=3.0 and the inter-
action moment contributions for odd proton nuclei are
given by

(zM z„o(odd Z)) = 0.3(Dz(l.o') —2.5Dp(zr. o*)

—Dp(2j.o+2)-zL2.5+2(or.o 1..)j}. (10)

For odd neutron nuclei the magnitudes of the integrals
are somewhat diminished (owing to the preponderance
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FrG. 1. The solid lines are the Schmidt curves for the magnetic
moment in nuclear Bohr magnetons; the broken lines are the cor-
rected curves taking into consideration interaction moments. The
dots represent the experimental values for the magnetic moments
of nuclei with A greater than 30.

of neutrons in heavy nuclei), although the ratio of the
two integrals remains essentially unchanged, and

(M; g(odd X))= 0.25{DE(l o ) 2.5D2(o„o*)
—D3(2j„o+2) '[2.5+2(o,o 1„0)j}. (11)

The minus sign is a consequence of the antisymmetry
of the operators (1) in neutrons and protons. The multi-
plicative constant 0.25 is not expected to be accurate
to two decimal places but merely indicates that the
magnitude of the interaction moment of a heavy odd
neutron nucleus has been found to be somewhat smaller
than that of a corresponding odd proton nucleus.

The expressions (10) and (11) differ from the cor-
responding expressions of Miyazawa in two respects.
Firstly, since he assumed the same density for neutrons
as for protons, his expression for odd Z and odd E nuclei
differs in sign but not in magnitude. Secondly, his
expression is slightly different from the expression con-
tained within the curly brackets of Eqs. (10) and (11).
Since the nuclear model used here is the more realistic
one, the results obtained here are probably somewhat
better.

Reasonable agreement with the data is obtained with

D&——0.4, D~ ——4.6, and D3= —7.0. It is to be noted that
D~, which is a measure of the fraction of the potential
which is of an exchange nature, lies between 0 and 1,
as is to be expected. While the above values are not
very precisely determined, it wouM be difficult to
match the data with D» outside of the range 0 to 0,8,

but because of the uncertainties in the numerical values
of the I and of the E, and because of the scatter of
the experimental data, the value of D~ cannot be very
much more restricted. The interaction moments are
plotted with the above values of the D as corrections
to the Schmidt curves in Fig. 1.

IV. MORE DETAILED BEHAVIOR OF THE
INTERACTION MOMENTS

It was found, in the previous section, that the inter-
action moments of odd neutron nuclei are less than the
interaction moments of odd proton nuclei of comparable
A and with the same l and j.This prediction that odd
neutron nuclei should deviate less from the Schmidt
curves than do odd proton nuclei is in general agreement
with the data.

In the analysis of the general trend of the deviations,
it was found that the I (m, l) and the E (I, I) are
roughly independent of A. This is due to the compensa-
tion of two effects; as one goes to heavier nuclei, the
number of interactions is increased but the average
interaction moment per pair is decreased. The decrease
will be referred to as a size effect. However, on the
addition of two nucleons of the odd type, i.e., two
protons to an odd proton nucleus or two neutrons to
an odd neutron nucleus, provided that there is no
change in / or j, there is only a size effect, so that the
magnitude of the interaction moment should decrease.
Thus the addition of two nucleons of the odd type
should push the moment toward the Schmidt values. "

Table I lists all pairs of nuclei which are in the same
l and j state and which differ by two nucleons of the
odd type. 8(AM) is the difference in the magnitudes of
the deviations from the Schmidt curves between the
lighter and heavier nucleus, respectively, and is so
defined as to be positive if the heavier nucleus lies
closer to the Schmidt value. The decrease 8(EM) in the
magnitude of the interaction moment is estimated to
be of the order of a few hundredths of a nuclear Bohr
magneton, and if the observed shift is much greater
than this, it is probably due primarily to other effects,
making the above predictions invalid. As is seen in
Table I, the predicted behavior is followed in nearly all
known cases. As for the two exceptions, the magnitude
of the difference in the moments of Nd'4' and Nd'4'

indicates that it is due to other effects, while the Mayer
level scheme requires the coupling of three or more
nucleons to explain the angular momentum of Sm"7
and Sm'4'

It is to be noted that the above prediction is valid
even if the nuclear state is not of the pure Mayer type
but involves some small admixture of other states, "
provided that the percentage of the admixed state is
not altered by the addition of the two odd type nucleons.

"de Shalit arrived at a similar conclusion for two nucleons
of the odd or even type by an examination of the data. R. K..
Kangness, Phys. Rev. 78, 620 (1950); A. de Shalit, Phys. Rev.
80, i03 (1950).

"See, e.g. , J. P. Davidson, reference 3.
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On the other hand, any theory which correlates some
relevant nuclear property, such as the percentage of
admixed states, to the nuclear size may also be able to
explain the above eGect.

Nothing can reliably be predicted regarding the
effect of the addition of two neutrons to an odd proton
nucleus or of the addition of two protons to an odd
neutron nucleus, for in this case both eBects, namely,
the size effect and the increase in the number of inter-
actions, are present, and it has already been seen that
these two eGects are in opposite directions. There is the
further complication that the extra particles will not,
in general, enter in such a way that the assumptions
required for the applicability of Eqs. (10) and (11)
to calculate the additional interaction moment are
satisfied. Thus, for example, in computing the addi-
tional interaction moment, the tensor term contribu-
tion to (Mr*) will not in general vanish.

It, should be mentioned here that none of the effects
obtained in this section depend on the values of the D .

V. GENERALIZATION OF THE MODEL

The results derived thus far presuppose not only the
the validity of the general features of the one-particle
interpretation of the shell model, but even depend upon
the details of that model. Thus, a particular order of
energy levels has been assumed and specific radial
functions have been chosen for the nucleons within the
core and for the outer nucleon. While the possibility
exists that levels which are full for lighter nuclei may
be empty for heavier nuclei (owing to level crossings),
the fair degree of constancy of the I (m, i) and E (e, 1) as
the levels are filled indicates that the results obtained
are not too dependent upon the particular order used,
but the question remains as to how sensitive the results
are to the specific radial functions chosen for the
nucleons within the core and for the outer nucleon, and
indeed to the very assumption that the core need be
thought of as consisting of shells. "

A more serious question that must be considered is
the sensitivity of the results to the assumptions made
concerning the radial functions f~ and f~ about which
nothing is known u priori other than that their ranges
must be comparable with that of f&

It will be assumed, in what follows, that most of the
nucleons in the core are in a state in which the spin
angular momenta and orbital angular momenta of the
neutrons and protons separately are all equal to zero.
It will also be assumed that the particle density is
roughly uniform throughout the core. (Both of these
assumptions are, for heavy nuclei, certainly satisfied by
the shell model. ) I'inally, it will be assumed that the
ranges a of the functions f are small compared to the
dimensions of the nucleus under consideration. Very
light nuclei are thus specifically excluded.

22 One of the authors (L.S.) would like to thank Dr. R. G. Sachs
for a very helpful comment on the possibility of generalizing the
model.

It follows from the last assumption that the only
appreciable contributions to the integrals I (I, 1) and
X (e, l) come from the regions in which r 0= r, . Under
these conditions,

r.or„(1 p—) =r.o„=r.0 o.o„.20 2 (12)

where

2rÃ (e, l) =I (n, 1)=CD '(X/A),

D '= (I/Sar)(a. /ur)'(a, /ro)',

(14)

(4/3)n. ro'A is the nuclear volume, and C is a constant
between 0 and 1. Equation (6) now gives

(Mq~t*(odd Z)) =bC(A/A)(Dr (t o*)—2D2 (o 0*)

—D3'(2j 0+2) 'L2+2(a 0 l 0)1),
(M;„g'(odd X))= —bC(Z/A )(D,'(l,o') —2D2'(o „0*)

(13)

—D3'(2J"+2) 'L2+2(~" & )l),
where the (1V/A) (which is proportional to the neutron
density) of the odd proton case is replaced by (—Z/A)
(which is proportional to the proton density) for the

TABLE I. Variations in the deviations of the magnetic moments
from the Schmidt curves for nuclei of the same l and j di6'ering by
two nucleons of the odd nucleon type.

Odd Z
CP'
K"
Csl37

I a139

State

d3/2

g7/2

+0.29

+0.06
Odd N

Mo96
Mo"
Cdlll
Cd113
Sn"6
Sn117
Sn117
Sn119
Te123
Te126

a136

Qa137
+d143
Nd"'
Sm147
Sm'4'

d6/2

SI/2

$1/2

Sl/2

Sl/2

A/2

f7/2

?6/2

+0.02

+0.02

+0.08

+0.05

+0.15

+0.10

—0.38

—0,05

s(AM} =
( AMr, (

—
~ r}Mrr [ where DMr, and AM~ are the devi-

ations from the Schmidt curves. of the moments of the lighter
nucleus and heavier nucleus, respectively.

The integrands, are thus vanishingly small for r 0„&a,
or 8 0, )o /r 0. Taking typical values for a and r 0 and
considering the the maximum values of l found in the
nucleus, it is, then, a good approximation to let

P(1+1)j 'I'~'(~) = 2&i(~) (13)

Using Eqs. (12) and (13), it is found that IC (I, i)/
I (e, l) =2. This is to be compared with the value of
2.5. obtained for this ratio in Sec. III on the basis of
the shell model. Since the proton interacts with only
those neutrons in a volume of radius a, it follows, since
we can take P~(p) =1, that
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TABLE II. Magnetic moments of odd-odd nuclei. AM=M, xp—~sob~Mt, . &Moai, is the deviation from the Schmidt value ca1-
culated from the data on odd-A nuclei,

K40

K~
Co'0
Rbs'

Proton
orbital

d3/2

$1/2

fz/2
fS/2

Neutron
orbital J

fZ/2

fz/2
P3/2
g9/2

Mexp

—1.29—1,29
3.2a

—1.68

0.39
2.17—0.7
0,46

AMoa, l,

1—0.5
0.3b
0.3

a C. J. Gorter et al. , Physica 18, 135 (2952); B. Bleany et al. , Phys. Rev.
85, 688 (2952).

& Gorter et al. quote a value of —0.37.

odd neutron case. The only differences between Eqs.
(15) and the Eqs. (10) and (11) derived using the shell
model is the value 2 rather than 2.5 for the ratio E /I
appearing within the curly brackets and the appearance
of the factors (X/A) and (—Z/A). The presence of the
D ' rather than the D is, except for the interest in D1,
of no signihcance since these quantities are chosen to
match the data.

It is seen from Eqs. (15), derived under fairly broad
assumptions, that any small variations in the ranges and
shapes of the wells cannot critically acct the results
of the previous sections, since the errors introduced in
assuming them to be of the same form are by and large
taken into account when the coeKcients are matched
to the data. It is further seen that the conclusions
reached in those sections, except those concerning the
magnitudes of D2 and D~ and, to a much lesser extent,
of D&, are essentially independent of the assumption of
the shell model for the core.

The conclusions of Sec. IV concerning the moments
of odd neutron vs odd proton nuclei and concerning
nuclei diGering by two nucleons of the odd type are
now immediate consequences of the "density factors"$
(cV/A) and (Z/A) of Eqs. (15). Taken literally, the
Eqs. (15) also predict that for given l and j, the inter-
action moments of odd proton nuclei should increase
with increasing A, while those of odd neutron nuclei
should decrease with increasing A. That this last pre-
diction does not give good agreement with the data is
not surprising, for its validity requires that the I and
E remain fairly constant over a wide range of A and
for those cases in which the odd nucleon is in different
radial quantum number states. The former predictions,
however, require only the relative constancy of the I
and E for small variations of A.

VI. ODD-ODD NUCLEI

For self-conjugate nuclei, the operator given in Eq.
(1) will give no contribution to the magnetic moment,
to the extent of the equality of neutron-neutron and
proton, -proton forces. There will be contributions due to
operators which are symmetric in neutrons and protons

f. Sole added in proof:—The larger deviation of odd proton
nuclei can also be explained by the assumption of a strong spin-
orbit coupling term in the Hamiltonian; J.H. D. Jensen and M. G.
Mayer, Phys. Rev. SS, 1040 (1952).

but these operators arise only in higher order meson
calculations, and their contributions can therefore be
expected to be small. It is then satisfying that the mag-
netic moments of self-conjugate nuclei can all be
reasonably well accounted for by the orbital and spin
contributions of the individual nucleons. "

For odd-odd nuclei which are not too light, for
which the odd proton and odd neutron are in states
3 0, j 0 and l,o, j„o, respectively, and for which the core
has zero angular. momentum, it is found, neglecting the
contribution due to the interaction of the odd proton
with the odd neutron, that'4

3M(l o, j o, l,o,j,o, j)= ((j o*)/j o)AM(l o, j o)

+ ((j,o')/j, o) AM(l, o, j„o). (16)

Here AM represents the difference between the experi-
mental value and the calculated spin and orbital con-
tributions. Thus, AM(l o,j o) and /o M(l„o, j„o) can be
taken from the experimental data for odd A-nuclei.
(The data should, however, be weighted in favor of
nuclei with comparable A.) Equation (16) is valid for
any two-particle interaction moment operator; there is
no restriction to the operators listed in Eq. (1).

Table II lists the experimental and calculated devia-
tions from the Schmidt values of the measured odd-odd
nuclei which are not self-conjugate. The only case in
which the contributions of the odd proton and odd
neutron to the calculated deviation are of the same
sign is that of K" with the odd proton in the dg state,
and in this case the sign of the calculated deviation is
in the right direction, '4 although the magnitude is too
large. The other calculated values are therefore more
questionable; in particular, AM of Co" could be slightly
negative. On the other hand, the possibility that the
odd proton in K40 is in the s*, state (which would elimi-
nate the contradiction of the Nordheim spin com-
position rule" ) is ruled out, for AM in this case cannot
reasonably be taken to be greater than about zero.

VII. CONCLUSIONS

Making very few assumptions about the nature of
the core of the nucleus, the radial function of the outer
nucleon, or the radial functions associated with the
interaction operators, it is found that the general trend
of the deviations of the experimentally determined
magnetic moments from the Schmidt curves is de-
scribable in terms of a linear combination of three inter-
action moment operators that can arise from a second
order meson theoretical calculation. As is to be expected
on physical grounds, the interaction moments of odd
proton nuclei and of odd neutron nuclei turn out to be
proportional to the neutron and proton densities,
respectively. Interaction moment contributions are
thus one possible explanation of the fact that the addi-

2' K. Feenberg, Phys. Rev. 76, 1275 (1949).
~ This result was indicated by I. Talmi, Phys. Rev. 83, 1248

(1951),who did not, however, discuss its scope or range of validity.
'~ L. W. Nordheim, Revs. Modern Phys. 23, 322 (1951).
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tion of two neutrons to an odd neutron nucleus or of two
protons to an odd proton nucleus pushes the moments
towards the Schmidt curves, provided that I and j are
unchanged, and of the fact that odd neutron nuclei
tend to deviate less from the Schmidt curves than do
odd proton nuclei with the same l and j and with com-
parable A.

The authors would like to thank Joy Russek for her
invaluable aid in performing the numerical calculations.

APPENDIX

The evaluation of the matrix elements of M~' and
M3' is greatly facilitated by the use of the well-known
theorem that in the diagonal matrix element of any
vector A whose components satisfy certain commuta-
tion rules, A can be replaced by [j(j+1)7 '(A J)J. In
the case of M3, the theorem should be applied immedi-
ately. In the case of M&, the theorem should be applied
after the spin of the outer particle has been eliminated,
with j now replaced by /. The matrix element then

involves a scalar operator and, as such, is independent
of the projection of l. Equation (2) follows, finally, upon
the use of the relation

riXra Limni(p) = —ijir, r, (1—p')P('(p).

Specialization to the shell model is then trivial. The
shell model evaluation of (Mi*) also follows from
Appendix I of reference 9 by setting

l

I t„.;=( g m'E„i„„,)/ P m'.
m=—l

The derivation there is more general in that it includes
cases in which there are three or more particles outside
of the core.

There are certain formal advantages to replacing the
factor [r,„(» —o,)7r „of M, by [r,„(e —o„)7r,„
—i3(e —o„)r „2, which corresponds to a linear combina-
tion of M2 and M3, since this has simpler transforma-
tion properties under space rotation and Eq. (4)
assumes a simpler form.
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Surface Production of Charged Mesons by Photons on Nuclei*
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An estimate has been made of the photoproduction cross section of charged mesons from nuclei, and in
particular from "surface-nucleons, " i.e., the weakly interacting nucleons which make up the less dense
nucleon atmosphere surrounding the main body of a nucleus. Comparison with experiment indicates that
the production of mesons from the core of a nucleus is appreciably suppressed, apart from the eRects of
the initial momentum distribution of the nucleus, and of meson absorption. It is found, for example, that
apart from having the correct A: dependence for the ~++~ cross section, the surface production alone
can account for large fractions of the observed yields, and because of differences in average binding between
neutrons and protons in nuclei, gives x /~+ ratios which have the same trends as a function of A as the
observed ratios. A possible explanation of these results is that there occurs a large competing photodisinte-
gration process as a result of meson exchange eRects between strongly coupled nucleons in the interior
of a nucleus.

1. INTRODUCTION

HE main features of the experimental observations
on the production of charged vr-mesons from

nuclei are the following:
(1) The yields are considerably less than from appro-

priate equal numbers of free nucleons, ' ' and
(2) the sum of the ir+ and ~ cross sections exhibits

very accurately an A& dependence. ' '
There are two well-known effects that are in the

right direction for explaining these results. Firstly,
because of the momentum distribution of nucleons in a
nucleus, it is not energetically possible for all the
protons or all the neutrons to participate in the produc-

*This work was supported in part by contract with the ONR.
' R. M. Littauer and D. Walker, Phys. Rev. 83, 206 (1951);

86, 838 (1952).' J. Steinberger and A. Bishop, Phys. Rev. 78, 494 (1950).' R. F. Mozley, Phys. Rev. 80, 493 (1950).

tion. 4 Secondly, some of the mesons which are produced
will be absorbed before they escape from the nucleus.
Each of these effects in general reduces the meson
yields, and since the absorption of a meson produced in
the interior of a nucleus is more probable than for one
produced at the surface, the second tends to produce
the observed 2: dependence. '

However, on the basis of estimates' of the absorption
mean free path for mesons in nuclear matter, obtained
from the results of meson scattering experiments, the
very good experimental A: dependence is difficult to
understand as due merely to absorption of the mesons.
This result might be taken to indicate, therefore, that
there is in some way a further suppression of the meson

4 M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).
~ Brueckner, Serber, and Watson 84, 258 (1951).' J. Steinberger (private communication).


