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Structure of the Nucleon~
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An attempt is made to determine what restrictions are imposed
on the nucleon wave functional by the known values of the
nucleon moments and by the neutron-electron interaction. The
nucleon is assumed to consist of a core particle (nucleore) of spin
-,'surrounded by a pion field. No detailed reference is made to the
interaction producing the field. Nucleore recoil is neglected. It is
found that the neutron and proton moments satisfy a mirror
condition

K +Kp = 1 (4/3) Pi,
where Pi is the probability that pions (any number or charge)
occur in the field with total orbital angular momentum L=1.
Insertion of the measured values of the moments in the equation
yields P&=9 percent. A model of the nucleon in which one pion
plays the predominant role is not consistent with this result. This
is probably the underlying reason for the failure of the weak
coupling theory to give the correct ratio of neutron to proton
moments. The neutron and proton moments can be accounted for

if the field contains at least two pions with appreciable prob-
ability. A successful model consists of 91 percent bare nucleore,
and 9 percent a pair of mesons, each in p states forming the state
L=1.

The neutron electron interaction is shown to depend on the
mean square radius of the charge distribution, (r )A&, in the nucleon.
If only one or two pions with L= 1 are contained in the proper
field with appreciable probability, the observed interaction com-
bined with the above value of PI leads to the very reasonable
value of the mean square displacement of a pion, =0.5 times the
square of the Compton wavelength of the pion.

The results suggest strongly that a weak nonlinear coupling
would be capable of accounting for the data, but a linear coupling
of intermediate strength cannot be excluded.

An analysis of the pseudoscalar field in terms of spherical waves
is given in the Appendix. Consideration is also given there to the
space and time inversion properties of the field functionals.

1. INTRODUCTION

HE original proposal of Yukawa that the nuclear
forces are due to an emission and absorption of

mesons by nucleons implies that the nucleon is a
structured system, that it consists of a core (the
nucleore) convoyed by a cloud of mesons, known as the
meson proper field. Estimates of the coupling between
the nucleore and the meson field lead to the conclusion
that it is not weak, so the proper field may be presumed
to be rather intense, from which it may be concluded
that the structural features of the nucleon have a sig-
nificant eGect on its physical properties.

Attempts to describe the structure of the proper
field have usually been based on a meson theory which
is, at least in principle, complete. A specific form of the
interaction between the meson and the nucleore is
assumed and an attempt is made to solve the corre-
sponding dynamical problem to obtain the wave
functional of the nucleon. The physical properties of
the nucleon, such as the magnetic moment, electron-
neutron interaction, and so on, may then be obtained
from this functional. These theories do not yield correct
quantitative results in the approximations to which the
calculations have been carried out. This failure may be
due to the inadequacy of the approximations or it may
be due to the use of an incorrect form of the nucleore-
meson coupling.

Another approach to the problem, which may shed
some light on the cause of failure of the theory, is to
consider the structure of the nucleon much as we might
consider the structure of a nucleus, namely, to seek a
wave functional which fits the data. ' This approach

*This work was supported in part by the Wisconsin Alumni
Research Foundation and in part by the AEC.' A similar approach to the problem has recently been discussed
by Umezawa, Takahashi, and Kamefuchi, Phys. Rev. 85, 505 (1952).
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implies that we accept the spirit of the original Yukawa
theory in that the nucleon is described by a functional
of the meson field such that there is a finite probability
for the occurrence of one, two, or possibly more mesons.
But rather than attempt a derivation of the functional
from a specific interaction, we make use of all the
general principles and of all the quantitative properties
of the nucleon that are at our disposal to fix the form
of the wave functional in so far as that is possible. It
could turn out that our information is so limited, and
the parameterization of the functional so complicated
that no very enlightening results are obtained in this
way. However, we will find that this is not the case; on
the contrary, rather specific limitations on the func-
tional are indicated by the available data.

Although the proposed approach is somewhat less
fundamental than the direct dynamical attack, it has
the advantage that it offers a procedure for giving a
physical interpretation of the data on the nucleon.
Furthermore, it may turn out that the nucleon has so
complex a structure as to require discussion in terms
of its structure rather than in terms of the solution of a
simple dynamical problem. Finally, there is a fair chance
that a knowledge of the wave functional may make clear
the source of difficulty in the present fundamental
theories. In this connection it is to be noted that most
attempts at the theory have been based on a linear
coupling between nucleore and field which is treated
either as small in magnitude (weak coupling) or as
large in magnitude (strong coupling). It is possible that
a calculation for intermediate coupling would be suc-
cessful. On the other hand, the possibility that the
correct coupling is nonlinear certainly cannot be ex-
cluded. ' Of course, the field equations for free mesons

' See for example, L. I. Schi8, Phys. Rev. 84, 10 (1951)and R. J.
Glauber, Phys. Rev. S4, 395 (1951).
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may also be nonlinear as a consequence of meson-meson
interactions. ' Rather distinct differences between the
wave functionals characteristic of these different pos-
sibilities are to be expected so direct information con-
cerning the wave functional may suggest a choice
between the alternative possible sources of difhculty.

It is characteristic of the presently conceived dy-
namical theories that they force consideration of mesons
at relativistic energies and the consequent inclusion of
nucleore recoil. On the grounds of simplicity, we argue
that this is an undesirable feature of these theories and
that, in view of the general failure of the theories, a
feature which need not be included in our model of the
nucleon. If we find a successful model involving only
nonrelativistic mesons, we will then face the problem
of constructing an interaction which is consistent with
the model.

2. GENERAL RESTRICTIONS ON THE WAVE
FUNCTIONAL

For the sake of definiteness we will base the discussion
on the assumption that the only important structural
element in the nucleon, other than the core, is the pion.
The additional simplifying assumption is made that
recoil of the nucleore can be neglected. Then the ground
state of the system nucleore (at rest) plus pion field is
that which is referred to as "the nucleon. " The asso-
ciated state vector is a functional of the pion field
variables and a function of the spin variable of the
nucleore. If an expansion of the wave functional in
terms of appropriate free pion states (denoted by
index s) is made, it is expected that it will have the
form

where cr is the nucleore spin variable and 0'~&'"
describes a state of X pions in states s, s', s(~'. The
usual weak coupling approximation amounts to the
neglect of all terms beyond the first two in this ex-
pression.

The form (1) implies that the nucleore is taken to
have spin —,'. The fact that the nucleon has spin —,

' means
that the total angular momentum of the nucleore plus
the pion field associated with any term in the series (1)
must be ~. If the states of a given number of pions are
classified by the total (orbital) pion angular momentum
I., the requirement that J=L+-,'(r have the charac-
teristic value ~, immediately leads to the restriction

L=O or 1

on each term in 0, since we have chosen to ignore
recoil of the nucleore. Furthermore, the parity of each
term must be the same, so the pseudoscalar character
of the pion field leads to the condition

' Compare L. I. SchiG, Phys. Rev. 84, 1 (1951);3.J. Malenka,
Phys. Rev. 85, 686 (1952).

for each term in (1), if l, is the orbital angular mo-
mentum quantum number of the jth pion.

It is worth remarking here that, whereas weak
coupling implies the approximation

(4)

linear coupling of the nucleore with the pion field
implies that only terms with

are important. This can be established by considering
the process of creation of a nucleon from an initial
state consisting of a bare nucleore. Linear coupling
means that the pions are emitted one at a time so
conservation of angular momentum and parity at every
stage of the process limits the orbital angular momentum
of each pion to the above value.

Additional restrictions on the functional are intro-
duced by conservation of charge. The nucleore is
assumed to have just two charge states, 0 and 1,
(isotopic spin —',) so the total charge, C, of the pion field
for any term in (1) is limited to the values 0 and 1 for
the proton or 0 and —1 for the neutron. We will make
the assumption that 4 has the mirror property, namely,
that the wave functional for the neutron is obtained
when positive and negative pions are interchanged in
the proton wave functional and, at the same time, the
charge on the nucleore in each term of (1) is reversed
(i.e. , 1 is replaced by 0 and 0 by 1). In the language of
isotopic spin this mirroring can be accomplished by the
transformation in charge space corresponding to a
reflection in a plane containing the axis of quantization.

Since pions occur as positive, negative, and neutral
particles, it is reasonable to assign to the pion an isotopic
spin t= 1 and to consider the consequences of the as-
sumption that the interactions are charge invariant,
i.e., that they are invariant under rotations in charge
space. This is the condition that leads to charge inde-
pendence of nuclear forces. It implies that the total
isotopic spin

(6)

is conserved. Here t, is the isotopic spin vector of the
jth pion and ~ is twice the isotopic spin operator of the
nucleore. Ke take 7,=+1 to correspond to nucleore
charges 1 and 0, respectively. The value of T for the
nucleon state 0 is T=-', . Therefore, if

is the total isotopic spin of the pions, its associated
quantum numbers Y are restricted to the values

Y=O, 1.

In the state I'=0 the net pion charge (projection of F
on the axis of quantization) is always zero so the pions
occur as neutrals or in positive-negative pairs. In the
state Y= 1, the relative amplitudes of the two possible
charge states are determined by the condition that
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T=~. If Z~~ is the isotopic spin wave function of the
pions for charge C=F, Y—1, —F, and x+ is the
isotopic spin function of the nucleore, then the total
isotopic spin function of a neutron, when the pions
have F=1, has the form

Xx~= —Q-,'Zi-'x++Q-,'Ziox .

Thus the probability, in the F=1 state, for finding a
net pion charge 0 is one-half the probability for finding
a negative charge, —1.

More particular statements can be made concerning
specific terms in Eq. (1). For one-pion states, 41, Eqs.
(2) and (3) combine to impose the restriction

L= f= 1, (one pion). (10)

Also the total isotopic spin of the pions is just that of
the single pion

F=f=1, (one pion).

The charge in the one-pion state of the neutron is
therefore distributed in accordance with Eq. (9),
negative and -', neutral.

Simple statements concerning the two-pion states
are also possible. If /i and /2 are the orbital angular
momenta of the two pions [not restricted by the linearity
condition Eq. (S)j, then L=O can only be formed if
/~=/2. For L=1 we might have /~=/2 or /~=/2&1, but
the parity condition, Eq. (3), eliminates all but the
first possibility. Thus,

l1= l2 (two Plolls) .

The fact that the pion satis6es Einstein-Hose sta-
tistics implies that the wave function of any system
composed of a fixed number of particles must be sym-
metric for the interchange of all coordinates (including
the isotopic spin variable) of any pair of pions. This
condition restricts the structure of the functions 0 2, 0'3
and so on. In particular, the two-pion states have the
property that F=O is a symmetric function and F=1
is an antisymmetric function. Since /&=/& the angular
parts of the L=0 and L= 1 functions are also symmetric
and antisymmetric, respectively Lsee Eqs. (25) and
(26)]. Therefore if the functions are classified by the
symmetry of the radial functions, we find that the
radially symmetric states are restricted to the com-
binations

F=O for L 0,
(two pions —radial sym) (12a)

F=1 for L=1,
and the radiaBy antisymmetric states to the com-
binations

F=1 for L=0,
(two pions —radial antisym) (12b)

F=O for L=1.
It follows that, in the symmetric states, the net pion
charge is zero for L=0, while for L= 1 the distribution
of pion charge in the neutron is 3 negative, —, zero. In

the radially antisymmetric states, the charge is zero for
L=1, and is distributed in the 2 to 1 ratio for L=O.

If we denote by P&c(1V) the probability for the
occurrence of S pions in the neutron with total orbital
angular momentum L and total charge C, the results
of our discussion may be summarized by the statements:

P,c(1)=0,

Pi+(1)= 2P10(1),

Po+(2, g) =0,

P,+(2, S)=2P,O(2, S),

P,+(2, e) =2P,'(2, e),
Pi+(2, 8)=0,

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

where the symbols S and Q, classify the two-pion states
according to their radial symmetry. Only one sign C is
admissable for a given nucleon, C=+ for the proton,
C= —for the neutron.

4 For a discussion of the basic features of the theory in a cor-
responding notation see G. Wentzel, ' Quantentheorie der 8'ellen-
felder (Franz Deuticke, Vienna, 1943); English translation (Inter-
science Publishers, Inc. , New York, 1949).

3. DESCRIPTION OF THE PION FIELD

The analysis of the foregoing section proceeds on
the assumption that individual pions are assigned to
states of definite orbital angular momentum in contrast
to the more usual assignment to states of given linear
momentum. The description of the quantized field in
terms of these spherical waves is quite similar to the
description in terms of plane waves. Since this particular
form of analysis is important for the treatment of the
nucleon magnetic moment, its pertinent features are
described in Appendix 1. The discussion is based on the
assumption that the free pions are properly described
by the linear Pauli-Weisskopf theory. ' Nonlinear
theories involving pion-pion interactions are excluded
for reasons of simplicity.

It is shown in the Appendix that the field can be
described in terms of the number EH & of pions with
charge y(=1, 0, or —1) in a state of orbital angular
momentum / with magnetic quantum number m. The
energy of a neutral pion is ka&0, with coP=c'(k'++02),
and that of a charged pion is k&v, with co'=c'(k'+ p'),
where kpo/c and kp/c are the masses of neutral and
charged pions. The quantum numbers (k, l, m) are col-
lectively denoted by the symbol s, with the notation
—s—= (k, f, —m).

It is clear that in this representation the total angular
momentum is not, in general, a good quantum number
because each pion is assigned a magnetic quantum
number. Since the pion 6eld is to be assigned a total
angular momentum L, it is of some interest to note the
connection between the representation in terms of the
X,& and that characterized by given L. The basic
vectors in terms of which the functional of the held is
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described are the characteristic vectors 4 (N, &) cor-
responding to fixed values of S,&. For a state of a fixed
number E& of pions of each charge, the functional
CI,~L of total angular momentum L is a linear com-
bination of those C(1V,&) for which P, N, &=1V& and
P,, ~ mN, &=Mr, . Since the functionals C fN, ~) are just
the properly symmetrized products of one particle
functions, o the relationship between Cr,~s and C'{1V,t)
is given by the unitary transformation

(lt, mi, ls, ms ' ' '4 m~
~
li, ls, . le, L, Mr, ),

which can be obtained from standard sources. ' Here,
the number of (l,, m;) values equal to (1, m) is QL & 1V,o'.

Use is made of this transformation in calculating the
two-pion contribution to the magnetic moment (Sec. 7).
For more than two particles, the transformation is not,
in general, uniquely determined.

Given the functionals Cr,~s(IV+, N, 1V ) of fixed
numbers of pions, they can be combined with the
nucleore spin function to form functionals %™(iV+,¹,

; L) of total angular momentum —', and magnetic
quantum number M(=&-', ). Then the nucleon func-
tional indicated by Eq. (1) is a linear combination of
these:

P&&&Jr Bi(N+ 1Vo 1tr )4 (N+, N—, N, I). (14)

Now we wish to show that the coe%cients Br,(N+, N', N )
can always be chosen to be real numbers. The impor-
tance of this statement is that it reduces, essentially
by a factor of 2, the number of parameters required to
describe the functional. The proof of the statement is
based on a time reversal argument of the type sug-
gested by Wigner. ~ He has pointed out that, if the
time reversal operation is represented by an operator
E, then for a state of given total angular momentum j
the wave function P, can always be chosen in such a
way that

Kg.m —&2m/. —m

It is shown in Appendix 2 that the choice of repre-
sentation of the pion field is consistent with Eq. (15):

ML =Z2ML+ —ML

Therefore, for an appropriate' choice of the coeScients
used in combining the CI.ML with the nucleore spin

~ See, for example, H. Qeyl, The Theory of Groups and Quantum
Mechanics (Methuen R Company, Ltd. , London, 1931),p. 246 6.

6E. Condon and G. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1951),p. 76.

E. P. Wigner, Nachr. Akad. Wiss. Gottinger, Math. -physik
Kl. , p. 546 (1932).' Since we have chosen the functionals CL in such a way that
they satisfy the condition Eq. (16), it follows from Wigner's
general statement that one can always choose the basis in ac-
cordance with Eq. (15). The usual transformation coefFicients
(J, M, L, S~ L, M's„S, 3Is) satisfy the condition

(J, —M, L, Si L, —Mc, S, —Ms)
1)t+s z(J M L S~I& cVi, S, i-Vs),

from which it follows that they are to be modified by multiplication
byiL+~ ~ in order that Eq. (15) be satisfied. This point was called
to the author's attention by Dr. E. N. Adams, II.

functions, this property carries over to the 4~(N+, 1V',

N;L):
K%M(N+ 1Vo N —.L) os~%, ~(N+ No N . L)—

Now E involves taking the conjugate complex, so in
any linear combination of functions the coefFicients are
conjugated by E. Therefore,

K%'~=i'~ Q(a) Qr, BI.*(N+, N', N )
—~(N+ No N

—L).

But, unless there is an accidental degeneracy,

K@M ssM@ M ssM g P B (N+ No N )
&&4 ~(N+, N, N; L),

whence it follows that the coeKcients B~ are real. The
possibility that the ground state of the nucleon is acci-
dentally degenerate does not appear to warrant serious
consideration.

The probability PJ.(N+, N', N ) for the occurrence
in the nucleon of a state of E& pions of charge y having
total orbital angular momentum L is given by

Pr, (N+) No) N )= i BI.(N+,¹,N ) ~

'.
Since the Bl, are real,

Bl.(N+, N', N ) =~ ftP J.(N+)¹,N )jf& (17)

a result which will be used in Sec. 7.

4. MAGNETIC MOMENT OF THE NUCLEON

The contribution 980 of the pion field to the mag-
netic moment operator is obtained in Appendix i by
considering the change in energy of the pions caused
by the introduction of a uniform magnetic field. There
is some ambiguity about 9RO because it may receive a
contribution from the pion-nucleore interaction term.
It is well known that the electromagnetic field induces
emission of pions in the pseudoscalar theory. However,
any such "interaction moment" is ignored here, the
justification being that for a point interaction between
pion and nucleore, the static interaction moment
vanishes in the approximation that nucleore recoil is
negligible.

The pion moment operator may be expressed in
terms of the creation and annihilation operators, a,*,
a„ for positive pions in states of given energy and
angular momentum, and in terms of similar operators
for negatives, b,*, b, :
Ko ssc Zs, s 'kk'bll' boi(t4 +0' bs bit

+(—1)™a,*b, *+(—1) b,a, .)(l, m~L~l, m'),

where (f, m~L~l, m') is the matrix element of the one
particle angular momentum operator, L= —ir)(grad.

In a state for which the number of pions is pre-
scribed, only the first two terms contribute to the
expectation value of the magnetic moment. Aside from
the relativistic correction factor (1ic/&o), the magnetic
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moment contribution in such a state is just what would
be expected for a system of particles with given / values,
&(e/2p)l for each pion, the sign being positive for
positive pions, negative for negative pions. But in the
nucleon state, Eq. (14), the number of pions is not
specified, so the pair terms a.*b, * and a,b, in Eq.
(18) may play a role in determining the nucleon
moment. Since they can contribute only to matrix
elements between states @(cV+,¹,E ) and 4'(E+ 1, —¹,1V —1), these terms are only of importance if at
least two pions occur with appreciable probability in
the nucleon proper field.

Ro is just the pion orbital part of the magnetic
moment operator. Presumably the charged nucleore
has a moment of about9 one nuclear magneton associ-
ated with its spin, e. The total moment operator is
therefore

SR= (e/20K)-',(1+r3)a+Do,
where AOR/c is the mass of the nucleore. The magnetic
moment of the nucleon is the expectation value

R=(@' K,+') (19)

in the state +& for which the s component of the total
angular momentum is —,'.

5. THE MIRROR THEOREM

It seems very reasonable to assume that the mirror
property described in Sec. 2 applies to the nucleon
functional 0' in good approximation. This assumption
is less restrictive than the requirement of charge in-
variance (conservation of total isotopic spin) although
it is contained implicitly in that property.

According to the mirror property, the same func-
tional can be used to describe neutron and proton if we
understand that a given variable appearing in 4 refers
to oppositely charged pions for the two different
nucleons. The isotopic spin of the nucleore also has the
opposite value. Then, if the operators a„b, refer to
positive and negative pions respectively for the neutron,
they refer to negative and positive pions for the
proton; so the operators describing an observable
characteristic of the proton differ from those charac-
teristic of a neutron by the interchange of the quantities
a, a,nd b, and by changing the sign of 7-3. In particular,
if the neutron moment is obta, ined by taking the expec-
tation value of (we now use units of nuclear magnetons)

R„=', (1yr,)s+-P„, (Ottc/~)Rgb b, r(t, m L~l, m')

X(,* ..—b,*b:+(—1)-',*b ., *+(—1)-b, .),
(2o)

then the proton moment is to be obtained by taking
the expectation value for the identical state of

R~= 2(1—r3)a++, , ;(ORc/co)bqq ba (1, m ~ L I f, m')

X(b,*b, a,*a;+( 1—) 'b, *a, —
+(—1)"a,b, )e„~,„.

The nucleore magneton rather than the nucleon magneton
should be used here, but, in the absence of knowledge concerning
the nucleore mass, we assume that the difference is small.

K.+K„=1—(4/3)». (22)

Thus the sum of the measured neutron and proton
moments yields direct information on the probability
for the occurrence of pion states with L= i in the
nucleon. Insertion of the experimental value K„+K~
=0.880 leads to the result

Pg =0.090. (23)

6. THE NEUTRON MOMENT —ONE-PION MODEL

It is now of some interest to consider the restrictions
imposed on the magnetic moment of a single nucleon
by the condition Eq. (23). The moment depends in a
detailed way on the structure of the nucleon wave
functional so rather detailed assumptions concerning
the functional must be made in order to arrive at
definite conclusions. The simplest assumption is that
suggested by the weak coupling theory, that no more
than one pion occurs with an appreciable probability.

'0 The fact that the pion contributions cancel has been observed
by Y. Takahashi, Prog. Theoret. Phys. 6, 624 (1951); see also
reference 1.

A quantity of particular significance is then seen to
be the sum of neutron and proton moments, which is
to be found by taking the expectation value in the
given state of

R +R„=e+P... (Dltc/(u)Skag „'l5gp-(l, m~LI l, m')

X((—1)"'a,*b, *+(—1) b,a,
+( 1)m'b ea,4+( 1)ma b, )

Diligent application of Eq. (A-5) leads immediately to
the vanishing of the second term" so the sum of neutron
and proton moments is, according to Eq. (19),

K.+K„=(@',a,+'). (21)

Now we have seen in Sec. 2 that 0" consists of a
mixture of a state containing no pions with states con-
taining one or more pions whose total orbital angular
momentum is either L=O or L= i. The total angular
momentum for each state is J=-', . Equation (21) clearly
contains no cross terms between the states with dif-
fering numbers of pions or different L values. In the no-
pion state

(+,' 0 +p'*)=1

and in a state of given L, the expectation value may be
calculated by the usual vector rule:

(+'*(L=0), a.+l(L= 0))= 1,

(+'(L=1), *+'(L=1))= —l.
If we introduce the probability P& for the occurrence
of any number of pions of any energy but having a
fixed total orbital angular momentum L, each of these
expectation values contributes to the moment with a
weight given by the appropriate PI, The probability of
the no-pion state is i —Po—Pi so the sum of the
moments is found to be
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Furthermore,
P;(1)= -', P,.

Pp ——Pp'(1) =Pp—(1)=0.

The pair terms in the magnetic moment operator
Eq. (20) play no role in determining the static moment
in this model, so the moment is to be obtained by the
usual vector rule. There is no magnetic moment con-
tribution from the no-pion and neutral pion states, while
in the negative pion state which occurs with probability
3 P~, the contribution of the nucle ore is —-', while that
of the pion is —p(BRc/cq). Here, the angular brackets
denote the average over the energy (co) distribution of
the pions. The neutron moment is therefore

K = —(2/9) [1+2(ORc/&u)]P~. (24)

Now (5Rc/co) is clearly less than 5R/p, so

lK l
& (2/9)(1+202/p)P1.

If we insert the nucleon to pion mass ratio, DR/p = 6.64,
and the value PI——0.09, the result is

lK„l &0.29.

This is in direct contradiction to the experimental fact
that K„=—1.91. Thus we can say that, although Eq.
(24) could give agreement with the neutron moment
alone, agreement is not possible if we take cognizance
of the condition imposed on PI by the sum of neutron
and proton moments. The neutron and proton moments
together are not in accord with the one-pion model. This
conclusion is quite independent of the assumption of
charge invariance which is required to obtain the par-
ticularly simple form of Eq. (24).

Since the one-pion model is substantially equivalent
to weak coupling theory, our result is probably the
underlying reason for the failure of that theory to give
the correct ratio of neutron to proton moment. How-
ever, the usual dynamical meson theories are such that
relativistic pions play a dominant role, so nucleon
recoil is an important factor in the calculation of the
moments. " Therefore, too close a correspondence
between the results of the dynamical theories and our
no-recoil theory is not to be made.

'7. THE NEUTRON MOMENT —TWO-PION MODEL

Relatively simple results are obtained if we extend
the treatment of the neutron moment to include two-

"J.M. Luttinger, Helv. Phys. Acta 21, 483 (1948);M. Slotnick
and W. Heitler, Phys. Rev. 75, 1645 (1949); K. M. Case, Phys.
Rev. 76, 1 (1949).

This will be called the one-pion model of the nucleon.
For the sake of de6niteness we treat the neutron.

In the one-pion model of the neutron,

Pg=PP(1)+Pg (1).

According to Eq. (13b), the two probabilities are then

PP(1) =-',P(,
and

pion states. The contribution of one-pion states is still
given by Eq. (24). Three different kinds of contributions
arise from the two-pion states: the orbital moment of
the two pions in state L=1,

the cross term of the orbital mome' t between L=0 and
L=1, (1K=2, L=1IK iIV=2, L=O), and the cross
term between the 2-pion and 0-pion states introduced
by the pair creation operators appearing in Eq. (20),
(iV=2, LlK llV=O). In calculating the cross terms
explicit use must be made of the (real) radial functions
Fc s ~(r» rp) of the two-pion state with given f of each
pion and with given L and S.5 is the symmetry param-
eter which distinguishes a function symmetric for inter-
change of r& and r2, S=S, from an antisymmetric
function, S=S. The operator 9R is independent of the
distances r~ and r2, so the matrix elements involve simple
overlap integrals of the radial functions and no cross
terms arise between states of opposite symmetry. In
calculating the matrix elements we will assume, for the
sake of simplicity, that pions of relativistic energies do
not play an important role so the factor OKc/co appearing
in Eq. (20) can be replaced by BR/p.

The L=1 to L=1 matrix element may be obtained
by direct application of the vector rule. From Eq. (11)
we see that the two pions share equally in the orbital
angular momentum, hence pion pairs of opposite
charge make no contribution and the pion contribution
in the state containing one negative and one neutral
pion (C= —1) is one-half of that due to a single pion
with /=1. Since the nucleore has positive charge in the
latter state, its intrinsic moment must be included.
Thus

(%=2, C=O, L=1IK iX=2, C=O, L=1)=0,
(iV=2, C= —1, I =1lK INST=2, C= —1, L=1)

= —-', (1+m/p).

Determination of the L=1, L=O cross term can
also be made on the basis of simple two-particle wave
functions. The I=0 state has no net charge in the 8
states [see Eq. (13c)] and the L=1 has none in the
0! states [see Eq. (13f)] so the moment must arise
from positive-negative pairs. The angular part, 4i~L,
of the I=0 wave function has the form

Cp'(1, 2) = (—1)'Q (—1)~I')~(1)I'( ~(2)/(21+1)&, (25)

while that of the L=1 function for Mr, ——0 (the only
contributing function) is

C~P(1, 2)=(—1)'P (—1)"mI'~ (1)V~ "(2)/(P m')'*.

(26)

If l~ and 12 are the orbital angular momentum operators
of the positive and negative pions, respectively, the
magnetic moment operator is 1&

—12 and the matrix
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element of the s component is

(C'i' (li—&p)~c'p')=2(Z ~')/[(2i+1)2- ra']'
= 2[l(l+1)/3]&.

The 1.=1 function is combined with the spin function
of the nucleore to form total angular momentum J= ~~.

The coeScient of the MI.=O function is therefore
—1/V3. Furthermore, in the V=0 isotopic spin function
the charged pair term occurs with a probability 3.
This introduces a factor gp into the matrix element.
The net result is then

(1V=2, C=O, L=1~K
~

V=2, C=O, L=O)
= (2/3) &(OR/y) Q)[l(l+1)]&Ip,(S, 1),

where Ir,z;(S, l) is the overlap integral

Irr, '(S, l) = FI s~(r, r')Pz, .e~(r, r')r'r"drdr'.
a, J,

After the pair creation and annihilation operators in
Eq. (20) have been applied, the calculation of the
(two-pion) —(no-pion) cross term is very similar to the
treatment of the 1.=0, I=1 cross term. There is no
contribution from the two-pion term with I=0. For
1.=1 the matrix element is

(@=2,C=O, L= 1 iK.i,a =0)
=V'p(OR/~) Zi( —1)'[2-~']Ii(S, 1)/(2-~') *'

= (OR/p)Q(-p'[l(l+1)(21+1)]lIi(S, 1),

where Ir, (S, 1) is the radial integral,

Ir, (S, l) = (—1)'JI FI.si(r, r)r'dr,
0

which vanishes for S= 6,.
If we introduce the (real) probability amplitudes and

add all contributions to the moment in the two-pion
model, the result is, according to Eq. (17),

K„=—-,'(1+2OR/p)P, (1)—-', (1+OR/p)Pi (2)
&2(2/3) '*(OR/p)Pe[Pi (2, S)Pp (2, S)]1
Xgg[l(l+ 1)]1Ipi(S 1)

+2(OR/p)[(1 —Pp —P,)P,'(2, S)]&

X-p'pi[1(1+1)(21+1)]~Ii(S,1),

which can be reduced by means of the charge-invariance
conditions Eqs. (13) to

K = —(2/9)(1+2OR/p)Pi(1) —(2/9)(1+OR/p)Pi(2, S)
& (4/9) v2(OR/p)

Pe[Pi�(2,

S)Pp(2, S)]&
XQ)[l(l+1)]lIp,(S, l)+(2/v3)(oR/p)
X[(1—Pp —Pi)Pi(2, S)]*

X Pt[&(&+1—)(2&+1)]'*I (S, l). (27)

Here PI, is the total probability for finding either one
or two pions in state L, while Pp(2, S) and Pi(2, S) are
the probabilities for finding two pions (any allowed

Ii(S)= FiS(r, r)r'dr= 1,
p

(30)

and an appropriate choice of sign of the square root,
gives

K = —1.93,

in rather remarkable (but probably fortuitous) agree-
ment with the observed moment. This result, that the
magnetic moments of both nucleons can be accounted
for if the proper field contains only a pair of pions, and
that with the small probability of 9 percent, is very
suggestive. However, many other selections of the coef-
ficients in Eq. (28) will give the correct moment. An
even greater variety of possibilities is offered by l
values different from l=i or by numbers of pions
greater than two.

It should be remarked that Eq. (30) is quite con-
sistent with the normalization condition

Jf~ Fie'(r, r')r'r"drdr'= 1.

A square radial distribution, i.e., a sharp cutoff at
some fixed value of r and r' would lead to just such a
relationship.

8. THE NEUTRON-ELECTRON INTERACTION

Another source of information concerning the struc-
ture of the nucleon is the neutron-electron interaction.
To calculate the interaction on the basis of our model,
we note that the interaction with any external electro-
static field V(r) is

W= "[p(r)+-,'e(1+rp)b(r)]V(r)d'r,

where p(r) is the charge density operator for the pion

charge) of given S in the states I.-O and L=1, respec-
tively.

The linear coupling condition, Eq. (5), suggests that
consideration be limited to /= j., in which case we drop
the index l. Then

+ = —(2/9) (OR/p, ){(2+p/OR) Pi(1)
+ (1+p/OR)Pi(2, S)
W4 pe[Pi(2, S)Pp(2, S)]&Ipi(S)

&3%2[(1—Po —Pi)Pi(2, S)]&Ii(S)). (28)

Clearly for the nucleon to pion mass ratio OR/p=6. 64,
this equation is capable of yielding the known value
of the neutron moment, K„=—1.91, even within the
restrictions imposed by Eq. (23), Pi=0.09, because no
conditions have been set on Po. However, it is of par-
ticular interest that the values

Pi(1)=Pi(2, 8)=Pp=0, Pi(2, S)=Pi=0.090, (29)

along with the relationship
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Geld,

p(r) = —(ie/h) t ~(r)P(r) —x*(r)P*(r)].

From Kqs. (A-3) and (A-4) we find

W =x2e((1+«s) V(0)++„
Xt( / ')1((-1)",*-b,)(,+(-1)"'b,*)(-1)"
+(~'/~)'(( —1)-'a. —b-"*)(a.*

+(—1)-b,)(—1)-'](s
I Vl")&,

where

(s
~
V

~

s*)= P,.*V&, d'«.

Note that, since V(«) is a real function,

(—"1V
I
—s) = (—1)"+"'(s

I
V

I
s').

The factors (s&/s&')& can be dropped if relativistic
pions are assumed to be unimportant. Then

W=e(-', (1+rs)V(0)Q„. (a.*a, —b, b, )(s~ V~s')).

There are no pair creation or annihilation terms re-
maining in this approximation to the operator W, so
the interaction is made up of terms arising from states
of a given number of pions, and the contribution of
each such state can be calculated by use of the properly
symmetrized product of Schrodinger wave functions.
Since the neutron has no net charge, —,'(1+«3) =
—(N+ N), and t—he expectation value of W is

W= g, (r) V(r)d~«- V(0) g&»
~J

XP(N+,¹,N-)(N+ —N-),

where p(r) is the mean pion charge density in the
nucleon proper field.

If V(«) is a slowly varying function it may be ex-
panded about r=0:

V(r) = V(0)+r (gradV)„=0

+Pa x;x,(8'V/Bx, Bx,)„o+=
Now

"p(r)V(0)d'«= V(0)Q(» P(N+,¹,N )(N+ N). —

Furthermore, p has even parity since all pion states
have the same parity, so

p(r)r (gradV)od'«=0.

E'inally, each pion state has J= ~ so only the part of
x;x,(8'V/Bx;Bx, )„0with the angular dependence of an
S function can contribute to the integral. Therefore,

W = ——',e(V' V) „o(«')„„,

where («')A„ is the mean square radius of charge in the

proper field,

e(«')A = — «'p(r)d'«,

Wo —— W(R)d'R/(4x/3) (e'/mc') '

which is now found to be

Wo —— D«')Al/—(e'/mc') ']nfc'.

The experimental value"
~
Wo~ =4 kev requires that

(«')A, /(e'/mc')' =8X10 ',
or

p2(«2)A„—3 2X10—2 (31)

where p ' is the Compton wavelength of the pion.
The order of magnitude of the displacement of a

pion in the proper field of a nucleon would be expected
to be p ', so Kq. (31) may be interpreted as a measure
of the probability of occurrence of charged pions. This
probability, 3.2 percent, is in rough agreement with
the results of our discussion of the magnetic moment. A
more specific statement can be made on the basis of
either the one-pion or two-pion model. The only con-
tribution to («)A„ in the former comes from the negative
pion so we have

(«')A„——(N = 1
~

«'
j N = 1)Pg (1),

or, by Eq. (13b)

(")"=(2/3)(N=1I «' IN= 1)Pi(1),

where r is a pion coordinate. Since only one pion occurs
in this model, P&(1)=P&=0.09 so Eq. (31) yields the
very reasonable value for the mean square displacement
of a pion:

(N= iI«'IN=1) =0.5p,
—'

The failure of the one-pion model to account for the
magnetic moments suggests that we carry the argument
to the two-pion model; then the contributions to («')A„

include a term produced by states of net negative

'~ Compare L. L. Foldy, unpublished Case Inst. of Technology
Technical Report No. 15 (1952); Phys. Rev. 87, 688 (1952), The
separation of the term associated with the nuclear magnetic
moments, enlightening though it be, is quite artificial for slow
neutrons. See B. D. Fried, Phys. Rev. 86, 434 (1952).

"Harvey, Hughes, and Goldberg, Phys. Rev. 87, 220 (1952).

the sign having been chosen in accordance with the fact
that the net charge of the proper field is negative.

When the external field is produced by an electron
at the point R, we have

(7'V),=p=4s el(R),

so the neutron-electron interaction is simply"

W = —(47«/3) e'(«')A„b(R).

It is customary to describe the measured values of the
interaction in terms of the effective depth
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charge (one negative, one neutral pion) and a cross
term between 8 and 8 states of net charge 0 (one nega-
tive, one positive pion). The charged pairs do not con-
tribute within states of given symmetry because in
them there is an equal chance for pions of opposite
charge to be at a given distance from the nucleore. The
expression for (r')i, is found to be (note again that
charged pairs occur with amplitude g-'p in the Y=O
state),

(r')A„——p {Pi(1)(X=1
~

r'~ sV= 1)
~2vZ p,p', (2, 8)S',(2, o,)]&

+~i(2, 8)(A =2, 8, I.=l~r'~X=2, 8, 1.=1)
+Pp(2, Q)($= 2, 8, L =0

~

r
~
1V= 2,

8, L=0)). (32)

This result is so ambiguous that the condition 8~=0.09
does not lead to any clear cut conclusion. However, we
can again turn to the very simple conditions, Eq. (29),
which are consistent with the observed nucleon mo-
ments. Then Eq. (32) becomes

(r') =0.06(281~r'~281)&

where (281
~

r'~ 281) is the mean square displacement of
the pion in the prescribed state,

(»1 lr'I 281)—=(A'= 2, 8, L= 1 lr'I &=2, 8, L= 1&

Again a very reasonable value is obtained for the pion
displacement from the condition, Eq. (31), imposed by
the observed neutron-electron interaction:

and have total orbital angular momentum L=1. This
suggests that a rather weak nonlinear coupling warrants
serious consideration as the source of the pion field.

A further test of the model is available in the form
of data on the cross sections for photoproduction of
pions and data on the nucleon pion scattering. However,
these data involve excited states of the nucleon so they
may not provide very direct information.

Interesting discussions of these matters with his
colleagues, Professors J. M. Luttinger and J.L. Powell,
have contributed much to the author's understanding
of the subject.

APPENDIX 1

Analysis of the Field in Syherical Waves

We use, as a basis for discussion, the Pauli-Weisskopf
theory of a charged plus a neutral field. ' If fp(r), n.p(r)
are the (real) field variables of the neutral field and
ik(r), s.(r) those of the charged field, the field Hamil-
tonian in the absence of the nucleore is taken to be

f
LVp=g d r{pcs'p +c (g rda'fop%) +c pp leap j+K pl'

+c'(grad+ grad/)+ c'li, 'f*P),

where pk/ pcand ky/ acre the masses of neutral and
charged pions, respectively. The momentum density of
the field is

G = ——',Lprp gradfp+ (gradgp) 7rpj
—Lpr grad&+ (grad&*) pr*]. (A1)

~'(281 Ir'I»1&=o S (33) The field commutation relations are

The principal significance of these results abides in
the support they lend to the view that the pion proper
field occurs with a relatively small probability.

9. CONCLUSION

It is not surprising that just three experimental data,
the two moments and the electron-neutron interaction,
can be fitted by considering a sufficiently complex
model of the nucleon. What is surprising is the strong
indication that the model must involve more than one
pion, but that otherwise a rather weak and simple pion
field is adequate to account for the data. The limitation
on the number of pions might be somewhat softened by
the inclusion of nucleore recoil, but the failure of
dynamical theories along those lines would seem to lend
support to the present model. Further support is
provided by the fact that the neutron-electron inter-
action, as expressed by Eq. (33), seems to fit so well
with our estimate of I'~ based on the mirror theorem.

The simplest model which accounts for the data
consists of a bare nucleore (core of nucleon) with a 91
percent probability and a nucleore plus two pions with
a 9 percent probability. Each of the pions is in a p state
and the two together are in a radially symmetric state

Ym~ ( 1)mY —m (A2)

The field operators are expanded in terms of the p, as

A=K. qA. , ~p=Z. PA

4=2.Q.&. ~=K. I'.&-.,
/

where the notation —s=—(k, 1, —rN) has been used. Then

L~p(r), A(r') j=L~(r), 0(r') j= (klan) ~(r—r'),

and all other pairs commute.
The functions Pp, harp, f, pr are expanded in terms of

the spherical solutions p, of the equation

V'$,+k'p, =0.

These solutions take the form

P,=fi(kr) Yi", s—= (k, 1, m),

where the Yi are spherical harmonics and fi(kr) are
the spherical Bessel functions which are regular at the
origin. The p, are assumed to vanish on the surface of
a sphere of very large radius, a condition which leads to
discrete values for k, and the f&(kr) are taken to be
normalized within this volume. The definition of the
I'~ is such that'
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the nonvanishing commutators of the operators q„
p„Q„P, are

LP 0"j=LP Q"7=( 1) (h/ )b-"
The reality conditions on imp aiid prp become

v.*=(—I)"c-., P *=(—1)"P

The Hamiltonian IIO is now

Hp=Z. (2(p *P +~p'V. '*V.)+P *P'+~'Q.*Q.)

where
~ 2 —c2($2+~ 2) ~2 —c2(h2+«2)

Diagonalization of IIO is accomplished in the usual way
by the introduction of the creation and annihilation
operators, c,*, c, for neutral, a,~, a, for positive and
b,*, b, for negative pions:

11,- (h/2pip) l(c,+(—1)™c,*),
P, =i(hpip/2) &(( 1)"—c,*—c,),
Q.=(h/2~)'(a. +(—1)"b .*), -
P,=i (h p&/2) l(( 1)"a.—* b,)—

H = ~dpr( '[«2+-c2(gradiPp)'+cpp p21Pp2$+ pr*pr
t,'A4

+c'([grad+ (ie/hc) A(r) ]P*

[grad~ (ie/—hc)A(r) gP

+c'1 V*4+H'(A~ A~ 4') b(r) }~ (A7)

The energy is, of course, given by

Hp Q,[Ã,Php——ip+(1V,++N, )hM j,
where S,& is the number of pions of charge y in state s
if the zero-point energy is ignored.

The angular momentum (in units of h) of the pion
field is M= h 'J'rXGd rp, where 6 is the momentum
density, Eq. (A1). Thus

where H'{A, imp, iP) includes any modification of the
interaction produced by A. Only the linear terms in A
of Eq. (A7) are of interest for our purpose and these are

quantum number'of each pion is specified, it is clear
that the total angular momentum of the pion system
cannot be diagonal. However, the special state of one
pion, N, =O, slap, and 1V,=1, where cr—= (ii, X, «) is
easily shown to be a,characteristic state of the operator
M' with characteristic value ) (X+1).

In order to determine the magnetic moment, we
consider the change in energy of the nucleon produced
by the introduction of a weak, uniform magnetic 6eld H.
Care must be taken to include the interaction of the
pion field with the nucleore in the discussion since for
a pseudoscalar field an external Geld may induce pion
emission. For this purpose we make the assumption
that the pion-nucleore interaction is a point interaction
of the form J'H'(Pp, iP) b(r)d'r, if the origin is taken. to
be at the nucleore. Then the introduction of an external
field characterized by vector potential A(r) leads to a
pion plus nucleore Hamiltonian of the form

M= (ih)-1 "(-,'[«Lyp+ (Lyp) ~p]+ ~Llew+ (Ly*)~+)dpr,

where L= —irXgrad is the usual one-particle orbital
angular momentum operator. When M is expressed in
terms of the p„c1„P„Q„the coefficients are just the
matrix elements

(l, m
~
L

~
l, 222') = Fi"*LV1"'dQ,

which have, via Eq. (A2), the important property

(l, —222'~ L[l, 222) = ——(—1)"+"'(l,221~ L~l, 222'). (AS)

By making use of this property the angular momentum
can be expressed in terms of the creation and anni-
hilation operators as

M=+...bp. b«(l, ~IL~1, ~')
X(a„*a,+b,*b, +c,*c, ). (A6)

It is clear that iV, ls dlagollal (1f s 1s tile axis of quan-
tization of the I'1 ) and has the characteristic values

M, =Q, 222(1V,P+N, ++N, )

Thus E,& is the number of charge y-pions with s com-
ponent of angular momentum m. Since the magnetic

Hi dpr((iec/h——)[iP*(A grad/) (grad—g A) tP)

+(A(r) 'h'(A 4'})b(r)) (A8)

if h' is a vector which provides the coeKcients of the
linear term in A when H'{A, imp, iP) is expanded in
powers of A. For the uniform field, A = ——,'r)&H so the
pion-nucleore interaction term in Eq. (A8) makes no
contribution to the magnetic moment in consequence
of our assumption of a point interaction. The pion
magnetic moment operator, Kp, is obtained by setting
Hi= —(Nlp H) for the uniform field. Hence

( /2h)
J

il "(P4' (L4' )p}

Substitution for iP(r) in terms of a„b„etc., by means
of Eqs. (A3) and (A4) leads, after application of Eq.
(AS), to the result Eq. (18).

APPENDIX 2

Space and Time Inversion Properties of the
Functional

An amusing feature of the spherical wave expansion
is the simple formulation it provides for the space-
inversion transformation. The inversion is to be accom-
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U,a, U; '= (—1)'+'a„ (A9)

and similar equations for the operators b,, and c,. A
transformation U satisfying the condition Eq. (A9) is

U, (a) = exp{i»r P.(1+1)a,*a,),
as can be established by means of the commutation
relations for the operators a, and u,*.The complete U,
is to be obtained by supplementing U, (a) with corre-
sponding factors U;(b) and U;(c). The associated trans-
formation of the wave functional &I {1V,»} for a charac-
teristic state associated with the integers V, 'y, is

&I"(1V,»}= U,+(N, ») = (—1)r"»i'+'i" '&I (N»)

which agrees with the parity assignment of Eq. (3).
It is also of interest to construct the time reversal

transformation for the pion field. We consider time
reversal in Wigner's sense so the operation on the
functional is expected to be of the form

K= UEp,

plished by means of a unitary transformation U, of
the field variables, and U, satisfies the conditions

U;&1&(r)U, '=—
&t( r),—U, »r(r)U; '=»r( —r),

etc. , which are easily seen, on the basis of Eqs. (A3)
and (A4) and the fact that the field functions have an
intrinsic odd parity, to be equivalent to

U, =exp( —2i»r P,.(2~m~+1)a.*a,)
Xexp f i2i»r P, a,*a,), (A12)

and Uf„U, are given by similar expressions in b, and
c, , respectively. That (A12) satisfies Eq. (A11) can
easily be established by means of the commutation rela-
tions for the a„a,*.

It must now be established that our transformation
yields Eq. (16). For the sake of simplicity we consider
a wave functional C', of just the positive pions (no
nucleore), and we will temporarily drop the superscript
on X,+ for the sake of the printer. The action of the
annihilation operator u, on the state C,(') of no pions
is to produce 0, so

(A13)

Now we wish to show by induction that

U.C,{N.}= (—1)x "~'C,(1V .) (A14)

where the change of sign 1V,—+X, is meant to indicate
that the number of pions with quantum number m in
the one state is equal to the number with quantum
number (—m) in the other state. If Eq. (A14) is valid
for S pions, we can show that it is valid for the state
&1&,(N, '

} of N+ 1 pions. Here N, ' =N, except for
s= o- —=

(&&, X, p) and 1V,'= N, +1.The proof is as follows:
%'e have

&I&,{N,.') = (N, +1) ia,~C,{N,.},

,U&I{1V,.') =(N,+1) 'U a.*U 'UA, (LV,}
= (N.+1) '(-1)"(-1)"""'a-.*C'.(N-.),(A10)EME i= —M

where Ep means simple complex conjugation and U is
a unitary transformation. The form of U can be deter-

whence
mined from the condition that the angular. momentum
must change sign on time reversal:

When this transformation is applied to Eq. (A6), it is
to be noted that the creation and annihilation operators
a„u,*, etc. , are taken to have real matrix elements so
they are not affected by Ep. Then if use is made of Eq.
(A5), we find that the condition Eq. (A10) is equivalent
to

U(a,*a,+b,*b, +c,*c . )U '.
(—1.)&»+&» (a oa +b +b +c &&c )

so a sufficient condition on U is

according to Eqs. (A11) and (A14). But a,*4',{1V,)
= (1V,+1)'4,(N, '), so

U.C.(N, ') = (—1) '"~''@.(N, ').
Since Eq. (A13) shows that Eq. (A14) is valid for N =0,
it is valid for all iV. The generalization to include
negative and neutral pions is evident.

The magnetic quantum number of the pions is
Mc=p, , » mN, », and hence for a pion functional Cq,~c
of a fixed number of pions with total orbital angular
momentum L

Ua U '=(—1)"a „etc. (A11) U+ ML, = Z2ML+ —M

It is to be noted that this condition is sufficient to
establish the change in sign of the magnetic moment
9RO (Eq. (18)) under time reversal, as is required. Fur-
thermore, it is evident that the energy and total charge
are invariant under the transformation.

A transformation which accomplishes our purpose is

U=U UpU„

Our representation is such that the functionals C are
the basic vectors, so they are real functions of the
numbers mX, & and are therefore not affected by the
operation Ep. Thus

++LML I,2ML+L™L)

in accord with Eq. (16).


