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An Application of the Theory of the Effective Range to Meson-Nucleon Scattering*
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A theory of the effective range for E-state scattering is developed and the extent of its validity is inves-
tigated. Itis found that a parameter of the theory can meaningfully be identified as an eftective range and that
the energy dependence of the eftective range is very weak. The resulting formula for the energy dependence
of the phase shift is shown to be exactly equivalent, if the relativistic energy is used, to a simple form of the
Wigner-Eisenbud one-level formula for P-states in which the level shift is neglected. An application to
meson-nucleon scattering is made which illustrates the use of the method and which suggests a high lying
resonance in the scattering.

I. INTRODUCTION

XPERIMENTS on the scattering of mesons by
~ protons' have shown that a large fraction of the

scattering is due to contributions from the partial waves
of unit angular momentum. It has been pointed out
that this result is a partial veriication of the predictions
of pseudoscalar meson theory with pseudovector
coupling which predicts predominant P-state interac-
tions."In addition an attempt has been made by the
author' to account for the details of the scattering by an
analysis using the generalized single-level formulas of
Wigner and Kisenbud4 and assigning the level pa, ram-
eters on the basis of weak and strong coupling pseudo-
scalar meson theory with symmetric pseudovector
coupling. The weak coupling theory gave the ratios of
the level widths to the resonance energies and the
strong coupling theory gave the resonance energies.

The applicability of the signer-Eisenbud formulas
to scattering phenomena of this character, however, is
possibly of doubtful validity because of the large level
width (about 100 Mev) required to describe the data. '
An examination of the Wigner-Eisenbud result [ob-
tained from their Kq. (57)], which gives

tan&). = s 1') /(K+~~ —&),

is therefore that

(k'ups')/(1+ k'u')(&2',

over the range for which Eq. (2) is expected to hold.
For example, at a meson energy of 200 Mev in the
laboratory system corresponding to k'=3+' in the
barycentric system, with Ez= p, and with u'=1/(2p')
as assumed in reference 3, the condition is that

y),'&&2.18.

The assignment of y),' made in analyzing the scattering
data can be obtained by comparing Eq. (13) of reference
3 with Eq. (3) and that was y~' ——1.40, so that the con-
dition of Eq. (5) is only partially satisfied. Because of
the possible lack of validity of formulas such as Eq. (2),
it is of interest to show that these phenomena may be
described from an entirely dif'ferent viewpoint' making
use of the theory of the effective range as developed by
Bethe, ' Chew and Goldberger, ' and others' which
gives essentially identical results. Chew and Goldberger
give a formula of general validity for arbitrary angular
momentum states which can be specialized. to our case
of scattering in E'-states; the result can, however, be
derived directly in a- simple manner which follows
Bethe's treatment closely.

shows that the approximate formula,

~ Assisted by the joint program of the ONR and AEC.
~.Anderson, Fermi, Long, Martin, and Nagle, Phys. Rev. 85,

934 (1952);Anderson, Fermi, Long, and Nagle, Phys. Rev. 85, 936
(1952); Fermi, Anderson, and Nagle (to be published).

~ Nagle, Anderson, Fermi, Long, and Martin, Phys. Rev. 86, 603
(1952).

3 K. A. Brueckner, Phys. Rev. 86, 1D6 (1952).
4 EP. Wigner sn,Ii L Eisenbud, Phys. Rev. 72, 29 (1947).

IL THEORY
tanbg =-', 1'g/(Eg —E), (2)

We consid. er the Klein-Gordon equation for a meson
can be used other than in. the vicinity of resonance only moving in a potential V'
if the level shift is small relative to E~. In the notation
of Wigner and Kisenbud, for P-states, we have L~ u'+(& i )']4'=0

I'y= (k ps'')/(1+4'u') Ay = ——'Fq/(ku), (3) In this equatio n, we let 0'= +i@(costi)N&(&)/&, k'=8' —p',
and 6nd

where k is the momentum, a the radius of the internal
region, and ~2 is a constant, Implicit in these formulas (d'/dr' —l(1+1)/r'+k' —2EV+ V')rgb ——0. (7)
is also the smallness of the quantity ka. The condition
for the validity of the approximate ormula o q. (2) by Dr R;eh",d'c'h, ;,t; '„';„

tions involving light nuclei.
6 H. A. Bethe, Phys. Rev. 76, 38 (1949).
7 G. F. Chew and M. L. Goldberger, Phys. Rev. 75, 1637 (1949).
J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 {1949);F. C. Barker and R. E. Peierls, Phys. Rev. 75, 312 (1949).

O'Ihe representation of the meson-nucleon intexaction by a
static potential can at best be an approximate description. The
potential does not, however, appear in our Anal formulas so that
the results are to some extent independent of this assumption.
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If we define a new potential function,

2yv = 2EV—V',

expression

(8) ki COMi —k2 cot82

then Eq. (7) reduces to the ordinary Schrodinger equa-
tion except that the relativistic momentum appears.
The potential r then is according to Eq. (8) energy
dependent; however, in the applications which interest
us, the potential U is considerably larger than the
energy E and in addition the energy E varies only
from about 170 Mev to 280 Mev for meson scattering
with kinetic energies, in the laboratory system varying
from 50 to 200 Mev. We shall therefore consider z to be
constant and shall expect small energy dependent cor-
rections to the e6ective range from the variations in v.

Now specializing to the case /=1, we introduce the
functions Ni and Pi corresponding to the momentum ki,
which satisfy Eq. (7) except that Pi is the solution with
V=O, N~ will have the form outside the range of the
potential

sin(kir+ 6,)-
Ni= coilstall'tX cos(kit'+ Si)

kyar

(9)

Making use of the equality of ui and Pi at large dis-
tances, the vanishing of n at e (to order ke), and the
normalization of f, we 6nd

which is also the general form of fi for all r We .fix
the normalization by requiring that Pi be equal to
unity at e much less than the range of the potential (we
cannot take ~=0 because of the singularity of Pi)" and
that ui ——Pi outside the range of the potential. Following
Bethe's procedure, we now form the expression

d ( lÃ2 dZli p if ( dp2 dpi )
I

dr
dr ( dr dr ) dr ( dr dr )

in which the singular terms in 1/e have canceled. We
now define the quantity

00

("i"2 &i&&)d"+' = L&(k» k2)~ (15)
2

E

where a is the "scattering length, ""and make use of
the efkctive range approximation,

p(0, k)=ro, (18)

to introduce the "effective range" ro Equation. (15)
then takes the form

k' cotb =a-' —k'/r, . (19)

The approximate energy independence of p(0, k)=ra
follows, as Bethe has shown, from the form of the
integral of Eq. (14). The integrand is finite only within
the range of the forces and, for a strong interaction, will

be insensitive to variations in the energy. We also can
obtain another useful form for Eq. (16) in the vicinity
of the vanishing point of cotb which we assume to be at
a momentum value ko. Then we have

and write Eq. (14) in the form

ki' cot&i—k~' cot%= (k2' —kP)/p(ki, k2). (16)

Equation (16) is the analog for P-states of Bethe's
Eq. (12) for S-states. '

This result can be expressed in two particularly
useful ways. Consider first the limit as k&~0, k2=k.
We define

limk' cotb=a ',
k-+0

k' cotb= (ko' —k')/p(k ko)—(kp' —k')/rp. (20)= (k:2—kg) (u,n2 PiPi) dr —(11).
E. dr dr ) „ ,

The expression for P which satisfies the normalization
at r=~ is

Equation (19) can be written in a form which clearly
shows its relation to the Wigner-Kisenbud expression
of Eq. (1).This is

P(r) = cos(kr+8)—
sin(kr+8)-

kr

1 (—2k'ro/2 p)
tan5=—

2 (rp/2pu' "E")—

X cos(4+ 8)—
sin(k~+8)

(12)

Expanding this for small r gives

dP(e)/dr= —1/e+k'e+k'~' cot8+6(k'e'). (13)

Combining this result with Eq. (11) leads to the useful

'0 In all expressions which we derive, we spate) implicitly under-
stand that the limit as a~0 is to be taken,

where we have introduced "E"=k'/2p which reduces
to the kinetic energy in the nonrelativistic limit. If we

identify 2k'ro/2p, = —I'i, ro/2pu'=Zq, then Eq. (21) is
identical with Eq. (2), except that Z has been replaced

by "E".The form of this result shows that the energy
dependence and "resonance" behavior of the phase
shifts given by the eGective range theory are almost

"The parameter a is of course not a scattering length in the
sense of the corresponding constant which appears in the de-
scription of S-state scattering.
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identical with the predictions of the Breit-Wigner
resonance theory.

We shall next consider the validity of the approxima-
tions involved in the use of the simple CGective range
formula of Eq. (18). We write

(up' Po')—dr+ o

p(k, 0) o'

~ cc

+— Lup(uo —up) —tPo(lgo —
leap) ]dr

~2~

1 (
" vp(r) 1

ap(R) —a', (r) dr+
rp J, .vp(R)

The singular terms in ap'(r) can be canceled if we write

VJC then have

1 1 t~ 'vp(r) -' 2r jr'q'—=—+ ap(R) ———
i i

dr. (26)
ro R ~ o vp(R) 3 a' &3ao)

The contribution from the integral will in general
not be a large correction if u' is not small compared with
the range E., since the integrand vanishes at r=0 and
is equal to 1/R' at r=R We therefore see that rp is of
the magnitude of E and can meaningfully be identified
as an CGective range.

To obtain the energy dependent correction term, we
make use of the expansion for P and in addition write

u(k) =uo+k'v, . (27)

t uo(uo uo) -Po(P—& Pp) j-dr (22).
p(0, 0) o' ",

The 6rst term in this equation we have identified as the
reciprocal of the CGective range ro, the second gives the
energy dependent correction to the efI'ective range. To
show the connection between fo and the range E of the
potential, we first write the expression of Eq. (12) for
P correct to terms quadratic in k

Gf 3 r f
A(r)=o -+ +k'———

38 3 2 fo 108 .
—=o(ap+ k'ai). (23)

A col'1'cc'tly normahzcd cxpl'cssioll foi' u 1f 'v(r) 1s a
solution of Eq. (7), is

u(r) =v(r)P(R)/v(R), (24)

where E. is the range of the potential at which point I
and P are defined to be equaL Using these results, we
have

FIG. 1. Effective range plot for scattering from an attractive
square well potential of range gk /pc. The potential strengths have
been adjusted to give a phase shift of 20' and of 37' at &= 1.30pc.
The effective range is approximately 0.445/pc for both vrell depths.

We then have

1 . 1 p fupvi——=k'
)

p(k, 0) rp Jo 4 c'
(28)

To estimate the size of this correction, we notice that

apai=-', (1+ro/3ao)(-,' —r/rp —r'/10ao) (29)

vanishes at approximately r=(3/2)rp if Ro/a' is not
large. We also note that uovi/o' vanishes at r=0, and
is equal to 0,00.~ at the range of the forces, so that the
integrand vanishes at r=E. We therefore clearly set an
upper limit on the integral if we evaluate

p JR

J ( apai)dr = —',rp—-
0

If wc liow wli'tc

p(k, 0)=rp+Ek'rpo, (31)

where the numerical factor I' gives the size of the
energy-dependent correction, this argument leads us to
include that. I' is somewhat less than —,'. This result
shows that we can expect a high degree of validity for
the approximation of treating p(k, 0) as a constant, as
long as kro is of the order of one or less, contrary to what
we might expect on the basis of a purely dimensional
argument. The results obtained by Bethe' and by Blatt
and Jackson' in the analysis of nucleon scattering show

that a similar situation holds for 5-state interactions.
To show for a simple case the extent of the validity

of the formula of Eq. (19), we have explicitly calculated
the E'-state scattering from an attractive square weH

potential of range one-half the meson compton wave-

lcng th. The I'csults al c glvcn ln Flg. 1) plotting
(ko/poco) cotb against k'/ii'c', where the well depth has
been adjusted. to give phase shifts of 20' and 37' at
k=I.3pc. The "scattering length" a in these cases is
approximately a=0.485/pc and 0.955/pc, respectively;
the elective range is very nearly the same fol; both and
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from the effective range plot in Fig. (1).The scattering
reaches a maximum below the resonance and falls oR
at higher energies, as the phase shift passes 90', slightly
more rapidly than 8m%', the maximum Pg cross section.
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III. APPLICATION TO MESON SCATTERING

To illustrate the method further, we apply it to an
analysis of the scattering of positive pions in hydrogen.
The cross sections are summarized in Table I together
with the corresponding values of the meson momentum
in the barycentric system. The phase shift 6 can be
calculated if it is assumed that the scattering is entirely
due to the Pg state, " since in this case the total cross
section is given by

FIG. 2. Pg scattering from the deeper square well potentials of
Fig. . i. The laboratory energy is indicated. The dashed line gives
the maximum possible P2. scattering corresponding to a phase
shift of 90'.

is rs ——0.44k/pc. It is possible to obtain explicitly the
irst correction term to the effective range from these
results. For the case of the deeper well, p(k, 0) is

approximately

p(k, 0) =ra+0. 18k'r, ',

showing the smallness of the coefficient I' of Eq. (22)
in agreement with the conclusions reached above. Since
in this case the eRective range is about one-half the
meson Compton wavelength, the correction to ro is
negligible over the range of energies considered. It is
apparent from these results that the approximation of
treating p(k, 0) as a constant gives an excellent de-
scription of the scattering, although at the higher
energies, the ratio rs/X increases to nearly one: It is also
interesting that the scattering from the deeper potential,
with 8=37' at &=1.3pc, passes through a "resonance"
at k'=3.08+'c', corresponding to a laboratory energy of
202 Mev." This is shown in Fig. 2 which gives the
scattering from this potential or what is equivalent,
with the phase shift given by the eRective range for-
mula of Eq. (19) with the parameters u and rs deduced

g= 8gg2 s]Q2$

The values of k' cot8 calculated on this basis are given
in column 4 of Table I. Fermi' finds evidence for some
even-odd wave interference at high energies with a
magnitude for the even-wave contributions of 10 to 20
mb estimated on the assumption that it is entirely due
to S-waves. The values of k' cotb obtained when the
total cross section has been corrected for a even-state
contribution of 10 miHibarns are given in column 5 of
Table I. These results are also given in Fig. 3, plotting
k' cot5 against k' which, according to Eq. (18), should
give a straight line with vertical intercept at k'=0 of
1/a' and intercept at k' cotta=0 of rs/a'. These results,
although rather rough, indicate a "scattering length"
a of about 9.67k/pc and an eifective range with a sign
such that the phase shift will pass through 90' at
energies considerably above 135 Mev. This is not at
present in disagreement with the hypothesis of a
resonance for the J=—,

' state in the vicinity of 200 Mev.

TABLE I. Evaluation of k' cotb for meson scattering. Columns
1 and 2 give the laboratory energy and total cross section, column
3, the meson momentum in the barycentric system, columns 4
and 5 the values of k3 cotb uncorrected for and corrected for S-state
scattering. The experimental points are from the work of Fermi
et al. (see reference 1) except for the 52-Mev point which is due
to R. P. Shutt and co-workers (private communication).

2.

Z(Me+) ~(mb) k2/ @2' k' j(p,2c2) cot 5 k'/(p'c') cotb 0.5

y2/2q2

2.0

52
82

110
118
135
135

20~4
50a13
74a5
91~6

121~19
152~14

0.60
1.00
1.41
1.54
1.78
1.78

2.95&0.30
2.99~0.37
3.67~0.12
3.10+0.10
2.71&0.23
2.17&0.10

4.16~0.42
3.36&0.42
3.55~0.12
3.29~0.11
2.93&0.24
2.35~0.11

Fn. 3. EGective range plot for meson-nucleon scattering. The
experimental points are from column 5 of Table I. The straight
line is for a "scattering length" of 0.5905/pc and effective range
of 0.91k/pc. The extrapolated phase shift passes through 90' at
k =3.10pc.

~ It is interesting that the P-state scattering from any strongly
attractive short-ranged potential will show this resonance behavior
if the "scattering length" a is positive, since the phase shift passes
through 90' at k'=t0/a'.

"Measurements by Fermi et al. and by Shutt et at. of the
angular distribution of positive pions scattered in hydrogen
strongly suggest that the Pg scattering accounts for almost all of
the total cross section. The author is indebted to E. Fermi and
his collaborators and to R. P. Shunt and his collaborators for
preprints of their papers in advance of publication.
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These remarks can of course be made much more
definite when further information on the scattering is
available.

IV. CONCLUSIONS

It is found that in so far as a potential can be meaning-
fully used to describe a strong P-state interaction, an
effective range theory is applicable. Therefore, as in
S-state scattering, only two parameters can be deter-
mined, the "scattering length" which determines the
low energy scattering, and the effective range which is
a measure of the range of the potential. This theory is
applicable over a considerable range of energies because
of the smallness of the energy dependent corrections to

the effective range. The theory is equivalent to a simple
form of the Wigner-Eisenbud generalized single-level
(neglecting the level shift and taking ka((1) except that
the relativistic energy must be used. As a consequence,
the scattering will show the usual resonance features
associated with the Breit-Wigner theory, . and in fact,
such resonance behavior seems typical of a suKciently
strong E-state interaction.

Application of the theory to meson scattering shows
that over the range of energies for which experimental
data is available, the effective range plot seems valid. If
extrapolated to high energies, it suggests a resonance at
an energy considerably higher than the highest energy
at which experiments have been made of 135 Mev.
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Average Energy of Secondary Electrons in Anthracene Due to Gamma-Irradiation*

G. D. PRESTWICH)f T. H. COI,VIN, t AND G. J. HINES
Department of Physics and Radioactivity Center of the Laboratory for nuclear Science and Engineering,
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(Received May 16, 1952)

The average energy of the electrons produced in anthracene scintillators by y-rays in the energy range
from 0.28 to 2.76 Mev is determined experimentally. The values obtained are in good agreement with
theory. Above 1 Mev y-ray energy, crystal size is shown to be of importance due to leakage of high energy
electrons from the crystal surfaces.

�

~OR electrons incident on an anthracene crystal, it
has been shown that the scintillation pulses are

proportional to the electron energy in the range from
0.1 to about 3 Mev." The same behavior can be
assumed for secondary electrons produced inside the
crystal by incident p-rays, provided all the electron
energy is expended within the scintillator. If the energy
spectrum of the secondary electrons produced in
anthracene is the same as that from the absorption of
the same p-rays in air, the crystal is said to be "air-
equivalent. " Since the average energy is a measure of
the electron energy spectral distribution, we have
determined theoretically and experimentally the aver-
age energy of the secondary electrons produced in
anthracene by sources of various p-ray energy.

For p-rays of energy E„(in Mev) incident on any
matter, it can be shown' that the average energy of
the secondary electrons produced by the three p-ray

*This work has been supported in part by the joint program
of the ONR and ABC, and also in part by the Bureau of Ordnance,
U. S. Navy.

f Now on sea duty, U. S. Navy. Performed these investigations
while a U. S. Naval Post-Graduate student at Massachusetts
Institute of Technology, Cambridge, Massachusetts.

f. From Biophysics Section, National Cancer Institute, Be-
thesda, Maryland.' J. I. Hopkins, Phys. Rev. 77, 406 (1950).

.
~ J. I. Hopkins, Rev. Sci. Instr. 22, 29 (1951).
3 G. D. Prestwich and T. H. Colvin, unpublished S.M. thesis,

Massachusetts Institute of Technology (1952).

absorption processes is given by

+Av

o,E„+v(E, 8')+.x(E~ . 1.0—2)—
0'+ r+ K

where v and ~ are the linear photoelectric and pair-
production absorption coefficients, o=(o +o,) is the
total linear Compton absorption coefficient in the usual
Klein-Nishina notation, and 8' is the electronic binding
energy. The values of EA„ thus computed for various
monochromatic p-ray energies are shown in Fig. 1 for
air, anthracene, and sodium iodide as absorbing media.
From Fig. 1 it can be seen that anthracene is "air-
equivalent" in the energy range considered, while the
inorganic NaI(Tl) scintillator deviates widely below
1 Mev, due to photoelectric absorption by the high-Z
elements therein.

Experimentally, EA, was determined in anthracene
for the y-rays from Hg'", Cs"', Co", Na", and a radium
needle with 0.5-rnm platinum filtration. Two diferent
anthracene crystals were used: (a) a round crystal 0.6
cm thick and 3 cm in diameter, and (b) a rectangular
crystal 2 cm thick and 1&2 cm in cross section. The
efIiciency of light collection was increased by covering
top and side faces of the crystals with a ~-mil aluminum
foil. The crystals were joined to the RCA 5819 photo-
multiplier tube by a Lucite light pipe, with mineral oil


