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The Exchange Scattering of an Electron by an Atom and Inverse Auger Effect
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The theory of exchange scattering of an electron by an atom given by Mott and Massey is discussed. A
new formulation of an approximate treatment of the problem is suggested that leads to a system of differen-
tial integral equations similar to the Fock equations for the discrete state of atoms. This method leads to
Oppenheimer's result as a first approximation. The resonance scattering arising from the inverse process
of auto-ionization (Auger effect) is treated in a phenomenological manner.

I. INTRODUCTION

HE theory of scattering of an electron by an atom
including the effect of exchange is 6rst given by

Oppenheimer. ' Another treatment of the problem is
given by Mott and Massey' which leads to a diferent
result from that of Oppenheimer. Recently this differ-
ence in the matrix element for the scattering of an
electron by a 2- or more electron atom has been the
subject to discussion by a few authors. '4 In a recent
note' the so-called "prior-post discrepancy" arising from
this difference has been discussed. The purpose of the
present note is to examine the theory of exchange scat-
tering as given by Mott and Massey and to propose a
formulation of another approximate theory which
gives the total scattering, direct and exchange, in a way
analogous to the Pock theory for discrete states and
leads to Oppenheimer's result in a hrst approximation.

II. THEORY OF MOTT AND MASSEY

To simplify the discussion in the following without
losing sight of the main features of the problem, we
shall consider the scattering by a hydrogen atom of an
electron with energy less than that necessary to ionize
the atom. The Hamiltonian of the system of two elec-
trons is

H(1, 2) = —&r' —&s' —Z/ri —Z/ra+1/rls

In Oppenheimer's theory, out of the last three terms
in (1), a perturbation V(1, 2) is so defined that the
matrix elements in the first Born approximation corre-
sponding to the transition between an initial state with
the atom in state 0 and a free electron with momentum
kp, and a 6nal state with the atom, in the state m and a
free electron with momentum k„are given by

Z
f„~Jt Jt e ' "'sit„*(1) ——+—itp(1)e'k""dr, drs, (2)

r2 r12-

for the direct and exchange scattering, respectively.
Before discussing the theory of Mott and Massey

for the effect of exchange, let us erst treat the problem
of two distinguishable electrons and denote by the
index 1 the atomic and by the index 2 the incoming
electron. A solution of the Schrodinger equation,

&(1, 2)it(1, 2) =&4(1, 2),

is sought in the form

(4)

the summation sign in (5) indicating summation over
both the discrete and the continuous part of the spec-
trum. The Ii„'s satisfy the system of equations

[v.'+ (&—e-)7F-(2)

or

where

[6,'+ (E—«„)7F„(2)= —P„V„„(2)F„(2),

Z i
V„„(2)= t P„*(1) ———P„(1)drt.

-r2 r12~
(7a)

To obtain the scattered waves, one seeks solutions F (2)
that have the following asymptotic forms for large r2.'

Fp(2)~e'"'"+ fa(8 9p)

r2

4(1, 2) =Z-~i-(1)F-(2), (5)

where the P„'s are the complete set of the solutions of
the hydrogenic wave equation

F„(2)~ f„(t'l, q), Z —e )0,Z 1 (g)

g op J)J)e—rk ~ rQ 4(1) + pp(2)eikp ridrrdrs (3) r2

rl r12-
F„(2) finite at the origin and vanishing ex-

' J. R. Oppenheimer, Phys. Rev. 32, 361 (1928); G. Wentzel,
Handbuch der Physik (J. Springer, Berlin, 1933), Vol. 24, No. 1.' W. F. Mott and H. M. Massey, Theory of Atomic Collzsions
i( iarendon press, oxford, t949l, 2nd edition, pp. 140. 2i5 25S The solution (5) with (8) means that for all states m

'Bates, Fundaminsky, Leech, and Massey, Trans. Roy. Soc. (discrete in the case considered) of the atom that can

4 D. Layzer, Phys. Rev. 84, 1221 (1951). be excited by the incoming electron, the incoming elec-

'Corina]desi, Trainor, and Wu, Nuovo cimento 9, 436 (1952). tron will emerge and will be described by a spherical

ioi2



ExcHAxGE scATrERING oF AN ELEcTRoN

wave at. large distances. For states (discrete and con-
t111110118111 this case) fol' wlllcll F fp(—0, tile lllcoIIllllg
electron 2 18 described by Fg(2)) I.c.) I't becomes cap-
tured by the atom. %'e shaH assume that the asymptotic
cond1tlons (8) coIIlplctely Rnd lllllqllcly determine tllc
P's over the whole range of r2, and hence also completely
and uniquely determine the function P(1, 2) in (5)
over the whole rg and r2 space.

To obtain the e6ect of electron exchange in which
electron j. goes out and electron 2 is left in the atom, ,
Mott and Massey re-expand the function f(1, 2) in
the alternative form

0(1, 2) =Z-~-(2)G-(», (9)

where the q „'s are the complete set of hydrogenic wave
functions {we shall denote these by q'8 instead of by
f,'8 for convenience in the argument in the following),
and the 6„'s are solutions of the system of equations

one obtains, to the first approximation,

f ~
~t ~t

&
—1t~ tg t(1)

t ~-~kgb ry 4(1)

Z——+—po(2) e't& "drl«t. (17)

Before discussing this treatment of Mott and Massey,
we shall first note that although the expression (17) for
the exchange scattered amplitude has Z/rt instead of
Z/rl as in (3), the two expressions (3) and (17) can be
shown to be equal to each other.

We shall now show that the above treatment con-
tains a difficulty connected with the two sets of bound-

ary conditions (8) and (11) for the same function (9),

4(» 2) =Z 0-(»F-(2) =Z e-(2)G-(1) (9)

ol' by R sys'tcnl (10R) sllllllal' to (7R) but wltll G 8 I'c-

placing the E's and with the indexes 1, 2 interchanged.
The solutions G's are to have the asymptotic forms F.(2)=Z)"4-*(1)G-(1)«Iv-(2)—=E 0- v-(2)

G-(1)=Z "v-*(2)F.(2)«t 4-(1)—=Z &-4-(1).

{18)

G„(1)+6nite at the origin and vanishing ex-
ponentially at large rl for F. e„(0. (1—1)

To desc11be tIM scatteI'lng with the symmetry ln the
two electrons taken into account, one employs the sym-
Dletl ized function

+(1,2) =f(1, 2)~4(2, 1)
{12)=Z.L4"(1)F-(2)+0-(2)F-(1)l.

The function P(2, 1)=PP (2)F„(1) represents elec-
tron 2 originally in the atom and 1 incident on and
scattered by the atom. On re-expanding this P(2, 1) in
the alternative way (9),

0(2, 1)=Z.v .(1)G-(2), (13)

Mott and Massey identify the q „'s and P„'8 to be the
same set (i.e., covering the same spectrum) and obtain

+(1, 2) =Z-f.(1)LF-(2)~G.(2)j
Hence, the scattered amplitude is given by the asymp-
totic amplitude of F„(2)&G (2), and from (8) and
(11),by

From {18), we first note that if the same complete
spectrum (regular at the origin and incoming and out-
golllg wRvcs) 18 employed for tile f 8 111 (5) Rnd tile
p'8 in (9), there are in general also incoming waves in

' G (1) coIIllllg fl'0111 tllc lllcoII111lg wRvcs 111 tile spectrum
of P„(1).

Since the F„(2)'s given by Eq. (7) are determined by
the asymptotic conditions (8), Eq. (18) will completely
determine the G 's as defined by the expansion (9).
The question is whether the G„'s given by the solution
of Eq. (1) with the asymptotic condition (11) are
compatible with the G„'s given by (18). Let us denote
by G '(2) these solutions of (10) subject to (11).These
can be written

)&P(j, i)«;dr;, E—e )0,
(19)

G„'(2) finite at the origin and vanishing ex-
ponentially at laI'ge tg) foI' E fp, +0.

On putting in (7) and (10),

0(1, 2) =A(1)~'""'

(15)
Let us expand G„'(2) in terms of the complete set of

iP„'8 of (6),

G„'(2}=P b„„'f {2}+Q„b„„'f„{2), (20)
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where, for example,

b „'=)"P„*(2)G'(2)d

iknl r&—r jl g
,

I y„*(l) p„*(z) ———

b.„'Qb „ (22)

Hence, G ' as given by (10) and (11) are in general not
the same as the G defined by the alternative expan-
sion (9).

.The theory of Mott and Massey has also been given
in another f'orm' ' which seems not to involve the two
sets of asymptotic conditions (8) and (1) separately.
The function (14) can be written as

+'(1, 2) =Z C'-(2)0-(1), (23)

and the C's are given by a system of equations similar
to (7), with f(1, 2) in the integrand replaced by
4'(1, 2), and are subject to the asymptotic conditions

eiaPr2

C'0(2)~e' 0 in+ ~o(ty ~)
r2

Xf(j, i)dr, dr, dri. (21)

On the other hand, from (18), the coefFicient b„„of
G is given by

b"=J"~-*(1)J".(1)«i

where P„ is given by (8). Comparison between this and
(21) shows that in general

must be accepted only as a definite approximation,
which is, however, diGerent from that made in the usual
Born approximation without exchange.

+(1, 2) =2 Ll-(1)4.(2)~4-(2)4-(1)3 (26)

where the P's are the wave functions of those discrete
states of the hydrogen atom that can be excited with
the ~ergy available, and the p's are the wave functions
of the incident and scattered electron. On putting (26)
into the Schrodinger Eq. (4), one obtains the system
m+ 1 differential-integral equations

LVi'+k-'l0. (1)

III. A PROPOSED TREATMENT OF EXCHANGE
SCATTERING

In view of the de.culty discussed in the preceding
section in the treatm, ent of Mott and Massey, a new
treatment of the problem is suggested which is som, e-
what analogous to the theory of Fock for the discrete
states of an atom.

Let us consider, for definiteness, the scattering by a
hydrogen atom of an electron of energy k02 sufficient to
excite the discrete states 0, 1, , m but not sufhcient
to ionize the atom. The physical condition of the prob-
lem, is therefore the scattering of one of the electrons
with an energy k„'=E ~„=ko'—(e„—eo), leaving be-
hind the other electron in the state e of the atom. E is
the total energy of the system; eo, ~„are the energies of
the initial and the excited state of the atom. To de-
scribe this condition of the problem, we shall construct
a symmetrized wave function for the system

gi&n&2

C„(2)~ &„(a, ~), E—.„po,
r2

(24)

z ts 1
= —-e.(1)+Z 4-*(2)A(2)—«2 ei(1)

t=o 0 r12

C„(2) exponentially decreasing at large r2, E—e„(0
The solution 4'(1, 2) so obtained, however, does not
ensure the symmetry requirement

or
4'(1, 2) =a@'(2, 1),

c'.(1)=2 "0-*(2)~-(2)«2 0-(1). (25)

Apart from this question of satisfying simultaneously
both the symmetry requirement (12) or (25) and the
two sets of asymptotic conditions (8) and (11),another
related point may be raised in this theory. The func-
tion (12) or (14), being obtained from (5) and (13)
without exchange, corresponds to a Hartree approxima-
tion; while an exact theory should correspond to a
Fock approximation, i.e., the functions P s in (12)
should be given by an infinite system of diGerential-
integral equations obtained by putting (12) into (4).

Thus the theory of exchange scattering of Mott and
Massey, and the approximation (17) in particular,

Z 1
&g I p„*(2) q2' kp+ — pi—(2—)d—r2 p&(1—)

r2 r12-

'In

=-Z l'. (1)e (1)~Z a.*(2) --k'+—
0 i=o Ij t'ig,

Xp&(2)dr& P&(1), (27)

y„(1)-+—~„(8,y), n= 1, m.
r1

(28)

The amplitudes $0, g for the elastic and inelastic scat-
tering, being obtained from Eqs. (27) that include the

where V„i(1) is given by an expression similar to (7a),
and where ~„—0&2=&&—k„2 on account of the energy
conservation 8=k„'+e„=kg+ ei.

We seek solutions that have the following asymptotic
behavior:

gikPr1

~.(1) '""+- ~.(~, ~),
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eRect of the use of symm, etrized wave functions, al-
ready contain the direct and the exchange scattering.
As the system (27) is a finite number of equations, the
solutions @„can in principle be obtained at least by
successive approximation.

The approximation involved in this method is con-
tained in the form (26) for the wave function. It is seen
that the function (26) together with (28) satisfies the
physical conditions required of the solution. In limiting
the hydrogenic wave functions P's to only those states
e„(e where e„&~kp'+ep, the function (1) errs in the
regions of the configuration space where both r~ and
r2 are small. But it is exactly here that the usual Born
and Oppenheimer approximations are also bad, since
in these approximations the whole wave function f(1, 2)
in the integrand of Eqs. (7), (10) is replaced by only
one term. By 6nding solutions p's of the system of Eq.
(27), the coupling among the various sca,ttered wave
@'s is better accounted for than in the Born approxima-
tion in which the coupling is neglected. The chief in-
terest of this method is perhaps the less ambiguous way
in which the exchange effect is included in the scattered
waves p's. The total scattering including the eRect of
symmetry is given by the system of differential in-
tegral Eqs. (27), quite analogous to the Fock equations
for the discrete states of an atom.

It is of interest to note that if, to a 6rst approxima-
tion, one puts on the right-hand side in Eqs. (27)

y (&)
—simp r

4i(r) =o, (29)

the system of simultaneous equations becomes a sys-
tem of independent inhomogeneous equations and one
obtains, to this approximation,

pi jsp1 1

ep(1)~s"'" "+ (t'p+gp),
r1

(30)

where the f 's are given (2) and g„by (3). Thus,
Oppenheimer's result follows as a first approximation
to the m,ethod here.

IV. INVERSE AUGER TRANSITION AND
RESONANCE SCATTERING

Let us consider the case when the total energy of the
system E=kp'+ sp is just equal to the energy E, of one
of the quasi-stationary, doubly excited states (such as
2s3s, 3s', etc.) which are subject to the radiationless
auto-ionization similar to the Auger transitions in
x-rays. In this case there is the possibility of the in-
coming electron being captured and re-emitted. An
exact treatment of the auto-ionization process is dif6-
cult; but its inverse process can be treated in an ap-
proximate way as follows. When ko' is such that
kP+ep=E, we shall, instead of the wave function

(27), assume the wave function'

where P (1) is again a discrete hydrogen wave function.
On putting (31) into Eq. (4), one obtains the following
system of m+2 diiferential-integral equations:

~Z ' 4-*(2) " ki'+ —4i(2)«—s ~ki(1),
i=o 0 r12-

n=0, 1, m, a, (32)

where k 2=8—e is negative. The solutions sought are
to have the following asymptotic forms:

&ikPr1

$ (8, y), e=1, 2, m, (33)

p (1) decreasing exponentially at large rr.

The difference of the amplitudes $'s in (31) from, the
ri's in (29) represent the resonance scattering arising
from the possibility of the inverse process of the Auger
transition. When the diRerential cross sections are
studied at various energies ko', there would be an
anomaly when kp'+ps=a, the energy of one of the
doubly excited states, corresponding to the diRerential
cross sections passing from

~
ri(6, ip) ~' to

~ f(6, pp) ~' and
back to i'(8, pp) i'.

Experim, entally, one may study this resonance eRect
by measuring the scattering at a fixed angle (preferably
a large angle) for a continuous range of electron energy.
The question as to what the theoretical energies E,
are cannot be answered in this "phenomenological"
treatment given above. But in the sense of successive
approximations, one may perhaps locate the positions
of the doubly excited states by a separate calculation
based on the variational principle, for example.

The writer has had many discussions of the problem
with Dr. E. Corinaldesi, Dr. L. Trainor, and Dr. E.
Bauer, and is particularly indebted to Dr. S. T. Ma and
Dr. T. D. Lee for clarifying discussions.

Note added in proof: —In a recent paper LProc. Roy. Soc.
(London) A212, 512 (1952)] G. A. Erskine and H. W. S. Massey
calculate the excitation cross section for the 2S state of hydrogen
in an approximation quite similar to that of Sec. III above, except
that in the function (26) only two states, namely, the initial and
the final, are included.

P This approximate treatment is not free from ambiguity in
that, for the doubly excited state such as 2s3s, it is not clear
whether one should put p, equal to 1it2,, or to p3, . One may, of
course, include two terms in (31), namely,

pg, (1)@,(2)&pg, (2)p, (1)+$3,(1)@g(2)&$3.(2)pg(1).

+(1 2) =2 LS-(1)4-(2)~4.(2)4-(1)j
+4.(1)4.(2)~4.(2)4 -(1), (31)


