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An approach has been developed whereby the nuclear matrix elements can be calculated for the odd-4
and half of the even-4 beta-radioactive nuclei. The designation of nuclear states is made in accordance with
the Mayer shell model and its extension by Nordheim to the even-4 nuclei. The transforming nucleon is
assigned the wave functions of a Dirac particle in a “square-well” potential representing the nuclear “core.”
Expressions for the matrix elements have been determined and compared with the data. Consistent agree-

ment is found for the tensor interaction.

I INTRODUCTION

CCORDING to the Fermi theory of beta-radio-

activity,? the probability P per unit time that

a radioactive nucleus will emit an electron of energy

(in units of the rest-energy of the electron) between W
and W-HdW is

PAW = (G¥/24%) | M |*F(Z, W)W
X (W= 1) Wo—W)dW, (1)

where G is the interaction constant, F the Fermi func-
tion expressing the distortion, due to the electric field
of the nucleus, of the statistical distribution, W, the
maximum (end-point) energy of the emitted electron,
and |M|? the square of the nuclear matrix element.
More precisely, |M|% is a sum > oo Mo*Ma:Cago of
terms quadratic in the matrix elements and each multi-
plied by a spectral correction factor Cog/(Z, W, Wy, R).

The Fermi function has been explicitly calculated

and investigated in considerable detail.® The various
spectral correction factors have also been explicitly
determined.*~7 The nuclear matrix elements, however,
have heretofore only been crudely estimated on the
basis of rather loose qualitative arguments (except for
the allowed transitions for which angular factors alone
determine Mg®). It is the purpose of this paper to
remedy that lacuna for the majority of ground-to-
ground transitions.

The matrix elements are formed by irreducible tensor
operators compounded out of the Dirac operators and
the position vector.*% On the basis of their transforma-
tion properties, these operators fall into five categories
or interactions: scalar, vector, axial vector, tensor, and
pseudoscalar (S, V, 4, T, and P). For each interaction,
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an |M|? is constructed from the Mg’s having the
desired transformation property and the appropriate
correction factors. A knowledge of the matrix elements
permits us to predict spectral distributions for the five
interactions (or combinations of them) and thus, by
comparison with the experimental data, to determine
the correct interaction form. Angular correlation meas-
urements give further clues in the same direction.

Integration of Eq. (1) over the whole range of electron
energies (from 1 to W) yields 1/, the reciprocal of
the theoretical lifetime. The Mg’s are functions of
nuclear quantities only and are strictly independent
of W. In order to reduce greatly the calculations
necessary, we can replace the C’s by average values,
thus taking all of |M|? outside the integral; the error
introduced is not significant to the accuracy at present
required. Thus,

(1/7)=(G*/2a%) | M|*f(Z, W), )

where f(Z, W) is the energy integral. Substituting into
this equation the experimental values of the mean life
¢ and the end-point energy W, the theory predicts that

(G/20%) | M |*ft=1. 3)

Since the experimental ft values (now easily and
quickly obtainable from the data®) vary over a very
wide range, it is customary to list the common loga-
rithm of the ft value instead. Then

logft+log| M| 2= constant, )

for all transitions for the proper choice of interaction.
The determination of the matrix elements presents
two difficulties: the identification of the nuclear states,
and the formation of appropriate nuclear wave func-
tions. To resolve these two problems we have to postu-
late a model or formalism, and for each problem the
approach involves elements not essential for the other.
Such a model was evolved for the odd-4 nuclei and for
half the even-A4. For those categories, our survey covers
all allowed, first-forbidden, and second-forbidden transi-
tions which occur ground-to-ground (and a few involv-
ing isomeric states where the spin assignment is clear)
and for which the data (decay scheme, half-life, end-

9S. A. Moszkowski, Phys. Rev. 82, 35 (1951).
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point energy, branching ratio if the decay is complex,
optionally spectral shape) is complete and reliable,10:!
up to neutron number 100. Heavier isotopes are
omitted because they lie in the region of alpha-radio-
activity where the competition of the latter process
masks beta-decay in all but a very few cases, and where
consequently spin assignments are very uncertain,
especially in view of the extended choice of possible
states for high particle number. The superallowed group
does not fall within the model. Higher forbidden
transitions were not dealt with because only three
scattered cases were found with sufficient information ;
where the spin difference between the initial and final
nuclei is high, the decay usually does not proceed
ground-to-ground but instead via excited states and
gamma-rays.

II. THE MODEL

Treating the nucleus strictly as a many-body prob-
lem, Wigner found that as a result of space, spin, and
isotopic spin orthogonalities only the superallowed
group of beta-transitions should occur to first order.?
No quantitative information about the unfavored
transitions has been obtained by this method. Since
most decays are not superallowed, the Wigner theory
is not wholly satisfactory. We are led to consider the
Wigner approach as a first approximation, and to
postulate some mechanism on a different basis whose
contribution will yield the unfavored allowed and the
forbidden transitions.

Such a mechanism is provided by the nuclear shell
model.”#-19 We shall use the Mayer version of this
model.1%1% We consider each nucleon to behave as a
particle in an attractive potential due to the other
nucleons, all confined to a sphere of radius R. In the
ground state, like nucleons are assumed to pair off to
form an inert core as far as beta-decay is concerned;
the whole interaction is ascribed to the remaining odd
nucleon (for odd-4) or nucleons (for even-A4). The spin
and parity of an odd-4 nucleus are those of the odd
nucleon; the nucleon—and thus the nucleus—is as-
signed a spectroscopic term in analogy to atomic struc-
ture. For even-A4, even-Z nuclei, there is only the core,
and we take the nuclear spin as zero and all resultant
nucleonic angular momenta also as zero. For even-4,
odd-Z, the spins of the two odd nucleons add vectori-
ally: If J1=0l1—% and Jo=Il+% (J and / are the total
and orbital angular momenta of the nucleon), the
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resultant spin is the minimum |J,—J;|; if both are
I—3% or 43, the resultant spin is high (probably the
maximum).?® Experimental agreement with the spin
predictions has been found in a number of cases.?! In
the ground state, a nucleon occupies the lowest available
state of a single particle in the potential well due to all
the other nucleons, subject to the Pauli principle. In
order to make the energy levels break at the empirical
“magic numbers,” Mayer introduces spin-orbit coupling
in such a manner that the /43 term falls below the
I—% term. The order of levels in the Mayer scheme is
shown in Appendix A; within a shell, this order is not
rigid, rather there is quite a bit of crossing-over. While
the spin-orbit coupling is essential for shell assignments,
its effect on the energy levels is neglected in our calcu-
lations.

The shell model, which singles out the odd nucleon(s)
and disregards the structure of the core, cannot of
course account for the superallowed transitions since
the latter are clearly related to correspondence of the
proton and neutron number in the core. From the
point of view of the shell model, superallowed behavior
is a kind of resonance phenomenon. We shall not
concern ourselves further with the superallowed transi-
tions, but direct our attention to a comparison of the
ordinary allowed and the forbidden decays.

For the odd-A4 nuclei, we take for the nuclear wave
functions simply the wave functions (initial and final)
of the transforming nucleon viewed as a Dirac particle
in a three-dimensional “square-well” potential. The
square well is selected for simplicity, though any other
sufficiently steep well would do. For the even-4-
minimum-spin-coupling nuclei, we adhere strictly to
the same formalism, disregarding any limitation on the
operators due to consideration of the resultant spin of
the nucleus. No consistently satisfactory extension of
the model has been found which will cover the even-4-
high spin-coupling group.

III. DIRAC PARTICLE IN A SQUARE-WELL POTENTIAL

For a potential which is a function of » alone, the
Dirac wave equation for the motion of a single particle®
is separable, and yields the wave functions®

C D Vet dfl]
|- v ir,
1l/a_ Ix—l Yn—lm_i g—x
| Dy V™t g,
and
[ Ix—l Yx—-lm—% 'ifx T
— Dx—l Y‘_1m+§ 'I:fx
¢b_ Dx Y,‘m_é g ’ (5)
| -1, ) s B
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where
Le=[(x+m+3)/ 2+ 1D, De=[(x—m+3)/2x+1)J,

and x=|K|, where K is the Dirac quantum number
such that

for yu: K=—(J+3)=—I—1;
for ¢ K=(J+})=L.

In the Dirac representation, the orbital angular
momentum / is no longer a good quantum number
(i.e., it is not an eigenvalue of the problem); instead
there is the new good quantum number K.

The spherical harmonics ¥ appearing above have
been defined in agreement with Condon and Shortley*
(leading to some sign differences from Rose). The
radial functions f(r) and g(r) are real.

The Dirac radial equations for a single particle
moving in a central field are?

(E+ME—V)rfx—he(d/dr)rgg— hcKgg=0,
(E—Mc—V)rgg—he(d/dr)rfx— heK fx=0,
where M is the rest mass, E and V the total and
potential energy. For a square well of depth V,, we
substitute for the interior solution e= (E-+V,)/Mc? and
x=(Mc/h)r(8—1)} to recast the equations into
[(d/dx)+ (K/x) (e— 1) wgr— (e+1)*xfx=0,
[(d/dx)— (K/x) J(e+ 1) afr+(e—1)togr=0.
The solutions of these equations which are regular at

the origin are spherical Bessel functions.® For K
positive or negative, they are

fi=Adlet 1) Yea(®), foe=A_let+1)7Yi(v),
g,‘=A,((e— D-‘*jk(x)’ g—;t":*A—x(e"l)_%jx—l(x):

where 4, and A_, are normalization factors.

For the external solution, we can let w=E/M¢? and
obtain equations of exactly the same form. However,
while e>1, w<1, so that the argument of the Bessel

(6)

)

@

9)

TaBiLE I. Transitions K'—K==+1 (AJ==1, Al=-+41).—By the
coupling rule, this can occur only for odd 4.

Spin log log(1M%f8)

Isotope Decay  assignment ft S 14 A T
35 Br 87 - 2psn—2ds, 68 44 54 44 54
36 Kr 87 - 2dsn—2ps* 70 44 54 44 54
37 Rb 89 - 2psp—2ds, 66 42 52 42 52
57 La 141 - 2dsia—2f112 7.5 52 60 52 60
58 Co 141 - 2fre—2dse* 7.7 53 60 53 6.0
59 Pr 143 — 2dsie—2f12 7.6 53 61 53 6.1
59 Pr 145 — 2dsp—2f72 7.8 5.5 6.3 5.5 6.3
61 Pm 147 — 2dsp—2f2 76 53 61 53 6.1

2 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935).

B L. I. Schiff, Quantum Mechanics (McGraw—HilI Book Com-
pany, Inc., New York, 1949).

26 G. N. Watson A Treatise on the Theory of Bessel Functions
(Cambridge Umversxty Press, London, 1944), second edition.
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functions is now imaginary. The solutions that vanish
at o and are real are spherical Macdonald functions.?¢
Letting y= (M¢/h)r(1—w?)%, we obtain
fi= Bx(1+'w)—%kx—1(y);
8= Bk(l - w)—%kx(y)r
f= B—x(l'i‘w)—%kx(y);
g—=—B_(1—w) "tk 1(y).

(10)

If we match the inner and outer solutions for f and g
at the walls of the well, the ratio of the two equalities
yields the boundary value equation. Using the rather
good approximation e41~2~1+w and applying the
recursion relations, the boundary value equation takes
on the same form as in the nonrelativistic treatment.!
If by each function we understand its value for r=R,
we have

for ¢q:
for ¢p:

]x 2/]::
Jx—l/]x+1= - kx-—l/kx-l—l-

K——2/ )

11)

The consecutive solutions of the equation as x and ¥y
increase correspond to the successive nodal quantum
numbers 7.

For the normalization factors, the same approxi-
mation yields

BK/AK':jK—l/kK—I) B—N/A—x‘_:jx/kx' (12)

Using for the well range the usual nuclear radius
3.5%X107%34% in units of the Compton wavelength of
the electron, we find consistently a binding energy of
the order of 8 Mev (as it should be) and a well depth
of the order of 40 Mev. The results of numerical
solution for the boundary values are listed in Appendix
A. The spherical Bessel functions have been tabulated®
and a polynomial expansion exists for the Macdonald
functions.?6

IV. THE MATRIX ELEMENTS

Instead of irreducible tensors, the nuclear operators
can be expressed in terms of solid spherical harmonics
Yru(Q), where L is the order of the tensor and M is an
integer such that | M| <L this leads to considerable
simplification for L>1.

Making use of group-theoretical theorems,?® we can
prove that the square of the nuclear matrix element
reduces to

J!

ZJ+1 m’:Z—JII ('ﬂKm’, (yLO(SD I n’K’ml) I 2.

| Mq|?= (13)

Cross terms vanish unless both @’s have the same L,

27 Tables of Spherical Bessel Functions, Mathematical Tables
Project, National Bureau of Standards (Columbia University
Press, New York, 1947).

2 D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950).
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TasLE II. Transitions K'+K=0 (AJ =0, Al=41).

Spin log log (| M |2ft)
A T

Isotope Decay assignment ft S 14 P
46 Pd 111 —  3sip—2pys 68 3.1 49 52 54 3.6
47 Ag 111 —  2pp—3s1p* 7.3 3.6 54 57 59 4.1
47 Ag 113 —  2pue—3s1s* 70 33 51 54 56 3.8
47 Ag 115 —  2p1p—3s2 64 2.7 45 48 50 32
48 Cd 117 —  3sip—2pe 61 24 42 45 47 29
49 III 115"’ - 2171/2—381/2* 64 27 45 48 50 32
49 In 117 — . 2p1e—3s12* 62 25 43 46 48 3.0
49 In 119 —  2p1p—3s12* 62 25 43 46 48 3.0
54Xe 137 —  2fm—lgn* 63 17 3.7 47 47 3.0
56 Ba 139 —  2fp—1gpe* 67 21 41 351 51 34
66 Dy 165 - 2fe—1gus* 62 1.6 3.6 46 4.6 29

7N 16 —  2s1p—1pyz 68 1.5 48 48 50 38
36 Kr 88 - 2dsp—1fs2 68 00 38 51 52 23
37 Rb 88 —  2sp—1fse 71 03 41 54 55 26
54 Xe 138 —  2fip—1ge 65 19 39 49 49 32
58 Ce 144 —  2fip—1gy: 72 26 46 56 56 39
in which case

2L4+1 &
MnMn/*= Z (nKm’I (yLO(Q) ]n’K’m’)
2741 m==y
X (nEm'| Yro(@) |0’ K'm')*. (14)

A great simplification is introduced by neglecting the
difference between the initial and final energy levels in
computing the matrix elements, i.e., by assigning the
Bessel functions the same argument. The error intro-
duced is not too large because of the smallness of the
binding energy and well depth relative to the rest-
energy of a nucleon. With this approximation, numerical
integration for each individual case is replaced by the
use of analytic expressions for the integrals. These
expressions, based on the properties given by Watson,?6
were computed and are listed in Appendix B.

The procedure for calculating the matrix elements is
as follows: Form ¢/*Y10(Q)¢ by matrix multiplication
for each of the four possibilities (¢—a, a—b, b—a, b—b).
Next integrate over the region (i.e., inside or outside
the well) ; the angular integration will yield zero except
possible for some special values of «’—«. The sum of
the inner and outer integrals for one such value is the
(nKm'| Yro(Q)|#'K’'m’) corresponding to the particular
set of quantum numbers. Substitute this into Eq. (13)
or (14) and carry out the indicated multiplications and
summation.

It should be noted that the first two components of ¢
are pure imaginary, the last two real. The operators
acting on y either leave this order unchanged or reverse
the groups of two; beyond the matrix operation, the
factors introduced by the operators are either real or
pure imaginary. Thus the product is pure imaginary or
real, and consequently so is (#Km'|Yro(Q)|#' K'm').
As a result, we find automatic agreement with the
independent theoretical prediction that all cross terms
of matrix elements are real?®—the 7 factors being always

( 29 C. L. Longmire and A. M. L. Messiah, Phys. Rev. 83, 464
1951).
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present in the correction factors when the product
inside the summation in Eq. (14) is pure imaginary,
and not otherwise. Cross terms play no significant role
till the second-forbidden transitions.

The values of the matrix elements appear in Appendix.
C.

V. EXAMINATION OF THE DATA

We proceed to tabulate the forbidden transitions,
assigning nuclear states® and computing log(| M |2ff)
for each of the five interactions, | M |2 being normalized
to |My|?=1 (ordinary allowed, not superallowed,
matrix elements of magnitude 1). For comparison, it
should be noted that for odd-A nuclei the ordinary
allowed transitions have logft values in the range
4.9-6.1, while the superallowed are 3.1-3.8; for even-4,
there appears to exist only one allowed category with
intermediate values 3.9-5.3, though there is some
meager evidence for superallowed logft values. Allowed
matrix elements can occur with the K'—K=0 (AJ=0,
Al=0) group for S, V, 4, or T; with the K'—K=—1
(AJ==1, Al=0) group only for 4 or T.

In the tabulation (Tables I-V), the nonoccurrence of
an interaction means that its matrix elements are not
comparable in magnitude with those entered. Spins
marked with asterisks indicate measured values. In
the “decay” column, — or - identifies negatron or

TaBLE III. Transitions K'4+K =—2 (AJ==+2, Al==+1).—This
group has its significant matrix elements for 4 or T only, these two
being in fact equal. Here we first expect to find a definitely for-
bidden spectral shape, of which there is indeed considerable experi-
mental corroboration.®

Spin log log log
Isotope Decay assignment ft (&) (M |2ft)

16 S 37 - 1f1—1dsgp* 7.0 7.6 4.0
17 C138 —_ 1fre—1dss 7.4 8.1 4.5
18 A 41 - 1fzn—1dyys* 8.6 8.8 5.2
19K 42 - 1fzn—1dss 8.0 8.4 4.8
33 As 72 + 1fse—1gos2 8.2 8.6 5.0
33 As 76 - 1gor.— 1152 8.4 8.7 49
36 Kr 85 — 1gora— 1fsr0* 9.2 8.4 4.6
37 Rb 86 — 1goa—1fs2 8.6 8.5 4.7
38 Sr 89 — de—ZPW* 8.6 8.4 4.3
38 Sr 90 —_ 2ds12—2p1n2 9.2 8.3 4.2
38 Sr 91 - 2d5/2—2ﬁ1/2 8.1 8.4 4.3
39 Y 90 — 2dsi—2p12 8.0 8.1 4.0
39Y091 — 2p10— 2d50* 8.7 8.5 49
45 Rh 102 + 2p172—2ds1. 8.4 7.9 43
45 Rh 102 - 2d50—2p12 94 9.0 49
50 Sn 123 - 11— 1ge* 9.1 8.8 5.1
50 Sn 125 —_ 17112 — 18172 8.9 9.0 5.3
51 Sb 122 — 12— 1g170 8.0 8.0 4.3
51 Sb 125 n 1grp—1hnp 94 8.6 5.1
53 I 126 -_ lhu/z— 1g1/2 85 8.2 45
55 Cs 137 = lgp*—1hyy 96 87 5.2

30 Mayer, Moszkowski, and Nordheim, Revs. Modern Phys.
23, 315 (1951); L. W. Nordheim, Revs. Modern Phys. 23, 322
(1951)—with minor deviations.

31 C. S. Wu, Revs. Modern Phys. 22, 386 (1950).
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TaBLE IV. Transitions K'+K=1 (AJ==+1, Al==2).—This is
the /-forbidden group. Nuclear shell assignments are a bit shaky
for this group, in that the state for which the transition is J-for-
bidden and the state for which it is allowed both lie in the same
shell, so that they are in competition.

Spin log log

Isotope Decay assignment ft (1M 2ty
8 0 19 - 1d3/2—231/2* 56 19
14 Si 31 - 1ds.—2s12* 5.9 2.2
15P 32 - lda/z—'zsl/z 79 4.2
28 Nl 63 - 1f5/2—' 2?3/2* 71 34
28 Ni 65 - 1fsrn—2pa* 6.6 29
29 Cu 64 - 1f5/2—2ﬁ3/1g 53 1.6
29 Cu 64 + 2ps2— Lfes 4.9 1.3
31 Ga 66 + - 2psn—1fs2 7.9 4.3
32 Ge 69 + lfa/g—zﬁa/z* 6.0 2.3

positron decay. A superscript = indicates that the
initial state is isomeric, an m in the ‘“decay” column
that the final state is isomeric.

The last five interactions in the K'4+K=0 (AJ=0,
Al=+1) tabulation are even-A4 nuclei treated on a
strict one-particle model. From the point of view of the
nucleus as a whole, these are J=0—0 (pari* change)
cases. However, this does not restrict the spin of the
transforming nucleon, but merely requires that the
two ‘odd nucleons at the odd-Z end of the transition
have equal spins coupling to zero resultant. Hence,
it is consistent to ignore the limitations usually imposed
on the matrix elements as a result of the 0—0 identifi-
cation. These matrix elements correspond to the spin-
orbit coupling implicit in the Dirac equation; for
the larger empirical spin-orbit coupling (from shell
breaks), they would presumably be considerably larger.

Nonrelativistically, the I-forbidden transitions can
only occur with a forbidden shape. In the Dirac repre-
sentation, however, we find that the largest possible
matrix elements are o and Bo (for 4 and T), with
allowed shape. These do not occur nonrelativistically,
when [ is a good quantum number, but here K is the
good quantum number and / is not; the contributions
are from the small components of the Dirac wave
functions. Satisfactory log(| M |%ft) values can be ob-
tained by considering the states involved in these transi-
tions to be an admixture, in varying proportions, of al-
lowed and /-forbidden ; for 4 and T, the spectral shape is
allowed (as found experimentally for P®, Cu®, and
Gat).

Finally, for the second-forbidden transitions (Table
V), our theoretical expressions yield an | 4,;/T;| ratio
of about 9 (or |A:j/Ry;| about 18) with the S term
negligible—to very little precision because the calcu-
lational approximations used became serious for the
small overlap of initial and final wave functions here
encountered. The cross term is predicted positive for
Tc* (e—a) and negative for the other two (b—9).
Experimentally, the Tc* spectrum is fitted with
| A/ T =6.65 for T (or | As/Ri;| =13.30 for V) with
the sign uncertain.® For Cs¥’, |A4,;/Ty;| =17.43 with

2 F. Wagner, Jr., and M. S. Freedman, private communication.
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cross term negative has been reported,®® though the
fit with Konopinski’s correction factors appears to be
imperfect for any ratio.®

The P% electron-neutrino angular correlation,® re-
interpreted in the light of our spin assignment and of
an improved theory,? is consistent only with 7.

The beta-gamma angular correlation of Rb3¢ agrees
with T only,* and this is probably also true for 1'26.37

VI. CONCLUSIONS

The theoretical classification of the degree of for-
biddenness of a transition was based upon a qualitative
estimation of the magnitude of the various matrix
elements; the values of |M |2 fell into groups differing
by a factor of the order of 100. Later, some refinements
were made, mainly on an empirical basis. According to
the calculations just presented, this classification loses
much of its validity. Within the same order of for-
biddenness, there are values differing by several orders
of magnitude. On the other hand, there is no sharp
demarcation in size as we go from allowed to first-
forbidden to /-forbidden matrix elements. This roughly
continuous distribution of |M |2 values, and thus also
of ft values, agrees with the data. A break does occur
before the second-forbidden group. The finer subdivision
we obtain eliminates much of the “straggling’”’ observed
in the experimental ft values; the range of logft values
found for a particular assignment of initial and final
configurations is at most 1 and usually less.

In earlier discussions of the nuclear matrix elements,
it has always been assumed that there is no appreciable
error in replacing B by 1 in the matrix expressions.
This assumption turns out to be correct in most cases,
but not for AJ=0. In that category, the matrix element
of Bvs is very much smaller than that of vs; the matrix
element of « is less than that of Be, and decreases with
increasing «.

Another simplification can lead to totally wrong
results. As hitherto unsuspected, for /-forbidden transi-
tions the dominant role is played by the small compo-
nents of the Dirac wave functions—an effect ignored in
nonrelativistic approximations.

TaBLE V. Transition K'—K==+2 (AJ==42, Al=42).—For
the first time, in this group, 4 and T differ considerably in spectral
shape, thus allowing discrimination (differences in log(|M |2ff)
have to be quite large to be decisive).

Spin log log(|1M%ft)
Isotopes Decay assignment ft S A T
43 Tc 99 - 1gop—2ds, 126 49 59 49 59
55Cs 135 - 1gmn*—2dgp* 131 51 51 51 5.1
55Cs 137 — 1gin*—2dye* 122 53 51 53 5.1

31, M. Langer and R. J. D. Moffat, Phys. Rev. 82, 635 (1951).
3 C. W. Sherwin, Phys. Rev. 82, 52 (1951).

% E. Greuling and M. L. Meeks, Phys. Rev. 82, 531 (1951).

36 D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 (1951).
37 D. T. Stevenson and M. Deutsch, Phys. Rev. 84, 1071 (1951).
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The experimental evidence (logft values, spectral
shapes, angular correlations) is always consistent with
the theoretical predictions for the tensor interaction,
but not so for the other interactions. Agreement is
not achieved by any linear combination of interactions
unless T predominates in it.

There is still need for considerable experimental
information. Careful determination of the spectral
shapes of the more highly forbidden decays should be
carried out; all but the most recent such work is
unreliable because of thick sources and other uncer-
tainties. For first-forbidden, A7=0, &1 decays, the
small deviation from the allowed spectrum is very
difficult to detect, but angular correlation experiments
could serve the same end. Many decay schemes bear
reinvestigation because of lacking or inadequate
gamma-ray search, or failure to ascertain whether a
gamma-ray is in series with a beta-ray; this applies to
essentially all the older data. Of particular theoretical
interest are the even-A-high-spin-coupling nuclei, which
do not lend themselves to our formalism; too few are
now known, especially as to shape. Further verification
of our interpretation of the I-forbidden (AJ==1,
Al=+£2) group is desirable. Most of the data for high-Z
nuclei is too old and sketchy. Despite the difficulties,
more electron-neutrino angular correlations should be
undertaken. The shell assignments would be more
secure and many equivocal interpretations could be
eliminated if more spins of nuclei were known.

I wish to express my grateful appreciation to Pro-
fessor E. Greuling for his essential and untiring guidance
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and for his friendly encouragement in the course of
this work.

APPENDIX A
Boundary Values

Term K x x(x) Jx-1(%) y k() Fxa(y)
I1sp —1 21 0.44 0.41 0.89 2.1 1.0
-
1psp —2 34 0.31 0.26 1.5 4.3 1.7
1p1 1 34 0.26 —-0.073 1.5 1.7 1.0
N
1dsp -3 4.7 0.24 0.19 2.1 9.2 3.1
1d3s 2 47 0.19 —-0.039 2.1 3.1 1.5
2512 —1 51 —=0.11 —0.18 2.3 14 1.0
N
ifn —4 59 0.20 0.15 2.7 19.0 6.0
-
1fsr2 3 59 0.15 —0.027 2.7 6.0 2.5
2pse —2 6.6 —0.11 —0.14 2.9 24 1.3
2p112 1 66 —0.14 0.046 29 1.3 1.0
1gen =5 7.1 0.17 0.12 3.2 420 130
- :
1gas 4 71 0.12 —0.020 3.2 13.0 5.0
2dse —3 8.0 —0.10 —0.11 3.6 4.2 2.1
2ds2 2 80 -—0.11 0.031 3.6 2.1 1.3
3512 —1 83 0.060 0.11 3.7 1.3 1.0
1hye —6 83 0.15 0.10 3.7 90.0 27.0
N
2fie —4 93 —0.095 —0.096 4.1 7.8 3.5

The function _
k= (2/7)yetk,

here tabulated can be used instead of %,, since the &.’s
always occur in ratios in which the common factor
(2/7)ye¥ cancels out. It is more convenient to compute
k. because it can be expressed as a polynomial in 1/y
of order «.2

The arrows set off nuclear shells.

APPENDIX B
The Radial Integrals

It should be understood that by the expressions on the right side of the equations below we mean their value

at r=R (listed in Appendix A).

R
(Z/Ra)f ]-x272dr =jx2+jk—12_ (ZK'I‘ l)jxjx-—l/x
[}
(/R f k= — b ik Do s/y
R
R
/R f oot ¥r= 34 feott— (k= Dfefems/
0

(2/R%) f Bedr=k2—Ee_2— (2k—Dkeker/y
R

R
(2/R) f Jesrferdr=(R/2x)[ (2k+1)j 2+ (2k+3)jer?— (264 1) (2k+3)jxfer/x]

(2/R) f Eesibartdr=(R/29)[— @i+ 1) B2+ (2k+3) ket 2x+1) 26+ 3) bikixs/5]
R
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(/R f et = (R/28)L2uck D Qo et 2k 1) e D]

(2/R) fR bebesrtdr= (R 29)[ (26 Dl — (2 Do (26-b 1) 2= Dieeler/y]
(2/RY) f et = (R 3)j 4 Qe Dert— (2 )2k D]
(2/R) fk wk,‘_lk,‘_zr:"dr: (R/29)[— (2k—3)k+ (2k— Dlxit+ (2k— 1) (2k— 3)kckes/y]

/r [ eeajlr= (R3NT=at (o ) ek 32 [ 4 2k 3) 2 §) Tt
§ —[— 2 3)a+ (24 1) (24-3) (24-5) Lo/}
/R f b akatidr = (R 3y){[ = = (2k-1) (2i-3) T [P+ (2 3) (26-5) T2
: [ (2643)y2— (2 1) (26--3) (26 5) Thokas/ 3}
/R [ fusniearir= (RSN~ 2+ et D)@t )1 [ =2 Q= D23 e
3 —[ = (k= 3)a+ (26— 1) QA1) 2k+3) s/}
/R [ bepsbenartlr= (R/SHDH et 1) 2o 3) R [ (2 D23 o
- —[(2e= 3y (2= 1) 24 1) (2u4-3) Thekes/3)
/R [ fieesrtlr= (R 3[ =t (act D) a= 3L+ Tt Qam D=9 o
- —[— 2 3)+ (2t 1) (26— 1) (26— 3) T s/}
/R [ bt = (B39 ([ (et ) e 3T Dt 2= 1) (26— ) o2
; —[— (2eF-3)y— (2 1) (26— 1) (26— 3) Tk 1/3)
/R [ fuie-sritr= (R8T —a+ (26—3) em5)1j 24 T =2+ (2= D 26— jo
. — [~ (2= 3)+ (26— 1) (26— 3) (24— 5) Ljufi 1/}
/R [ becthe- = (R/ST+ 2= ) 26— 5 k2 == (= D (2k= ) o
’ —[(2x=3)y+ (20— 1) (26— 3) 26— 5) Teke1/3}.
APPENDIX C

The Matrix Elements

This table contains all matrix elements from allowed through second-forbidden, except those for vsr, Byst,
a1, Ba-r, eXr, and BaXr, which have been omitted because they have no practical significance inasmuch as
they only occur in competition with much larger less forbidden matrix elements.

The following abbreviations are used :

R )
M= f Juridr, m=X\ f kordr,
0 R

R 0
N= f Jxr—12rdr, n=>\ f kg 2y,
0 R

E %
Ozf jxl+1j"'1’3dr’ 0= )\f kx'—f-lk,u?’sdr;
R
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R

P=f jx'j,"_ﬂsd?’, p= )‘f kx'kx’-—lysd"y
0 R
R ]
Q= f ].,g'_lj,('_zrsd?’, qg= )\f k,(l__lk,;'_ﬂ’sdf’,
0 R

R ®
S= f j"'+2jk'7’4dra §= >\f kx’+2kx'7’4d7'y
0 R

R ©
T'= f jx’+1jx’—174d7/; t= >\f kx’+1kx’—174d7'-
0 R

R

U= f jK'jK'~2r4dr’ u= )\f k“’kx'—-2r4d7’,~
0

R
R o
V=f jx’—]ix’—874d7, V= )\f kxf_lk"_y"’d?’,
0 R

A= (BxBx)/(AxAx).

We have neglected the discrepancy between the values of ¢ and w for the initial and final states, and set ex1=w
so that

V(e—1)=3H, 1/(1—w)=3,
(E—1)=3H, 1/(1—w)i=h

Since 1/(e—1)=33 and 1/(1—w)~ 164, we neglect terms in 1/(e+1) and 1/(14w) in comparison with the former.
We follow the Konopinski nomenclature :2

| Bij|<>| Yau(o, 1)| = | Yore(Bo, 1) |

| Al You(e, 1) | = | Yore(Be, 1)

| Rij| % | Youe(r, 1) | =% Youe(Br, 1) |
| Tijl | Yo (o X1, 1) | = | Yo (Bo X1, 1) |
[Sil | Yam(o, 1, 1) | = | Ysu(Bo, 1, 1) |.

For convenience, we define
| Mo | kx?=4|Mo|*/ (Ax*4x").
Normalization consists in setting |#,]?=1. Then
| M| *=4/AK",
and we have the working relation
| Mo| kx?= | Ma'| kx/ (| My | k| MY | ).
The quantum number # is not explicit here, but is present via the boundary values.
Q v ¥ AT | Mo'|?
(a) K'—K=0 (AJ=0, Al=0)

1,8 a a (HAN+h2n)?
b b (H*M+12m)?

o, Bo a a [@x41)/ 2k — 1) J(H2N 4+ h2n)?
b b [@'—1)/@2+1) ) (H2M + h2m)?

(b) K'+K=—1 (AT==+1, Al=0)
o, Bo a b [4x'/ (26’ 1) ](H2M — B2m)?
b a [4x’/ (2’ — DY THEN — B2n)?
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a, fa

1, Br, o X1, BoXr

Y5

Bvs

(11

Ba
r, Br

o1, fo-r
oXr, fo Xt

B;

Sise

SRR/ TTTTR QTR /TR . > 5} TR AT > a R

S

QN R Q> a &

TR R TR QTR QT 8

ISTRS

HENRY BRYSK

(c) K'—K==1 (AJ=1, Al==+1)

1
-1
1
-1
1
-1
1
-1
1
-1
1
-1

[4«'/(2k'4+ 1) J(HN+hn)?

[4x'/ (26— 1) J(HM+hm)?

[4«'/ (2’ — 1) J(HN — hn)?

[4«’/ 2+ 1) J(HM — hm)?

[/~ ) Q-+ gy

[«'/ (2’ +1) J(H2P+-F2p)?

[«'/ (2’ = 1) J(H2P+-12p)?

[x'/ (2’4 1) J(H?0+ K2o)?
{2¢'2c'+1)/[ (26" = 1) (2’ 3) T} (H2Q+2g)?
{2¢'26'+-3) /[ (2¢' = 1) (2 + 1)} (H?P+B2p)?
{2¢' (2= 3)/[ (2’ = 1) (2 + 1) T} (H?P+I2p)?
{262’ — 1) /L 26"+ 1) (26’4 3) 1} (H?0+ I20)?

(d) K'+K=0 (AT=0, Al==1)

LH(M+N)—h(m—n)T
[H(M —N)—h(m+n) P

(L@ —1)/ 26+ 1) EM — hm)—[(2'+1)/ (2K — 1) F(HN+hn) }?
(L2 —1)/ 2"+ 1) EM— hm)+[ 2K +1)/ @' — 1) F(EN-LIm) }?

{(1/0@¢~ 1)@+ ]y (HP—Ip):
(H2P—J2p)?
{4%/[ (20— 1) 2+ 1) ]y (H2P— Iep)?

{8('—1) (K +1)/[3(2'— 1) 26'+ 1) T} (FI2P— i2p)?

() K'+K=—2 (AJ==+2, Al==+1)

{16« ('+1) /[ (26" +1) (2k'+3) T} (H20— I0)?
{16« («'— 1) /[ (2= 1) (2’ 3) ]} (H?Q— ?q)*

() K'+K=1 (AJ==1, Al==£2)

[4'/ 2= 1) J(N+n)?
[4x’/ 2+ 1) (M +m)?

(g) K'—K==2 (AJ==2, Al==2)

2
-2
2
-2
2
-2
2
—2
2
-2
2
-2
2
-2
2
-2

{16« ('~ 1)/[ (2’ = 1) (2x"—3) T} (HQ+hg)?
{16¢'(¢'+1)/[ (2K +1) (2 +3) T} (HO+ho)?
{16«'(«' —1)/[(2¢'—1)(2«'— 3) ]} (HQ— hq)?
{16k’ (¢'+1)/[ 2+ 1) 26/ +3) T} (HO— ho)?
{'(«'—1)/[2«'=1)(2¢' = 3) [ (HV +hPv)?
(K (¢+1)/[@x+ DK +3) T} (T4
(K (¢ —1)/L 26— 1) (2 — 3) T} (FU+ Fa)?
{«'(¢'+1)/[(2¢"+1)(2c'+3) ]} (H2S+1%s)?
{4x' (= 1)/[(26'— 1) (2’ — 3) T} (H2V +Jizo)?
{48 (1) /L 26"+ 1) (2 +3) T} (P T+ 121y
{4x' (¢ — 1) /[ (2k'— 1) (2K’ — 3) T} (U -+ Fu)?
{4 (1) /L 26'+1) (2K +-3) T} (H2S+I2s)?

{126 (K — 1) (26'+1) /L (2K’ — 1) (2K’ — 3) (26’ — 5) T} (H2V + h20)?
{126/ (¢'+1) (26'+5)/[ (26— 1) (26/+1) 2+ 3) [y (FET+ I
{126 (' — 1) (26— 5) /L (2k"+1) (26’ — 1) (26’ — 3) T} (F2U + h2as)?
{126 (K" +1) (2’ — 1) /L (2k"+ 1) 24"+ 3) (26/+5) T} (S + I )2

(h) K'+K=2 (AJ==2, Al==+3)

{16¢' (¢ —1)/[(2¢'—1)(2¢'—3) ]} (Q+9)?
{16¢'(¢'+1)/[(2'+1)(2k'+3) ]} (O+0)?
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(i) K'+K=—3 (AJ==+£3, Al==+2)

Sijk a b
b a

{1444 (' + 1) (¢ +2) /L 2"+ 1) (2¢'+3) (2¢'+5) ]} (HAS — h?s)?
{144k (¢ — 1) (&' — 2) /[ (26’ = 1) (2&’ — 3) (2«’ — 5) ]} (H2V — F*v)2.

Where the cross terms occur, their magnitude is given simply by
| MoMo*|?= | Mo|?*| Mor|*

and the sign of the cross term, i.e., the sign of each of the real expressions (—iM M *), etc. . .

Group Y
K'—K=41

K'+K=0 a

b

K'—K=+2 a

b

., is as follows:
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Hyperfine Structure Anomalies in the 2P, State of TI*® and TI>°%f

AraN BErRMAN*
Columbia University, New York, New York
(Received March 3, 1952)

The atomic beam magnetic resonance method has been used to make a precision measurement of the
hyperfine structure separation of the ground state of TI2% and TI20%, The experimentally determined ratio
Ap5/Ap23 =1,009744-0.00003 is to be compared with the ratio of the magnetic moments, determined by
nuclear induction techniques, of g,25/g,2%=1.00986--0.00005. It is shown that the difference between the
two ratios can be accounted for by consideration of effects predicted by Bohr -and Weisskopf and by
Crawford and Schawlow. In particular, the agreement between theory and experiment can be construed
as evidence of the reality of the effects postulated by Crawford and Schawlow, which have not been here-

tofore directly observed.

INTRODUCTION

A PREVIOUS determination! of the ratio of the
hyperfine structure separations (Av) of the 2P
ground states of TI?® and TI2* differed by about 40
parts in 10° from the ratio of the magnetic moments of
the two isotopes. This discrepancy was approximately
four times as large as could be accounted for on the
basis of any extant theories of hfs anomalies. Unfor-
tunately, the combined experimental uncertainties of
the two ratios was 25 parts in 105, with the principal
contribution to the uncertainties arising from the ratio
of the Av’s. Since an ability to account for a hfs anomaly
in T1 would be a stringent test, of a type not heretofore
made, of the validity of certain aspects of current
theories on the subject, a new and more precise deter-
mination of the ratio of the hfs separations has been
made by use of atomic beam techniques.

THEORY

A direct determination of the Av’s of T12%% and T2,
from observation of the transitions AF=4-1, would

1 This work has been supported in part by the ONR.

* Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in the Faculty of Pure Science
at Columbia University.

1 Berman, Kusch, and Mann, Phys. Rev. 77, 140 (1950).

require frequencies that are inconveniently high
(~21,300 Mc). The value of the Av’s may, however, be
determined from measurements of the AF =0, Amp==+1
transitions (1, 11, 0) and (1, 01, —1). The ex-
pressions for' the frequencies of these lines at an arbi-
trary magnetic field are?

fr=5A0[ (142) — (14224 22(gs /g’ — 1) 1]
for (1,11,0), (1)

fo=3A[ (1+a?) = (1—2)+2%(gs/gr’ — 1) 7]
for (1,001, —1), (2)

where x= (g7— gr’) moH /hAv, and g/ differs slightly from
the nuclear g value as determined by nuclear resonance
methods because of a partial decoupling of the L and S
vectors in the 2Py state.

If the transitions are observed at a fixed magnetic
field, then a measurement of the frequencies of the two
lines will be sufficient to determine both x and Aw,
provided that the value of the ratio gs/g:" is known.

The value of Av deduced from the Breit-Rabi formula
will not be the true hfs separation. Nonvanishing
matrix elements of the electron-nucleus interaction
operator, which are not diagonal in J, lead to a per-

2 Millman, Rabi, and Zacharias, Phys. Rev. 55, 384 (1938).



