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A modified Weiss treatment of magnetism in crystals which considers both first and second nearest
neighbor interactions with all four combinations of signs has been carried out. The usual results for ferro-
magnetism are obtained for both interactions positive. For the other cases, various types of magnetic
ordering below the Curie temperature are predicted, the exact kind depending on the signs and magnitudes
of p& and p2, the Weiss Geld coefficients for erst and second nearest neighbor interactions, respectively.
Explicit results are given for the kind of ordering as functions of 8/T, for bcc and fcc lattices. Expressions
are derived for the susceptibility of an antiferromagnet above and below the Curie temperature, the latter
calculation being given for only a single axis of spontaneous magnetization only. The theory gives a good
qualitative description of the behavior of an antiferromagnet for all temperatures, although some of the
detailed results are in disagreement with experiment.

HE usual Weiss molecular field treatment of
ferromagnetism and antiferromagnetism' ' con-

siders only interactions between nearest neighbors.
Also, for the antiferromagnetic case, it is usually
assumed that the lattice of magnetic ions may be
divided into two equivalent sublattices as in the simple
cubic and body-centered cubic structures. The high
temperature molar susceptibility calculated in this way
is given by

X=CM/(T 8), —
where C~ is the molar Curie constant and 8=AT'„
depending on whether the interaction is ferromagnetic
or antiferromagnetic. The experimental data on most
antiferromagnetic compounds can be Gtted reasonably
well to an equation of this form. However, the value
of 8/T„ instead of being —1 as predicted, varies
between rather wide limits, the observed values ranging
all the way from +0.7 for MnAs to —5.0 for Mn0.

Recent work by Neel4 and Anderson' has shown that
theoretical values of 8/T, more in line with the experi-
mental results may be obtained by including second
nearest neighbor interactions and by considering mag-
netic lattices appropriate to actual antiferromagnetic
compounds. The calculations of Anderson were carried
out only for the case of both first and second nearest
neighbor interactions antiferromagnetic while Xeel's
results are in a form not easily applied to antiferro-
magnetism. It seems worthwhile to generalize the
method of Anderson to include all four possible combi-
nations of sign.

THE HIGH TEMPERATURE SUSCEPTIBILITY
AND THE MAGNETIC ORDERING

The starting point for calculating the high tempera-
ture susceptibility is the high temperature approxima-
tion of I.angevin's equation of state for a paramagnetic

material.
M =CII/T, (2a)

where M is the magnetization in the direction of the
applied Geld II. We assume the material contains E
magnetic atoms, each with a magnetic moment p =gpSO,
where So is the spin quantum number, g the gyromag-
netic ratio, and P the Bohr magneton. Then (2a) can
be written in a form more convenient for our purposes:

S=C'8//T, (2b)

where gPS is the component of p in the direction of H
and C' is the "spin Curie constant, "gPSD(50+1)/3k.

The Weiss procedure is to redefine B to include the
eGects of internal fields due to neighboring atoms. We
shall denote the Weiss field coeKcients for first and
second nearest neighbor interactions by p& and p2
respectively. It is convenient to define the p; as positive
quantities and to write in the signs of the interactions
explicitly. In terms of the Heisenberg theory, the y;
are given by

y;=2z;Is;I/gp, (3)

where s; is the number of ith nearest neighbors and J;
is the exchange interaction between electrons on ith
neighbors. However, for the purpose of this paper, the
p; may be considered merely as phenomenological
constants with the J's being a measure of the diGerence
in interaction energy of parallel and antiparallel spins.

In substituting into Eq. (2), 7; will be multiplied by
~;=&1, which specifies whether the ith neighbor inter-
action is ferromagnetic or antiferromagnetic. For con-
venience in discussion, the various combinations of
signs of the e; are classified as indicated below.

Case I II III IV

+1 +1
Cg +1 +1 -1

*Supported in part by the ONR.' L. Noel, Ann. Phys. 18, 64 (1932); 5, 256 (1936).
~ F. Bitter, Phys. Rev. 54, 79 (1938).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
4L Noel, Ann. Phys. 3, 137 (1948).
5 P. W. Anderson, Phys. Rev. 79, 705 (1950).

Case I should of course lead to the usual results for
ferromagnetism in the Weiss theory, except that the
Curie temperature is defined in terms of two Weiss
coeKcients instead of one. Anderson has worked out
Case II for a face-centered cubic lattice, and analogous
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Fxo. I. Possible kinds of magnetic ordering for a body-centered
cubic lattice.

where u, = —C' yo;/T. By the usual methods, this
determinant may be factored into

L(1+~2)'—~1'jL(1—~2)'3=0
giving

T~1= —C (ol Yl 42 Y2) q
T~2= —C 42 Yor

(Sa, b, c)
TcP C (ol.Y1+o2Y2) ~

Resubstituting the values of T„we find that T,1

corresponds to S1=S2———S3———S4, which is just the
condition for ordering with respect to nearest neighbors,
or ordering of the 6rst kind, as Van Vleck has designated
it. T,2 corresponds to S1+S2——0, So+S4=0, which is
the second nearest neighbor ordering, or ordering of the
second kind. Figure 1 shows the two kinds of magnetic
ordering for a bcc lattice. T',p corresponds to S1=S2
=S3=S4 or the ferromagnetic case. For each combina-
tion of signs of ~1 and e2, one or more of the Curie
temperatures may be negative, indicating that for
this case, the particular kind of ordering has a higher
energy than the random state.

The kind of magnetic ordering which actually exists
below the Curie temperature will be that which corre-
sponds to the highest value of r,. For example, in
Case II with 41= 42= —1, we have T,1 ——C'(y1 —y2) and
T,2=C'y2. Then the ordering will be of the first or

results for a body-centered cubic lattice are given by
Van Vleck. ' Their results will be rederived here along
with new ones for Cases III and IV.

In problems involving antiferromagnetic interactions,
it is necessary to divide the lattice of magnetic atoms
into sublattices to take account of various possibilities
of magnetic ordering. The method of subdivision de-

pends on the symmetry of the speci6c lattice, but there
should be at least division into enough sublattices so
that a given atom has neither first nor second neighbors
on its own sub)attice. Also, we consider only cases
where the sublattices have the same number of atoms.
In general, for both first and second nearest neighbor
interactions, there will be at least two kinds of magnetic
ordering, one favorable to each type of interaction.
The possibility of intermediate kinds of magnetic
ordering is certainly not excluded.

We 6rst give the calculations for a body-centered
cubic lattice. In accordance with the discussion above,
it is subdivided into four frc lattices. We denote the
four lattices by the subscripts 1, 2, 3, 4 at the risk of
causing confusion with the subscripts 1 and 2 for the
y's. The division is made so that sublattices 1 and 2
contain the center atoms and sublattices 3 and 4 the
corner atoms. Then an atom on sublattice 1 has all its
second nearest neighbors each on sublattice 2 and half
of its first nearest neighbors each on sublattices 3 and 4.
The equations corresponding to (2b) are

So ——(C'/T)LHo+Z&wz 41„721S7, (4a., b, c, d)
k, l =1,2, 3, 4.

where JIO is the applied magnetic field and yI, ~SI, is the
internal field acting on an atom on the kth sublattice
due to its neighbors on the lth sublattice. The yI, ~ are
simply related to p1 and p2, the Weiss field coefIicients
for 6rst and second nearest neighbor interactions. For
example, y12= y2, y13= y14=-,'y1. The ~I, ) are ~1,
depending on whether the given interaction is ferro-
magnetic or antiferromagnetic.

From Eqs. (4) we can easily calculate the molar
susceptibility

X= (&gP/4&o)&2 So=C&s/(T 8), (&)—
where X is Avogadro's number, C24 ——1VgPC', and

0=C Z 4 /2 okl Ykl =C 2' 44 Y4. (6)

The factor 4 appears in Eq. (5) because the sum is over
four atoms, one on each sublattice. The second sum-
ma, tion in Eq. (6) is over the different shells of neighbors
(i=1, 2, in this case).

The possible Curie temperatures can be found by
setting Ho=0 in Eqs. (4) and finding what temperature
allows nonzero solutions for the SI,. This procedure
leads to a determinantal equation of the form

@2 2~1 2~1
a2 1 Pa1 2u1

(~)
~g81 n 81 1 82

gQ1 281 C2

' J. H. Van Vleck, J. phys. et radium 12, 262 (1951).



J. SAMUEL SMART

I

I

a'
I
I

I

'+I
/

/
+.r

I

+ rl
/

I

I

+p

I

I

/C/ I

I

I
«JfO

0
r I

I

+I
~p»
r/

/
F

r I0
/

I

/ +
/

+~/

+.

+,

+

ORDERING
OF THE
FIRSTKINO

OROERING

OF THE

SECONO KIND

ORDERING

OF THE

THIRD K'IND

Eq. (7). Suppose the ordering is specified, by Sq= p»S~
where p&&= +1.Then we note that T, is given by

~e=C Ziwa gweli7ri, (9)

X2:-F
I

CASE I IX IK IK
f a a f

y2 f a f a

an expression equivalent to Eqs. (8).
One significant result of the calculations with diferent

signs of first and second nearest neighbor interactions
is that they help clarify the di8erence in the physical
interpretations of the quantities 8 and T..The quantity
8 appearing in the susceptibility formula indicates the
eGect of the internal field on the susceptibility. If the
internal 6eld favors ferromagnetism, then it aids the
applied Geld in aligning the moments. For this case,
8)0, and for a given temperature (above T,) x is
greater than its "pure paramagnetic" value C/T. On
the other hand, if the internal field favors antiferro-
magnetism, then it hinders the applied field by tending
to keep the total moment zero. In this case 8&0, and
for a given temperature y is less than C/T. 8 for a
particular material is obtained by adding algebraically
the contributions from erst and second nearest neighbor
interactions (and others, if more are considered) as
indicated by Eq. (6).

O

FIG. 2. Possible kinds of magnetic ordering for a face-centered
cubic lattice.

Case e/c'
T jcl

Ferro 1st 2nd
Magnetic
structure

71+P2

)t 1 P2

+1+72

Pl P2

+1+P2

Yl 72

Pl P2 P2

Vi+ 72

ferro
1st for y2&gyl
2nd for y2&~2yl

1st
1st for y2&-,'yl
2nd for )t'2Q ~pl

TABLE II. Values of 0 and T, for a face-centered cubic lattice.

Case 8/C'
T./C'

Ferro 1st 2nd 3rd
Magnetic
structure

371+ Y2 3+1++2

II —3yl —y2

III —3pl+ 71+72

T2 71-372

ferro
3rd for y2&4yl
2nd f01 p2 p 4+i

1st
(ferro for
j v~&I7r
(2nd for y2) gyi

second kind depending on whether y2 is less than or
greater than -', yi.

YVe should be able to obtain the Curie temperature
for a speci6ed type of magnetic ordering without solving

TABLE I. Ualues of 0 and T, for a body-centered cubic lattice.

%3

0 0.5 I.O y~g I,S 2.0

FIG. 3. 8/T, values for a body-centered cubic lattice. The
Roman numerals on each curve refer to the signs of the inter-
actions; the Arabic numerals refer to the kind of magnetic
ordering.

The quantity T, depends on the actual magnetic
configuration existing below the Curie temperature—
8, on the other hand, is independent of what happens
below the Curie temperature. Essentially, kT, is a
measure of the energy which has to be supplied to bring
the material from a state of perfect order to one where
the long-range order is destroyed. To find T„we com-
bine the same terms as were used in finding 8 but with

plus or minus signs according to whether or not the
magnetic structure is favorable or unfavorable to a
given interaction, as indicated by Eq. (9).

The previous considerations enable us to write down
8 and T, for any magnetic lattice by inspection, once
the molecular field coeKcients and the magnetic struc-
ture are assigned. Thus, in considering the fcc lattice,
we 6nd that it is convenient to divide it into eight fcc
sublattices. Then Eqs. (6) and (9) with appropriate
generalizations to the eight sublattice case may be used
to obtain 8 and T, directly. Figure 2 shows three
possible kinds of antiferromagnetic ordering for the
fcc lattice, the third kind being a compromise version



suggested by Andersons which under certain conditions
has a lower energy than either of the other two.

Tables I and II give values of 8 and T, for the bcc
and'fcc lattices, respectively. Only values of T, mhich
are largest for some range of p&/p& and thus may
correspond to actual structures, are listed.

8 and T, are easily determined from susceptibility
measurements, so that y& and y2 can be calculated from
the relations in Tables I and II, except for Case I
where 8 and T, are identical. However, a convenient.
way of demonstrating the relation between the experi-
mental results and the Weiss field coefFicients is to plot
e/7 as a f1111ctlo11 of pr/'rI. Tllese cllrves al'e sllow11 111

Figs. 3 and 4. The Roman numerals labeling the curves
refer to the type of interactions and the Arabic numerals
to the k1nd of ordering. Thus for Case III 'the ordering
is of the 6rst kind for all values of ys/71. For Case IV,
the material is ferromagnetic for low values of ys/yt
and antiferromagnetic with ordering of the second kind
for high values of ys/yt. These two cases extend the
theoretical upper limit for 8/T, for an antiferromagnet
from —1 to +1, and cover some experimental results
which were not allowed by Case II alone. In general,
there are two possible values of ys/yt for a given 8/T,
ratio; thus there is an ambiguity in the theory. In
order to determine the correct value of ys/yt the
magnetic structure must be established by neutron
dHFractlon.

Table III gives experimental values of 8 and T, for
some antiferromagnetic compounds. The columns desig-
nated "Low" and "High" give the two values of ys/yr,
corresponding to the observed 0,/T, ratio and list the
curves of Figs. 3 and 4 from which they were taken.
In some cases, the kind of ordering has been determined

e4

FIO. 4. S/r, values for a face-centered cubic lattice. The Roman
numerals on each curve refer to the signs of the interactions; the
Arabic nuInerals refer to the kind of magnetic ordering.

by neutron diGraction; this information is recorded in
the last column.

No antiferromagnetic compounds are knomn in which

the magnetic lattice is body-centered cubic. However,
in the rutile structure the magnetic lattice is body-
centered tetragonal. In this case, an atom has two
neighbors along the c axis at distance c, eight neighbors
on the corners of the rectangular parallepiped at dis-

tance (a'+ca)&/2, and four neighbors along the II axes

at distance u. Ke may divide this structure so that
the central atom is on the A sublattice, the corner atoms

on the 8 sublattice, and the other two sets of neighbors

on the A sublattice. For convenience, we mill assign

the coefficient y1 to the corner atoms and y2 to the

combined effect of the other two sets. Actually, the

atoms along the c axis are nearer the central atom than

TABLE III. Experimental data on antiferromagnetic compounds.

Compound

MnFg

pep'

VOg

FeO

CoO

MnS

Crystal
structure

Rutile

Rutile

Rutile

Rutile

. Calcite

Magnetic
lattice

structure

bc
tetragonal
bc
tetragonal
bc
tetragonal
bc
tetragonal
fcc

fcc

fcc

570

435

198

1.48

5.0

2.9

V1/V~
Low High

II-1
O.ZZ
II-1
0.1P

II-2
1.75
II-2
2.10

II-3 II-2
0.75 0.75
III-1 II-2
0.02 1.57
III-1 IV-2
1.05 75

II-2
0.35 1.07
II-3 II-2
0.05 1.43

Ordering from
neutron

diGraction

1st'

2nde

a R. A. Erickson and C. G. Shull, Bull. Am. Phys. Soc. 26, No, 3, 17 (1951}.
b R. A. Erickson, Phys. Rev. 85, 745 (1952).
o Shull, Strauser, and eolian, Phys. ,Rev. 83, 333 (1951}.
d C. Henry La Blanchetais, J. phys. et radium 12, 765 (1951).
e T. R. McGuire, unpublished work.
f Approximate temperature of the susceptibility maximum. A crystal structure transition occurs about 520OK. The remainder of the data in this tabje

mere taken from the review article of H. Bizette, Ann. yhys. 1, 306 (1946).
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are the corner atoms for the usual c/u ratios in the
rutile structure.

Data are available on two fiuorides with this struc-
ture, MnF2 and FeF2. As indicated in Table III, both
have 8/T, values of about —1.5, corresponding to
yo/pi~0. 2 with the 6rst kind of ordering or y&/pi~2. 0
with the second kind of ordering. However, neutron
di6raction experiments have shown that the ordering
is of the first kind; this determines the ratio unambigu-
ously, as far as this simple theory goes, and the correct
value is given in italics in Table III. Mn02 and VO2 are
interesting because the magnetic ordering of Mn02 has
been shown to be of the second kind.

Experimental data are available on five antiferro-
magnetic compounds with the NaCl structure. For
four of these, the magnetic structure has been deter-
mined to be of the second kind. For MnO, FeO, and
NiO the second kind of ordering is allowed for the
observed 8/T, values with yo/pi=0. 75, 1.57, and 1.07,
respectively. In the case of CoO, however, where the
ordering is also of the second kind, the value of yo/yi
is about 75, which seems unreasonably large. It is not
clear whether the theory fails here or whether some
special feature of the Co++ ion such as the relatively
large spin-orbit coupling acts to give a very large
effective yo/yi ratio. The magnetic structure of MnS
has not been determined but from the data it appears
to be of the second kind with yo/yi ——1.43.

FeCO3 is an interesting case because it has a value
of 6/T, of —0.25. Such values are not allowed by the
previous calculations of Neel and Anderson which
consider only Case II. FeCO3 has the calcite structure,
a distortion of NaCl which suggests the subdivision
into eight sublattices. If the results for the fcc lattice
are used as a guide, the e/T, value could be explained
either by Case IV with ordering of the second kind or
Case III with ordering of the first kind. In view of the
lack of experimental data on materials with the calcite
structure, it does not seem worthwhile to make special
calculations for this case.

THE SUSCEPTIBILITY BELOW THE
CURIE TEMPERATURE

In an antiferromagnetic material below the Curie
temperature, each of the sublattices acquires a spon-
taneous magnetization and the internal field becomes
very large. This means we can no loriger use the
'approximation pH/kT«1 which leads to Eq. (2). Also
the susceptibility depends upon the direction of the
applied magnetic field with respect to the antiferro-
magnetic axis. Van Vleck' has calculated the suscepti-
bility of a simple AB type antiferromagnet considering
only Qrst nearest, neighbor interactions. For this case
x~ is constant for T& T, and y„ is zero at absolute zero,
rising to x~ at T= T, where x» and y~ refer to the
susceptibility with the magnetic field applied respec-
tively parallel and perpendicular to the antiferromag-
netic axis. To obtain the powder susceptibility, z» and

x~ are weighted in the ratio 1:2 giving the results that
x(0)= pox(T, ) and that the susceptibility should have
a cusp at the Curie temperature. In this way, the
qualitative features of the y —T curve for an antiferro-
magnet are explained although the experimental value
of X(0)/x(T, ) is not always close to op. Anderson' has
pointed out that if there is more than one antiferro-
magnetic axis within a single domain, then the x(0)/
x(T.) ratio should be expected to be different from —,'.
This seems to be actually the case in Mn02 where both
the susceptibility data~ and the neutron di6'raction
data referred to in Table III suggest that the antiferro-
magnetic axis for sublattices 1 and 2 is perpendicular
to that for sublattices 3 and 4. However, for most
antiferromagnetic m*terials, the ratio is reasonably
close to ~~, suggesting that there is only one antiferro-
magnetic axis; also, most of the observed crystal struc-
ture changes8 at the Curie temperature support this
idea. In the calculations to be given here, we consider
only the case of a single antiferromagnetic axis.

As in the preceding section, the calculations are
given explicitly for the bcc lattice. Let SI, be the average
spin per atom on the kth sublattice with an external
magnetic field applied and S~' be the spontaneous
value in zero applied field. Then

&k=Ho+pigk pkivk6i

=Ho+Zi~k pkivkiLSi'+~$:j,

where SSi is the change produced in Si by application
of the external magnetic field. (In the previous section,
the quantities Sk were written as scalars because it was
implicitly assumed they were either parallel or anti-
parallel to HD. For T&T, it is necessary to take into
account differences in direction between Hp and Sk'.)
Let the type of magnetic ordering existing be given by
S~'=qI, ~S„- where qI, ~

——&1.Also, we assume that all of
the SSi are equal. Then Eq. (10) may be rewritten

Hk Hp+Sk plgk Qklokl'Ykl+ pS'+ldk pklvki

=Ho+ (T,/C') Sk'+ (8/C') SS.
(11)

Then straightforward application of the Langevin-
Weiss theory gives

5= (Pk Sk~ =4&S=SoLZk cos(Hk, Ho)&(yk)j (1'2)

where 8 is the Brillouin function for spin So and

yk ——gpSpiHki/kT.

When Hp=O, N=O and

yk
——y'=3Sp(So+1) 'T,T 'iSk'/Spi. (14)

Now consider separately the cases where 80 is
parallel and perpendicular to Sko.

'

T&T„Hpi iSkp

7H. Bizette and B. Tsai, Colloque sur lu polarization de la
matiere (Paris, 1949).

8 J. S. Smart and S. Greenwald, Phys. Rev. 82, 113 (1951).
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4gPSp' gPSoo e
S= HoB'(yo) 1— —P'(yo) . (16)

kT kT C'

Expressing the result in terms of the molar suscepti-
bility,

3So(So+1) '8'(yo)
glt=cj

T 3So(So+1—) '8'(yo)e
(17)

Equation (17) reduces to Van Vleck's result' for his ap-
proximations (Sp ———',, go=0).

T& T„npgSAp

Let the s axis be the axis of spontaneous antiferro-
magnetism and the x axis be the direction of the applied
magnetic field. Then since I Ho I((IHo I, we may write

I
H.

l I
H,+ (e/c') asl

S=4es=4lso'I =4IS"I, (»)
I (T./C') So'I

and
S=4C'Ho/(Tc —e). (19)

The molar susceptibility is then

y =CM/(T. e) = x„(T,) =—x(T,). (20)

T, is determined experimentally as the point at
which the maximum in the x—T curve occurs, while 0

may be found by fitting the high temperature (T)T,)
susceptibility data to Eq. (5). If the theory is consistent,
then we should be able to use the values of 0 and T,
determined in this way to calculate the susceptibility
for T(T, from Eqs. (17) and (20). Figure 5 shows the
results of such a calculation for MnO which has e/T,
= —5. The agreement between the theoretical and
experimental curves is not very good, their shapes
being considerably diGerent. Actually, the curve for
8=—T,. has more nearly the shape of the experimental
curve. However, Fig. 5 is plotted on a reduced scale;
on an absolute scale the curve for 0= —T, gives a
susceptibility which is much too large.

One reason for the discrepancy between theory and
experiment may be the neglect of anisotropy eGects.
Recently, Nagamiya' has calculated. the susceptibility
for a simple AB type antiferromagnet, including an
anisotropy field. If this type of calculation were ex-
tended to second nearest neighbors and to more compli-
cated lattices, the agreement might be improved. It is
also possible that the reason for the discrepancy lies in

T. Nagamiya, Prog. Theoret. Phys. 6, 342 (1951}.

The applied held is assumed to be small in comparison
with the internal field so that the Brillouin function
may be expanded about Hp= 0, giving

a(y, ) =a(y')+~, igps, l H,+ (e/c') es]a'(yo)/uT. (15)

Also cos(H. , Hp) =q~,.i. Substituting into Eq. (12) we

find

J.O

0.9

X{T)/X(Tc)
0.8—

0.7—

0.6
0

I

0.2
I I

0.4 0.6
T/Tc

ON MnO

I

0.8 I.O

FIG. 5. g(T)/y(T, ) ~s T/T. for a material with a single antifer-
romagnetic axis. The experimental data are taken from Bizette,
Squire, and Tsai, Compt; rend. 207, 449 (1938).

a basic defect of the %eiss theory itself. Holstein and
Primakoff" have shown that, the Weiss theory and the
spin-wave theory give quite different results for the
intrinsic susceptibility of a ferromagnet below its
Curie temperature.

GENERAL DISCUS.SION

This simple extension of the gneiss theory given
above is a good qualitative description of the behavior
of an antiferromagnet for all temperatures although
some of the detailed results are in disagreement with

the experiments. In this respect, it is quite similar to
the usual VVeiss theory of ferromagnetism. In particular
the theory gives an adequate account of the e/T, values

although it is uncertain as to just how much significance
can be attached to the corresponding yo/yi. Since
these quantities cannot be computed theoretically at
the present time, we are forced to consider them

merely as adjustable constants. The theory also gives

explicit conditions for the different kinds of magnetic
ordering, although here it is necessary to have the
magnetic lattice subdivided properly.

It is an interesting question as to whether a simple

gneiss theory which takes account of both first and
second nearest neighbor interactions or a more sophisti-
cated theory which considers only nearest neighbor
interactions gives the better results in antiferromag-
netism. Certainly the fact that both types of ordering
have been observed in compounds with the same mag-

netic lattice (rutile) points up the importance of con-

sidering both interactions. It is interesting to compare

the results of the Weiss field treatment to those of Li,"
who applied the more elegant Bethe-P. R. %eiss method

. to the problem of a simple AB type antiferromagnet

with first neighbor interactions only. His results indicate

that there should be some curvature in the 1/7r T—
curve just above the Curie temperature (due to short

range ordering) but that at high temperatures, the

susceptibility should be given by Eq. (1) with e——T,.
I

'o T. Holstein and H. PrimakoB, Phys. Rev. 58, 1098 (1940).
"V.-Y. Li, Phys. Rev. 84, 721 (1951).
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The low temperature curvature is evident in much of
the experimental data, but as has been stated previ-
ously, the 8/T, ratios are considerably different from
unity. Li has pointed out that if the susceptibility
measurements are not taken at su8Rciently high temper-
atures, an apparent 8/T, will be obtained whose
magnitude may be as high as 1.5—1.7. In this way, the
data on some antiferromagnetic compounds, such as

MnF2 and FeF2, might be fitted, but for most the
8/T, values fall considerably outside the range allowed

by Li's theory. Presumably a Bethe-gneiss treatment
including both types of interactions and appropriate
magnetic lattices should correct some of the deficiencies
of both Li's theory and the present theory (at high
temperatures) but the amount of calculation involved
seems formidable.
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The Wheeler-Feynman theory, starting with fields symmetric in time, obtained the Lorentz-Dirac
equations of motion, which use retarded fields only, together with a condition on the total Geld of all par-
ticles in the universe. It is shown that if the Geld acting on a particle produced by all other particles is static
but not zero, no motion of the system satisfying this condition exists. Some implications of this result for
the physical interpretation of the Wheeler-Feynman theory are discussed.

ECENT attempts to obtain the force of radiative
reaction on a moving charge in classical electro-

dynamics have proceeded from two diferent view-
points. One is that of 6eld theory, which considers the
totut held at all points in space to be the fundamental
physical quantity. The other is that of action at a
distance, which considers only the forces exerted on a
charge by other charges to be physically meaningful.

The 6eld theoretical point of view was 6rst applied
successfully to the problem of the motion of a point
charge by Dirac, ' who succeeded in obtaining the equa-
tions of motion 6rst found by Lorentz on the basis of a
model of an extended charge. These equations can be
be written

~a&a &a Z retFr &a +3&a(&a +&a ra )r (1)
k&a

where „tp&~' is the retarded field of the kth particle
evaluated at the position of the uth one, and where we
have assumed that there are no fields present except
those due to charges.

The first derivation of the Lorentz-Dirac equations
on the basis of action at a distance is due to the absorber
theory of radiation of Wheeler and Feynman. ' This
was achieved taking the forces on the charges as deter-
mined by half the sum of the retarded and the advanced
field, while the previous field theoretical derivations all
had been based on the use of retarded fields alone.

In a previous paper' it was pointed out that the need
for the exclusive use of retarded fields for the explana-

' P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).' J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. 1?,
157 (1945).' P. Havas, Phys. Rev. ?4, 456 (1948).

tion of the radiative reaction arose only in the 6eld
theoretical derivations for the one-particle problem, but
that the considerations of Wheeler and Feynman on
the total 6eld due to all particles are applicable to field
theory as well as to action at a distance. It was con-
cluded that one can obtain the Lorentz-Dirac equations.
in both theories starting with 6elds symmetric in time,
in spite of the fundamentally diferent underlying
physical ideas.

It was noted, however, that there was not complete
equivalence of the retarded and symmetric cases. The
considerations of Wheeler and Feynman led to the
symmetry condition

P reeF&"&= P aq„F&'& everywhere.
ill It all k

Therefore the solutions of (1) are subject to this con-
dition in the symmetric case both in held theory and in
action at a distance, while there is no such restriction
imposed upon them in the retarded case.

It appears that present mathematical methods are not
powerful enough to enable us to discuss the eGect of
this restriction in the general case. 4 We shall only discuss
the case that the eGect on a single charge of all other
charges in the universe is that of a static field, i.e., that

g r«F&~&=const= P a&,F&"& everywhere. (3)
k&a kgb

From this and condition (2) we must have

„&F( ) =,„d F(' everywhere.

4 For a discussion of some of the difficulties of the two-body
problem, see P. Havas, Acta Phys. Austriaca 3, 342 (1949).


