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The rate of thermal ionization of an electron trapped on an impurity atom is treated on a quantum
mechanical basis. From the standpoint of an adiabatic approximation, the multiphonon transitions are
attributed to the dependence of the atomic vibrations on the electronic states. Approximate formulas based
on an Einstein model are derived for the total ionization rate by using a generating function which is in-
timately related to density matrices. It is shown that the rate can be expressed as 2S6(m/3f)co(p/2)«f'I'g"
exp( —~0/kT) for low temperatures, where m is the mass of electron, M that of the atom, co the frequency
of atomic vibration, ~0 the energy of ionization, and p is the fractional diGerence of the frequencies of atomic
vibrations in the trapped and the ionized states, which can be of the order 0.1. For high temperatures we
can expect a similar formula to that given by the activated states theory. Generally, we have reasons to
expect much greater rates than those given by Goodman, Lawson, and Schiff.

INTRODUCTION

N semiconductors and luminescent materials, electron
- - traps play important roles in various electronic
processes. The trapped electrons can be thrown up into
free states by absorbing the energy of incident ligh't, of
impacting particles, or of the vibration of surrounding
atoms; and conversely, a conduction electron can be
trapped at a trapping center, radiating part of its
energy as a photon or phonons. Quantum-mechanical
theories of such elementary reaction processes are
needed for thorough studies of solid-state electronics.

In this article, we con6ne ourselves to the study of
the third process mentioned above, that is, the thermal
ionization of trapped electrons. To clarify the nature of
this process, one has to consider the interrelation of the
electronic and vibrational states of the crystal in more
detail than in the usual cases, such as in the theory of
electronic conduction, because, in contrast to the latter
process, thermal ionization is essentially a multiphonon
process.

Twenty years ago, in his theory of the dissipation of
light energy absorbed in insulating crystals, Frenkel'
pointed out that slight differences between the modes of
lattice vibrations in the electronically excited states and
those in the ground state are responsible for the multi-
phonon emission which takes place when the electron
goes back to the normal state. Moglich and Rompe, '
on the other hand, insisted that the higher terms in the
expansion of the interaction potential between the
electron and the lattice give the probabilities of multi-

phonon jumps. Their theory was used by Riehl' for an
explanation of luminescent phenomena. Mathematical
diKculties, however, forced them to forego a quanti-
tative treatment and to content themselves with a
qualitative discussion.

*On leave from the Department of Physics, University of
Tokyo, Tokyo, Japan.' J. Frenkel, Phys. Rev. 37, 17 and 1276 (1931); Physik. Z.
Sowjetunion 9, 158 (1936).

~ F. Moglich and R. W. Rompe, Z. Physik 115, 707 (1940).' N. Riehl, I'hysik und technische Anmendungen der Lumineszenz
(Uerlag. J. Springer, Berlin, 1941).

More recently Goodman, Lawson, and Schi84 pre-
sented a simple theory of the thermal ionization process
in semiconductors along similar lines to that of Moglich
and Rompe. Their calculation shows that the ionization
rate will decrease by the factor 10 ' as the ionization
energy increases by k~, that is the energy of a phonon.
This leads one to a surprisingly small probability for
the thermal ionization process of impurity levels.

The writer feels that the latter analysis is inadequate,
for reasons to be clarified in the following sections.
Hence, he wishes to present another theory concerned
with the same problem, based on the idea of Frenkel,
but di6'ering from it in some essential points. Owing to
mathematical difhculties, we also do not give any
detailed treatment of actual crystals but confine our-
selves to a discussion of a simpli6ed model. Our result,
however, shows that we can expect much larger prob-
abilities for the multiphonon jumps. This conclusion will
be important for the understanding, for instance, of
semiconductor recti6ers. Moreover, the theory pre-
sented here will be interesting as an example of a purely
quantum mechanical treatment of the reaction rate
problem. The use of density matrices for such problems
proves to be very helpful.

I. COUPLING BETWEEN THE LATTICE AND
THE ELECTRON

Generally speaking, the Hamiltonian of a polyatomic
system is of the form

B=Hst+II, +V,

where Bg is the sum of the kinetic energy terms of the
nuclei and their interaction potentials, H, the similar
expression for the electron system, and V the inter-
action energy between the nuclei and the electrons. As
is well known, we can seek the eigenstates of the
Hamiltonian along the lines of the adiabatic potential
method. Considering the coordinates R of the nuclei
as 6xed, the eigenvalue equation,

[H„+V (r, R)jest (r, R) =Zt'(R) yt (r, R),
' Goodman, Lawson, and Schiff, Phys. Rev. 71, 191 (1947).
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gives the adiabatic potential E((R) for the lth elec-
tronic state. Then in this electronic state the motion
of the nuclear system is determined by

I II~+E,'(R) ji.,„(R)= E,„i,„(R). (3)

Thus a quantum state of the whole system is specified
by the quantum numbers l and z, and the wave function
takes the form

+(,(r, R)=q((r, R)t („(R).

As shown by Born and Oppenheimer, ' this wave func-
tion is a good approximation for stationary states.
Wigner and Pelzer' have also shown that the adiabatic
method is justified for some chemical reactions under
certain conditions.

It is clear, however, that we must look for the per-
turbation causing the transition between di8erent elec-
tronic states just in the approximate nature of the wave
functions given by Zq. (4) if we are interested in such
processes as thermal excitation. In fact, we can write

II@E„(r,R)=LII~+E('(R)]i g„(R)p((r, R)
=E(„@g,+II'@(„,

to another, accompanied by a transition in the quantum
states of the nuclear motion. '

The ordinary time-dependent perturbation method
gives at once the transition probability from the initial
(l, v) to a tjnal (l'v') state as

m(lv —&lY)=(2v/k) I(lvlIPllY) I'pt;

where pg is the state density of the final state, and the
(l'v') must satisfy the law of conservation of energy,

(10)

In the ionization case, the final state is that in which
an electron is set free. Hence, p~ is approximated by

pt =4v.Qm*kk/k',

where 0 is the volume of the space under consideration,
m* the eGective mass of the free electron, and k its wave
number.

The idea outlined above can be widely applied to
other problems, but at present we confine ourselves to
a treatment of a simplified model similar to that dis-
cussed by Goodman, I.awson, and Schift. 4

where
II Ftv=IIRi E~gl pIJIBfle)

II. A SIMPLIFIED MODEL OF TRAPPED ELECTRONS

does no't vanish because of the differentiation operators
in Bg. Thus we are forced to seek a solution of the form

@=+a,„(t)+&„(r,R). (6)

Inserting 4' into the time dependent wave equation,
we obtain the equation,

v7u4. =+(lv I III l'v') a~ „,
l'v'

(7)

where the relation,

(lvlII I
l'v') =Eg„v&,, & „+(lvl II

I
l'v'),

holds because of the orthogonality relations

(8)

"qg'(r, R)q E.(r, R)dr=8, p,

f'(.*(R)t („(R)dR=b„„.,

which follow from Zqs. (2) and (3).
From a physical point of view the eigenstates de-

scribed by Zq. (4) must be considered as "good."
Nevertheless it is important to recognize that they are
not stationary in the exact sense, and that the whole
system oscillates to and fro among various good quan-
tum states of almost the same energy. This should be
interpreted as the transition from one electronic state

~ M. Born and F. Oppenheimer, Ann. Physik 84, 457 (1927).
. Pelzer and E. signer, Z. physik Chem. $15, 445 (1932).

Suppose that a substitutional impurity atom creates
a trapping center, where an electron can be trapped
with a localized wave function po. Strictly speaking, po
is a function of the configuration of all the atoms in the
crystal. However, to clarify the nature of our problem
and to get a simple approximation, we assume there that
only the instantaneous positions of the impurity atom
affects the wave function yo strongly and that the
dependence of ego upon the motion of other atoms can
be neglected. Thus, the wave function po is regarded as
a function of r and R, which are the coordinates of the
trapped electron and of the impurity atom, respectively.
Moreover, we introduce another simplification by using
an Einstein model for the vibrational motion of the
atoms. In a more rigorous theory this model should be
replaced by the Debye model.

With such a simplified model, it is clear that the
diGerence of the modes of vibration, that is the difter-
ence of the vibrational frequencies of the central atom
in the ground and the excited electronic states, is the
cause of the multiphonon jump in the process of thermal
ionization.

The Hamiltonian of the simplified model will be

7 This &oint of view has also been adopted by K. Huang and
A. Rhys Proc. Roy. Soc. (London) A204, 406 (1950)j, who have
discussed the light absorption and nonradiative transition of
F-centers. Assuming a continuum model of a crystal they have
treated the vibrational motion of the nuclei as lattice waves,
which is, in principle, more rigorous than the Einstein model
assumed in the present paper, and they gave the probabilities of
nonradiative transitions in terms of the difference of the equi-
librium positions of the lattice atoms between different electronic
states. The author was not aware of their work when he prepared
the present paper, .-and he wishes to leave detailed discussion to a
later paper.



THERMAL ION IZATION OF TRAPPED ELECTRONS 931

written as

Z= —(&ri'/2M) &p R+ Up(R) —(fz'/2223) 6„
+V'(r)+ V(R—r), (12)

where M is the mass of the impurity atom, and Up(R)
its interaction with the surrounding crystal atoms.
V(R—r) and V'(r) mean the Hartree fields of the
electron associated with the central atom and the
neighboring atoms, respectively. Although in fact V'(r)
depends on the configuration of the surrouriding atoms,
we have not taken this into consideration in our present
simplified model.

Goodman, Lawson, and Schift have assumed that

V(R—r) =Zep/) R—r ~,

and that R can be expressed as

where P is the momentum operator of the central atom
and y that of the electron. Thus the matrix element in
Eq. (9) is given by

1
(Ov)B'( kv') = ——~dRf'„„.*Pip„dry&, *ypp

1
dRt p„.*f'p„drppp*ppppp, (15)

M

where tp. and f „pare the eigenfunctions of a three-
dimensional isotropic harmonic oscillator, with dif-
ferent frequencies for the ground state pp and the
ionized state y~ of the electron.

For simplicity, we further assume the wave functions
of the electron to be hydrogenlike,

R= Rp+8R= Rp+P; a; expLi(p&, t—k,Rp)]. yp
——(ap/pr)& ezp( —a~ r—R~), (16)

Thus, expanding U in a power series of bR, they ob-
tained the probability of the multiphonon jumps from
the higher terms of the expansion. It is essentially at
this point that the author feels their treatment is
inadequate, since the electronic state of the trapped
electron should follow adiabatically the changes in R.
It is clear that any periodic displacement of the nucleus
of a hydrogen atom cannot cause the ionization of its
electron, unless the frequency is very high. It is true
that the adiabatic approximation breaks down if the
electronic energy of the excited state is very near to
the ground state, in our case, for example, if the ioniza-
tion energy is very small. In such cases, both theories,
that of Goodman, Lawson, and SchiG and that of the
writer, will give a large probability just for m co,

which shows that the trapped state has no real meaning.
But for other cases the two theories give definitely
different pictures. It should also be noticed that the
situation is diferent for the scattering of metal electrons
by lattice waves. In this case the Bloch waves of elec-
trons remain a good approximation even for a deformed
lattice, and the excitation of a few electrons has no
effect on the modes of the lattice vibrations, so that the
ordinary conduction theory is justifiable from a physical
point of view. However, in our case, so long as we con-
sider the wave function of the trapped electron to be
localized around the impurity atom, we have to admit
that the ionization definitely changes the binding of
the impurity to its neighbors.

From the'standpoint adopted in Sec. 1, we take

W l Iel= &(&'/2M) (i-&i—l i l. itpl it24 Rh.), —(13)

for the reasons explained above. For our simplified
model, it&p is a function of (r—R), so that we may write

for the trapped ground state, and to be plane waves,

yp ——e'"'/0&

for the free states. Then, we obtain

( ap q & Spra

(capri (ap+k2)2

(17)

n=Mp&/tp, n'=Mp&'/5, (20)

(v; i v )= f'ohio dX;,

(
Lv;/v j=(nn')-&/ v; v

BX;

a~a
&t&py2&t&pdr = —l32k2( eiRR (19)

4 Qpr) (a'+)P) '

Inserting these in Eq. (15), we may take exp(ikR) 1,
since the higher terms of the expansion of exp(ikR)
can be neglected because of the localized nature of
f pv and fkv' v

The vibrational wave functions of the central atom
are of the form

f ov f ovl(X3) t
—o—v2(X2) f ovp(X3) &

f pv'= fkvl (Xl)fkv2 (X2) t l&v3 (X3)&

where X», X2, and Xa are the three orthogonal coor-
dinates of the atom, and fov; and f'2v are the eigen-
functions of harmonic oscillators in quantum states
v; and v,

' with proper frequencies co and ~', respectively.
For brevity, we introduce the following notation:

VR'pp —Vt pp.

Hence Eq. (13) is of the form

If't p &t2p= —(1/M)(pfp 'p&t&p —2t'p p'&t&p), (14)

8
= (nn )

~
fovv fi&v&'&dX&'&

8$g

pp @2/2223a2 pp Q2p2/2223

(22)
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With Eqs. (11), (15), (18), and (19) the transition prob-
ability (9) becomes, after simple calculations:

~ 5/2~ 3/2

(0~»') =» I [» I
»'](»I»')(» I» )

&0 &I

To calculate the function F(x), we introduce here its
generating function Z(7l) defined by,

Z(ll) =P.F(x)e "*, (34)

which can be transformed as follows: By the condition
(27)

where,

03/2gI 5/2

+ v2 I (Vll Vl )(t 21 V2 ) (t31 V3 ) I
',

t-'0 &/

(24) Z(X) =Q, F(x) exp[ 7—(vt+v2+vp+ 23)-

+7 (~'/~) (»'+ V2'+ V3'+-,')]
vl 64——(m/M) (&ltp') i, v2 ——32(m/M)'(pp/It) (25)

In Eq. (24), the second term may be neglected for all
.practical cases, because the ratio v2/vl turns out to be
23(m/M)[pp/A(iptp')'], which is only of the order of
magnitude 10 ' if we take m/M-10 ', and pp 1 ev.

The total rate of the thermal ionization 8 & is given
by the sum of tv(0v~»') over all the initial states
weighted by their Boltzmann factors, and over all the
final states which satisfy the condition of energy con-
servation (10). Thus, W, is given by

W (x )=p' g' tv(0e+»')-e ~'"'+"'+""(1 ee)—', (26)
V1 V3

= 2" & I L» I
»')

I
'1(vt

I
v.')

I
'I (v31 vp')

I

'
V1 V3

X p{—(P+&)( + + +-,')

+7(~'/~)(v +l»'+V +3-')+'0)
=e""[ZZ I [» I

»']
I

' exp{—(&+~)(»+2)

+~( '/ )("+!)}][ZZ I ("I .') I'
v2 V2

Xexp{—(p+ X) (v2+ 2)+ 7 (cp'/tp) (v2 +2) )]
x [2 Z[(vpl v ')

I

' exp{—(&+l )(v + l)
where the summation follows the conditions V3 v3

+X(pl'/pl) (v3'+ 1)}]. (35)

and

(vt+v2+vp+2) (vl+V2+v3+2)(tP /tP)

(3 +3 )/g~ —x (27) Using the well-known Slater sum for a harmonic
oscillator,

x=xp= pp/Alp.

The total rate W3(xp), Eq. (26), may be written as

W3(xp)= Q W(x), (29) = (2tr sinh$) & exp[ —33 (tanh23$) (x+x')'

(23)
C(*Ix', 5)—=Z {.(*)i.(x') exp{—k(v+-:))

V=O

where,
X &so —-„'(coth-,'$) (x—x') '], (36)

=( ')& ~c( &XI &x', p+~)J

X@(n'~x
I
n'~x', —((p'/tp) X)dxdx'

III. EVALUATION OF THE RATE OF THERMAL
IONIZATION

In this section, we seek closed expressions for W(x)
and Wt(xp). For this purpose, as shown below, it is most
convenient to use Slater sums or density matrices.

Define a function F(x) by

= [2a(~, 7)]-', (37)

and,

Z. 2"I Lv I "]I

' exp{—(&+l )(v+ 2)+&(~'/~) (v'+k))

W(x) = (1—e e)' P' P' tv(0v~»')e e "'+"'+"'
& (30) we can easily derive the following formulas,

v1 V3 '

the summation being taken over all integral values of +~+~'I (vlv ) I' p{ (&+")(v+2)+~(pp'/tp)(v'+2))
vp' that satisfy the condition (27) for a fixed

value of x. In these expressions P means, of course,

p = I'3pp/13T. (31)

F(x)= (1—e e) 3 P'
V1

xP'1[vi I vt'](vtl v2')(vpl v3') I'e e'"'+"'+"", (32)
V3

in which the summation has the same meaning as in
Eq. (30). W(x) is then given by,

~ ~(:Xln&X', p+q)
BX BX'

XC'(n'~XI n'~X', —(pp'/ )7l)dxdx'

W(x)= vtxpp~'(x —xp) ~ x 3F(x),

as seen from Eq. (24).

(33) =2%2{(1—p) & sinh(&+X) —(1—p)& sinhX)

X{g(P,~))-~, (33)
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with the function g(P, )i) defined by,

g(P, X) =cosh(P+X) cosh(1 —p)X
—-', [1—p+1/(1 —p)] sinh(P+X) sinh(1 —p)X, (39)

and the parameter p defined by

cu'/(0 = 1—p.

Inserting Eq. (37) and Eq. (38) into Kq. (35), we then
arrive at a closed expression for the generating function
Z(X), which is conveniently written as

Z(X) = 2"'(sinh-', ti)'Z (X)Z (X), (41)
where

Zi(X) =2{(1—p) ' sinh(/+X) —(1—p)'* sinh(1 —p)X},
(42)

FIG. 1. The function
X 0(P), which is the real
solution of the equation
g(p, —X0) =0 (see Eq. (49)).
The parameter p is as-
sumed to be 0.1. Curves I
and II are the approximate
solutions for high tempera-
tures and low temperatures,
respectively.

0 I I . 1 I

0 I 2 3 4 5

is obtained by the well-known inverse formula of the
bilateral Laplace-transformation,

G(x) =
1 t'" dX

Z(X)e"~—.
X

From this, after a formal differentiation, we obtain

jQO

F(x)= ' Z(X)e~*dX,
2 /PE $QQ

(45)

Z2(~) = {g(P &)} "'. (43)

The function F(x) in Eq. (32), has linite values only
for a discrete set of values of x defined by Eq. (27), and
therefore, the series of Eq. (34) is essentially a Dirichlet
series. Hence, the step-function defined by,

G(*)= Z Fb),
y&@

interested in the positive values of x, only the negative
'zero is to be considered. It must be noticed here that
an exact evaluation of Eq. (45) or Eq. (48) is of little
importance for us, because it leads to the series of Eq.
(33), where the matrix elements may also be evaluated
by direct integrations or by use of generating functions
of Hermite polynomials. Such a series, in itself, is not
tractable because it cannot be summed to give the
desired rate W~(xo). In fact, the merit of the method
introduced here is that it is a short cut to a convenient
approximation. From this standpoint, we evaluate the
integral of Eq. (48) in some approximate ways.

The function g(P, X) can be transformed to

g(P, X)=cosh(P+ pX) —1

2
P

sinh(P+ X) sinh(1 —p) X

2(1—p)

(2-p)'
cosh(P+ pX)4(1-.)

where F(x) is, however, to be interpreted as constructed
from an infinite set of delta-functions. By the convolu-
tion theorem the inverse transformation, Eq. (45), is
given by

F(x) = 2'~'(sinh-', P) ')"fi(x')f2(x—x') dx')

cosh{(2—p) X+P}. (49)4(1-.)

where

p joo

f,(x)= I Zi(X) e"~dX
2Ãz &~I3/(2p —p') (51)

for small P provided that p) 0. Equation (50) remains
valid even for p(0, but Eq. (51) must be replaced by
another formula if p &0. On physical grounds, however,
p ls usually expected to be positive, that is, co'&or.
Figure j. shows the numerical solution X0 of the equation

g(p, —Xo)=0

for p =0.1. The function g of Eq. (49) can be written as

= (1 p) &{es8(x+—1) e P8(x 1)—}-—
—(1—p)'{~(x+1—p) —b(x—1+p)}, (47)

aild

f,(x) = i"
[g(P 7,)j-s

27I 2 —~ao

The function g(P, X), Eq. (39), has an infinite set of
zero points because of the discrete nature of F(x). On
the real axis it has only two zeros, one on the positive
side, and the other on the negative side. Since we are

cosh((2 —p) X+P}
g(P, X)=C 1—

cosh{ (2—p) Xo—P}
(52)

Now we assume p to be small, which will be true for

(46) most cases of interest. Let the negative zero point be
—) 0, which is given approximately by

Xo /+log[2(1 —p)~/~ p~ j (50)

for large P, and by
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3 4 (48) will be given approximatel bey y

-10
O

-20

X o = II.4

FIG. 2. Thermal ioni-
zation rates as functions
of P = Aalu jkT, calculated
from Eq. (5.8) for some
values of x0= 60/kM, p
being assumed to be 0.j..

I&{x-(2—p)n}, (55)

which is obtained
&+&

y ma»ng the transformation

use of Fq (54)
& ~

Ilia ing+ p =s and expanding [g(p ) )]—p/p

nserting Fq. (55) into Fq
mation for F '

e get an approxi-

1—p, 3—2p, 5—3
or x, w ich has positive values at x= —1,

x= —1+p, 1, 3— 5—2

—p, —p, ~ ~ ~ and negative values at1, , —p, —2p, . As defined in Eq. (33)
owever, F x must -

'
s.

contradiction ar
t ave only positive values. Th

arises from our approximation, so it is
s. 1S

more reasonable to intro

—(n 1)p—to give F(x) for x= (2n —1)(1——,'p). Thus a
reasonable approximation for F(x) will be

F(x)=Q F„8(x—a„), a„=(2n —1)(1—-', p),

where
(2-p)'

cosh(P —pXp) —1.
4(1—p)

(53) where

n=0, 1, 2, (56)

. If) ~~11, Eq. (52) can be approximated by

g(P, )i)=C[1—e &' »i'+"p&~
)

for the domain (R) ~—) . Henc thence, t e integral of Eq.

Xo

l 1 l

4 6 8 10 12 14

Fp=2PI'(sinhpiP)'C "'{(1 p) ~e—e 1—p—i
)

F =2P~'(sinh —'P)PC —"' —"—'
—5 2

n 2
n—

~
—Xp (2—p) (n—1)

En-1&

)&[{(1—p) '—(1—p)
—le—e}+(1+3/2n)

&&e "'" "{(1—p) 'e' —(1—p)'}l (57)

Eq. (56) gives the total rate W&(xp) as

W, (xp) =
) W(x)dx

SQ

=ii P F„xpP"(u„—xp)P"a„—' (58)
an )XO

o 10

-20

FIG. 3. Calculated rates of ho thermal ionization as functions of x0
for some given values of P.

which converges ra idl fg p y for Xp~l. According to Eq.
W& x0 s ows sudden decreases at th

0= „. This detailed behavior is not ho
a e points

ticularl si ni6
is no, owever, par-

y sign' cant, because it originates fr
ap roximations.

rom our

pp tions. The rigorous functions W~(xp) will be
much more complicated. S h y,o, rat er arbitrarily, we
calculate Wg(xp) for xp

——0.5 1.9 38
andre 1an replace W, (xp) by a smoothed function. The resu

~ ~ ~

If p9 is very small, Xp will be also small. In such cases
g(, X), Eq. (39), or (49), is approximated by

g(P, l ) =kP'{1-(2p/P)(1-kp)l } (59)

Thus, the integral of Eq. (48) turns out to be

fp(x)=2'i'P 9. "'x+'e i'*/I' 5 2,p e, (60)
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where ) o is given by Eq. (51).Then Eqs. (46) and (47)
give

F(x)=— e "'*[(1—p)
'*

~'1(5/2)

X{(x+ 1)te// )o—
(x 1) eo/—/+&o}

+.(1 p)1{(x 1+p)ferro(1
—o) (x+1 p)/)e

—xoli —o)]

which, after neglecting p, is approximated by

4 y 5/2& —Xn(~—1)

F(x)= -- — -{(x—1)&+(x+1)1e 2™w}, (61)
1(5/2)

where the 6rst term in the bracket should be put equal
to zero for x &1 and the second term for x & —1.

The total rate W, (xo) is then found to be

W, (xo) = vi, ~ F(x)xoo"(x xp) ~x—odx,

which cannot be evaluated irl a simple form. However,
if x, is large, W, (xo) is roughly approximated by

dominated by the factor

Wo(xo) oo (4) i/P) exp{—Pxo/(2p —p') }
4Py

exp kT . (66)
2p p

Intermediate to these two extremes, Wo(xo) exhibits of
course a more complicated behavior.

The simple results of (65) and (66) can be easily
interpreted. Figure 4 shows the energy con6guration
diagram of our modeL The energy factor of (65) is
simply the excitation probability from the level 2 to
the level B. On the other hand, the entropy factor (or
frequency factor) is governed by the square of the
matrix element between two quantum states of oscil-
lators with the difference of quantum numbers xo and
with fractional difference p of the proper frequencies,
and is roughly proportional to (-', p)*' '.

As shown in Fig. 4 the potential curve of our ground
state crosses the continuum of ionized states at C,
because we have assumed p to be positive, which means
that the curvature of the bottom of the continuum is
smaller than that of the ground state. The energy of

W (")="(4/~) -"* {(1-»*.)' "+(1+1/*.):-"}
(63)

and if 0 &xo &1, it is approximated by

W (xo) (4 /P)[xo"'(1 —xo)'+(1/1/x, )te i ]. (64)

+IG. 4. The simplified
model of adiabatic po-
tentials assumed in this
theory.
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IV. DISCUSSIONS

Equation (63) and Eq. (64) are not good for very small Xo,
but they should be correct, at least in order of magni-

the intersection C is just equal to

tude, if ) 0 is not too small, that is, except for extremely M

high temperatures.

Our model is too simplified to apply quantitatively
to any actual cases. However, it seems to have suc-
ceeded in clarifying some important features of the
thermal ionization process, so it might be worth while
to add some remarks here.

The most remarkable point is the behavior of ) 0 with
changes in P [Eqs. (50) and (51)].As shown in Eqs.
(57) (58) (61) (62) etc. , Xo has a dominant effect on
the rate Wo. If P is large (and consequently Xo is large),
Eq. (58) may be replaced by its first term, which may
be simplihed to read

p
"Xn—I

~
—PX0Wo(xo) 4) i

2(1—p) &

~4& (p/2)eole&u ie etolkr (65)——

if we remember that P is also large and use the approxi-
mation of Eq. (50). For small P, on the other hand, we
can apply Eq. (51) so that the rate [see Eq. (63)] is

Hence the expression (66) can be written as,

Wo ~ 256(o/o/M) (k T/fi) e '*/'", —

which is to be compared with

Wo =K(kT/h) e ~~t/or

—K(PT/jg)eO StI//oe eo//or- (69)

a formula so well known that it is often considered
universal. Equation (68) means that for high tempera-
tures the transition may take place mostly over the
activation states; this seems quite reasonable. '

However, it must be realized that we should be led
to an erroneously small rate of thermal ionization by
applying Eq. (68) or Eq. (69) at low temperatures.
Actually, in such cases, transitions occur not, by sur-
mounting the potential barriers but through a quantum
mechanical resonance, something like a, tunnel eGect.

It must be admitted here that our treatment is not
8 This fact can be established in general. A detailed discussion

vrill be given in a later paper.
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really satisfactory for the high temperature case. In
fact, the simple assumptions of Eq. {16)and Eq. (17)
cease to be valid for con6gura, 'tions where the atom
moves beyond the cross points C, because there the
ground level becomes higher than the lowest energy of
free electron states, which means that the trapped state
may cease to exist or at least it should be considered
as a virtual state, something like that of a disintegrating
O.-particle. In this sense the adiabatic potential E~ in
(5) might be considered as a complex number, or we
might add some term to the perturbation of'Eq. (5)
which would represent the instability of the ground
state- for large amplitudes of the atom. To be rigorous
we must also be careful about the form of the wave
functions. However, the writer prefers not to investigate
these points at present, beca, use such an investigation
would inevitably introduce additional ambiguous
assumptions.

In our theory, the rate of thermal ionization is
governed essentially by the dependence of vibrational
modes on the electronic states. As mentioned before,
this idea is in sharp contrast to the theory of Goodman,
Lawson, and SchifF. 4 The fractional change of frequency
p, (40), is to be calculated from the quantum mechanical
basis. Such a calculation, too ambitious for our sim-
pli6ed model, would be very important for a more
quantitative theory. Hence we must content ourselves
with a rough estimate. In E-type semiconductors of
silicon and germanium, the impurity atom has one
more electron than the atom of the mother crystal does.
In this state we may suppose, as a crude approximation,
that the bond degree between the impurity atom and
its neighbors is 5/4. If we assume that the force constant
of covalent bonds is proportional to the bond degree,
the ratio of the vibrational frequencies of the central
atom in the ground and in the ionized state will be
(5/4) l, which gives p=1—(4/5)'=0. 108. This suggests
that it is not unreasonable to assume p to be the order
of magnitude 0.1.

In Figs. 2 and 3 we have plotted W~(xo) as a function
of xo and P, where for illustration we chose arbitrarily
p=0.1. It will be seen that we have the right to expect
much la, rger rates of the thermal ionization process.
Py ls of the ordel of j.0 sec ~ so taking $0=3, 8 g will bc
10' sec ' for lie/kT=0. 5, 10' sec ' for k~/kT 1, and
10' sec ' for k~/kT 2. Of course these figures depend
on p, but the eGect of changing p can easily be estimated
from Eqs. (65) and (66).

Actually the wave function of the trapped electron
is not so concentrated as assumed here, but it may
extend over many atoms surrounding the impurity.
This circumstance requires a generahzation of the
model to include many atoms, which might be very
complicated. '

We have hitherto discussed only the direct transition
from the ground state to the ionized states. There may
be some excited states of trapped electrons. However,
it is not clear a,t present whether such excited levels

may play the role of a staircase for the liberation of the
electron, and consequently result in an increase of the
rate of ionization. Analogy to the theory of recombina-
tion in discharge processes will help in developing the
theory in this direction. Unfortunately, however, the
latter appears to be in a rather unsatisfactory state
from a quantum mechanical point of view.

Finally, it seems necessary to add remarks about the
role of the temperature radiation for the establishment
of the equilibrium distribution of electrons. In fact one
may expect it to be dominant in some cases. I.et us con-
sider the dipole transition of a hydrogen-like 1s-state
to a 2p-state in a medium with dielectric constant »

at temperature T. The transition probability is given by

hei, 2„——0.94X10'» '~'(e»"'~r 1) ' —sec ' (70)

where hv is the energy of excitation, which has been
assumed to be (3/8)(e'/»'ao), ao being the Bohr radius.

On the other hand, the total cross section of photoioni-
zation by light of frequency v is given by

g =64&(137'»@'|t0(I/hv)"', (71)

if roughly estimated by the Born approximation, where
&0 is the classical cross section of an electron, that is,
6.5&(IO " cm2. It should be mentioned here that the
radiation field is considered, both in Eq. (70) and Eq.
(71), as that with velocity e=c/g» instead of c. The
total rate of photoionization caused by the temperature
radiation is given by

8s v'dv
W,~= P(v)~.-r~» v'(e""I"r—1)

which is roughly approximated by

W,.e 1.5X10 "»"'(kT/Xo'k)e-r~ "r, (73)

if I&&AT, and by

W,.e~1.5)&10 " ' 'c '(kT/k)'&(const (74)

if I«kT. In Eq. (73) ) 0'is the maximum wavelength
of the photoionization in vacuum, and the constant in
(74) is the integral Jo"x'(e*—1) 'dx.

These expressions should be compared with the
ionization rate 8 & caused by the multiphonon jump
discussed above. Generally speaking, the energy I of
photoionization may be diGerent from eo for the thermal
ionization, but in the case of nonpolar crystals these
two may be considered as the same. For illustration, if
we take»=16, Eq. (73) or Eq. (74) gives W„e 10'
sec ' at room temperatures. We cannot give any definite
conclusion whether this rate will prevail in the multi-
phonon process, but it will be seen that this gives a,

lower limit for the relation frequency of germanium
recti6ers. It should be noted that the high dielectric
constant favors photoionization, through the increase
of the cross section and also through the decrease of the
ionization energy.
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The excitation probability (70) also gives a pretty
large rate for the numerical example above mentioned.
It will be e ""~~~)&10' sec ', which is the order of

10' sec ' at room temperatures. However, it seems
likely that this process plays a more important role for
low temperatures, hv»kT. If the rate of attaining
equilibrium between the excited level and the ionized
states is assumed to be much larger than that between
the ground and the excited levels, the probability (70)
is rate-determining, and it may compete with the multi-
phonon process, which depends in fact on the mag-
nitudes of the photo-exciting energy and the thermal
ionization energy and also on the magnitude of p, or
more generally on the difference of vibrational modes
in diAerent electronic states.

However, it should be noticed that the rates caused
by temperature radiation are very small if the excitation
energy exceeds 1 ev or so. So we are forced to believe
that the thermal excitation energies may sometimes be
very small. For example, Button, Heller, and Maurer'

' Dutton, Heller, and Maurer, Phys. Rev. 84, 363 (1951).

took this point of view for the explanation of their
experiment on KCl, which showed that free charges
are liberated from Vl and Ii centers at —132' in KC1
crystals irradiated by x-rays at liquid nitrogen tem-
perature. These authors concluded that the thermal
ionization energy of V~ is only one-tenth of its optical
excitation energy, which seems somewhat surprising.

The writer wishes to suggest another possible ex-
planation. In this kind of experiment it seems important
to notice that the crystal is not in a state of thermal
equilibrium, so that the relaxation process taking place
in heating may possibly supply energy to liberate free
charges from deep traps. To clarify these points, further
experiments would be required.

This work was undertaken three years ago but has
been completed during the author's visit in the United
States. On this occasion, he wishes to express his
gratitude for the opportunity to work for a year at the
Institute for the Study of Metals of the University of
Chicago. Also, he wishes to thank Professor M. Kotani
of Tokyo University for his interest in this work.
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Measurement of Neutron Densities with Crystals of NaI(T1)
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Crystals of NaI(Tl} were irradiated in a nuclear reactor and the induced activity in sodium and iodine
registered with a photomultiplier tube. It was found that an absolute measurement of the activities can be
made in this way. Since sodium is an almost pure "one over v" absorber the neutron density can be deter-
mined from its activity.

Comparisons have also been made between the sodium and iodine cross sections for capture of thermal
neutrons. With the sodium cross section equal to 0.47 barn, the cross section of iodine was found to be
5.00 barns.

with vo=2. 2.10' cm/sec and oo the value of the cross
section at this velocity. In the region above thermal
energies there will often be one or more resonances, and
we can put

E consider an element with only one stable isotope

~

~

~ ~

~

~

~

which, after neutron capture, gives a radioactive
isotope decaying with a single period. The number of
radioactive nuclei formed when such an element is
irradiated in a neutron flux will be 0 V = O0t'0 'V 0„8, (4)

where o,(v) stands for the pure resonance part of the

(]) cross section. It is assumed that all resonances are
outside the thermal region, so that o„(v)=0 for all
thermal velocities. We may then write

B=Evr n(v) vo(v)dv'
J,

where
E=(1/X) (1—e "'). '

(2)

(5)B=Itvo,v,N+Ev n(v)vo„(v)dv,
0

X is the radioactivity constant of the isotope formed,
t the time of irradiation, v the number of nuclei exposed
to irradiation, e(v) the neutron density as a function of
neutron velocity, and o(v) the cross section of the stable
isotope for neutron capture. In the region of thermal
energies we shall usually have

where

e(v)dv.
J0

a' &' = 0'O'Vo n )

If we work with a pure "one over ~" absorber we can
(3) determine X, the total neutron density, from Eq. (5)


