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background density, while originally very nearly unity,
has now a far greater value, in agreement with the
requirement of (11).

The limit to the excess of density in the condensations
being thus set by the magnitude of the original pertur-
bation (and not the original density), one sees that in
spite of condensations occurring in the highly dense
cosmic Quid early in the 1ife of the universe, conden-

sations of high densities, as envisaged by Hoyle, cannot
be met with at present.

In conclusion, we note that a particularly satisfactory
feature of the present investigation is that we have not
introduced any assumption regarding the pressure, the
pressure gradient, or the mechanism and nature of the
original perturbation. %e have also not introduced any
nongravitational interaction.

PHYSICAL REVIEW VOLUM E 86, NUM B ER 1 APRIL 1, 1952

Convergence of Intermolecular Force Series*

FRANKLIN C. BROOKS)
Sloane Pkysics Laboratory, Yale University, Eem Haven, Connecticlt

(Received November 23, 1951)

The commonly used perturbation method of estimating the Van der Waals forces between atoms is
shown to lead, when carried to the extreme, to divergent results. The method employs an expansion of
the classical electrostatic interaction between the atoms in a series of inverse powers of the internuclear
distance. The divergence arises because this expansion is utilized in regions of configuration space where
it is not convergent. In this paper, the resulting divergent intermolecular force series are shown to be
asymptotic to the true molecular interaction. The divergence is removed in an approximate way and the
second-order attractive energy so obtained is added to the first-order exchange energy between the atoms.
The method results- in an electronic energy curve for H2+ in reasonable accord with the exact result of
Hylleraas and in a new interaction between helium atoms in good agreement with recent low temperature
experiment.

I. INTRODUCTION

~ 'HE Van der Waals force between two atoms, at
an internuclear distance E., is usually estimated

by the use of an expansion of the classical electrostatic
interaction between the atoms in a series of inverse
powers of E. This expansion is considered as a pertur-
bation upon the combined system of the two atoms
and the Schrodinger perturbation theory or the varia-
tional method is employed to evaluate the resultant
shift in energy levels. The shift is identified with the
potential energy of the interatomic force. '

The expansion of the electrostatic interaction between
the atoms is convergent and meaningful only in a
limited region of the configuration space of the com-
bined system. It is, however, commonly employed
throughout this configuration space. This paper reports
an investigation of the uncertainties arising from this
procedure and suggests a method of overcoming them.

Let II~ and HI2 be the (unperturbed) Hamiltonians
of atoms 3 and 8. The corresponding state functions
and energy levels will be designated by P&&'&, E&&'
and P»&", E»"&, where s and t are quantum numbers.
We shall refer the Hamiltonian and wave functions of
each atom to a coordinate system (rectangular or
spherical) with origin at its nucleus. The coordinates
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of charges e, belonging to atom A are (x;, y, , s,) or
(r;, tt, , p;). Those of charges 2, belonging to atom 8 are
($,, 2&;, |;)or (p, , ~;, &&,). The s and i-axes are directed
along the internuclear line from A to B.

The intermolecular force results when the electro-
static interaction

V=+,, , &:;2,/r, ,
between the atoms is taken as a perturbation on the
compound system having the Hamiltonian Hz+Pz,
state functions fz&'f&2&'& and energy levels 8&'&+E»"&.

In carrying out a perturbation or variational calcu-
lation (1) is usually expanded in a series of inverse
powers of the internuclear distance. Margenau' ' has
given some of the lower terms in this series:f
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H. Margenau, Phys. Rev. 38, 747 (1931).
3 H. Margenau, Revs. Modern Phys. 11, 1 (1939).
f The symbol V' is used to denote an expanded form of V.



The terms in the series arise from the interaction of the
various electric multipole moments of the two atoms.
Those appearing in (2) are, respectively, the dipole-
dipole, dipole-quadrupole, and quadrupole-quadrupole
terms.

Recently Carlson and Rushbrooke' have generalized
this result by deriving the following expansion in
spherical coordinates:

PJV'=g e;, g Q -Q»)
s g' ) g=o xg=o g»+»+&

(—I)"&4s (Xg+)I s}!
[(»~+I)(»a+I)3'

three-dimensional isotropic oscillators of dassical fre-
quency v. The wave functions of such an oscillator, in
spherical coordinates, are of the form

4 i =~ i(«) Yi"(~, 4) (4)

where S„i(«} is the norma!ized radial function. The
energy levels are given by

E„i=(2n+l+-', )h « (3)

in which I and 3 are non-negative integers. The single
selection rule which we shall have occasion to use is the
following: The matrix element (nlml«"Y&" 1000) van-
ishes unless m= 0, l= X, and vs= p, .

If the oscillators are in their normal states, as we
shall assume, the 6rst-order perturbation caused by (2),
or more generally (3), vanishes and the second-order
perturbation energy becomes

[ (+~4m~, niilsms [
V'~ 000; 000) ['

2E2
~A, iA, ~A ERAi&+Eneiii —Bhp
eg, lg, mg

In Eq. (3), X& is the lesser of X~ and Xe. Yi,"(8, p) is a
normalized surface spherical harmonic. A term in Eq.
(3) with specified values of X~ and Xe gives the inter-
action between the 2"~-pole moment of atom A and
the 2~~-pole moment of B. If the atoms are electr'icaBy

neutral, the monopole terms vanish when the summa-
tions over i and j are performed,

Expansions (2) and (3) are convergent and meaning-
ful only in those regions of the configuration space of the
compound system where the charge distributions of the
two atoms do not, overlap. If the expansions are used for
all points of con6guration space in the perturbation
calculations, the resulting expressions for the interaction
energy become the 6rst terms of an in6nite series
which is divergent for all values of R.

In illustrating and investigating the signi6cancc of
this fact we shall employ the Schrodinger perturbation
theory only as far as the second-order correction. This
wBl falsify those terms in the resulting intermolecular
force series depending on E ' and higher inverse powers
of E.. However, only the terms in E ' and E. ' have
been found to be of practical importance in calculations
of the Van der %Rais force between nonpolar molecules.

Taking the perturbing energy as given by Carlson
and Rushbrooke, the matrix elements involved in (6)
are all of the form

(ng4mz melisma~«""p"iiYig"Yis &~000 000)

=(5~4m, )«»Y» (000)(n,4m'( p" Yx,—(000). (7)

They vanish by virtue of the selection rule stated above
unless sg =sg=o; ~A =~A, ~a= ~B

& ~A.— ~B—P.
Therefore

e2 Qixie
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X
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X limp, -mg beg, o'b~ii, o. (8)

Employing thc selection rule and the rule for matrix
multiplication:II. DIVERGENCE OF THE SECOND-ORDER

I ERTURm TION METHOD. INTERACTING
HARMONIC OSCILLATORS [(ohNJ«'Yi" [000)f'

= p (oo[«'Yi-"/Nap)(N) pt«Y;)ooo)

(000/ «2iY' wa Y —
mi 000) (000/ 2i

f 000)/4 (9)

The lntcrRct1on of simple harmonic oscillators ls an
example which occurs frequently in the literature of
dispersion forces. Margenau, ' using second-order per-
turbation theory, has found the dipole-dipole, dipole-
quadrupole, and. quadrupole-quadrupole interaction The result of incorporating (8) and (9) in (6) is
energies. We shaB compute the complete second-order
interaction energy and show that the resulting infinite e, (Q»»/4ir)
series is divergent for all R NPR «» ~»~A E

For this purpose atoms A and 8 Rrc taken to bc

4 B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 46, 626 (1950); see also the discussion in R. J. Buehler and
J. 0. Hirschfelder, Phys. Rev. SB, 628 (1951).
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The summation over m& may now be performed by
means of the relation,

mg ~ -l&
L (/A+ mA) (/A . mA) (/B+. mA) (/B . mA) !g

(2/g+2/s)!
(11)

((/~+/s)!]'(2/~)! (2/n)!

which follows simply from the "addition theorem" for
binomial coeQicients. Introducing the explicit form of
Q~g, ~s in (10), we obtain

e4

AEs ———
hpg lg, lg

(2/~+ 2/s)! (000
~

r"~
~
000)(000

~

r"e
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(2/g+1)!(2/s+ 1)!(/~+/Jr)R""+"rr

The ground-state wave function for the oscillator is

(000 [
= (t//sr) & exp( ——,'Pr'); P= es/rrhv (13)

where rr is the polarizability (classical as well as
quantum) of the system Henc. e,

(000( rs'[000) =P '(2/+1)!/2s' /!. (14)

Substituting this result in (12) we fmd

es L2/g+2/sf!
BEs=-

hpRs rg, (e 2s&&+s&e/~ I/s f(/~+/~)

in the perturbation theory (because, after all, we have
used only the second-order correction formula). Rather,
it is caused by the use, in evaluating the matrix elements
involved in (6), of the series expansions (2) or (3) in
regions of configuration space where they are divergent
and meaningless.

We have shown that the divergence occurs in the
case of interacting oscillators where the wave function
is comparatively "tightly bound, " i.e., falls oG as
exp( —rs). It will therefore occur u fortiori in a calcula-
tion of the interaction of real molecules where the wave
functions fall oG only as e ".

Since the divergence is associated with the limited
region of validity of expansions (2) and (3), it will also
eGect a variational calculation which employs these
expansions.

lim R" E(R)—Q C;/R' =0
g-+oo j-0

(18)

III. THE AS&MPTOTIC NATURE OF THE
DISPERSION FORCE SERIES

The considerations of Sec. II suggest the following
question: What is the relation of a divergent intermo-
lecular force series PC;/R& to the true atomic interac-
tion Z(R) 7 If the coefficients C; are determined accu-
rately, the series is asymptotic to E(R) in the sense of
Poincare, This will now be proved in a simple manner.

An expansion of the form PC,/R' is said to be
asymptotic to a function E(R) in the sense of Poincarts
if, for every positive integral S',

or, in terms of I.=/~+/s,

i
X (15) or, equivalently

(QpR) 2 la+2 te

E(R)—g C;/R' =O(R ~ ').
j=0

(19)

22L.I ~.I
When (16) is written out explicitly we obtain

3 e4 i 45 e4 i
BE2=———

2Rs2hs //s 4 Rs3hr Ps
E(R)= y*xydr. (20)

3i5 e4 i 4725 e4 1

8 R"4hv P' 16 R" 5hv Ps Let Vsr' represent the series (3) up to and including the
terms in E. N. If we use V~' instead of the true inter-
action V,"we obtain

(17)
322245 e' i

~ ~ ~

32 R'46hv Ps
E '(R)= ~&*X 't/d (21)

(2~) (2 2) Such expansions are unique in the sense that a given
function E(R) has at most one. ' They are useful for
estimating values of E(R) for large R.

If g(R) is the true normalized ground-state function
for the compound system of the two atoms and
X=K~+&s+V, then

The 6x'st three terms of this expansion are identical
with those calculated by Margenau who employed
them to estimate the magnitude of quadrupole contri-
butions to the dispersion forces between real molecules.

The general term of (16), however, reveals the fact
that the innnite series is divergent for all values of R.
The behavior is not caused by any inherent divergence

where Xrr'= Hg+Pjr+ V~'. It is now easy to show that

E(R)-E (R) =~"e*kV Vjed. -(22)

' E. T. Whittaker and G. N. Watson Modern Analysis (Cam-
bridge University Press, London, 1948)P~./153.



is O(R ~ '). Within the region 0 of con6guration space
where the series {2) and (3) are convergent, V—V~' is
O(R N ') and therefore

J)qPL V—Vw'5@dr =O(R-~-')

Since the wave function goes to zero exponentially at
large distances, the integral over the remainder of
con6guration space is of the order of exp( —pR), p&0.
Moreover,

Employing an approximation 6rst used by Unsold, ~

we replace each denominator in (26) by the constant
e, g&c&x2. Then (26) becomes

~E,= —(ol V'll 0)/. . {27)

With the use of the ground-state wave function for
hydrogen, s "/gs. , and the orthogonality property of
the Legendre polynomials, the matrix element is found
to be

(28)

EN'(R) =T(R)+Q C;/R'
jeesp

where T is a term of order exp( —pR). Hence

E(R)—Q C/R' =O(R ')
j'=0

(24)
(Ol '"l0) = (2K+2) /2'"+'

and, hcncc,
1 ~ (2K+2)!

EEL= ——=- Q— g-2X
eR'& -i 2'"+'(2K+1)

Wc conclude that the dispersion force series, although
divergent, are asymptotic to E(R), and thus are the
best possible representation of the atomic interaction
1n a scr1cs of 1nvclsc powcls of R.

1, ~ (rex
V'= ——P l

—
l
P (cos8), r(R

R&-~ (R)
(25)

Atomic units are employed he, re. LUnit distance=u,
the Bohr radius; unit energy= e'/@= 27 ev.5 Expansion

(25), to which (3) reduces in this case, is uniformly

convergent for r&R.
The second-order perturbation caused by (25) is

, l(il v'l0) I'
DE2= —g'

E;—Ep

IV. REMOVAL OF THE DIVERGENCES. RECALCULA-
TION OF THE POLARIZATION ENERGY

COMPONENT OF THE PROTON-
HYDROGEN ATOM BOND

The divergent, but asymptotic intermolecular force
series Inay legitimately be used. to estimate the force at
su6iciently large values of R, providing not too many
terms of the divergent series are employed. However,
at small values of R even the 6rst term in the series

greatly overestimates the attractive force. Since the
series are the best possible representation of E(R) in a
series of inverse powers of R, we must resort to a new

form of expression for the interaction energy if the
overestimate is to be eliminated.

The signi6cance of these statements can be illustrated

simply with reference to the hydrogen-molecule ion.
Ke propose to study the polarization energy which

accounts for a part of the strength of the bond in this
molecule and. which can be estimated mathematically
in the same manner as intermolecular force.

Consider a hydrogen atom (A) and a proton (8).
The electrostatic interaction V' between these systems

may be wri. ttcn

We now choose c=4/9 in order to bring the 6rst term
of (29) into accord with the known polallzabillty of tlM

hydrogen atom. The first few terms of this expression
then become

AEp= —9/4R' —81/8R' —405/4R8 . (30)

They arc thc monopole-dlpolcq monopole-quadr upojcp

and monopole-octopole terms. Series (29—30) are di-

vergent, as a Cauchy ratio test shows.
l
This is to be

expected since in evaluating the matrix element

(Ol V"l0) we have integrated over all con6guration

space including regions for which r&E and where V'

is divergent and meaningless. )
Coulsons has calculated the interaction for this case

%'lthout r'csol t to Unsold s appx'ox1nlatlon or' spcc1al-

ization to second-order perturbation theory, but still

employing (25) even outside its region of convergence.

His ingenious, but laborious, method yields the again

apparently divergent expression

—9/4R' —15/2R' —213/4R' —7755/64R. ' . (31)

The H~+ case has been selected for consideration here

because of the availability of an exact solution of the

problem, as well as a reliable calculation of the 6rst-
order energy, against which to check the validity of the

approximate methods widely in use for estimating

Van der Waals forces. The exact interaction curve for

the ground state has been computed by Hylleraas. '
The 6rst-order energy, to which d E2 must be added to
obtain an approximate total interaction curve, has

been calculated by Pauling. "This energy which results

from the simplest of molecular structure calculations is

aE = (1/R) (J+K)/(1+a);-
J= 1/R —e—'s(1+1/R);
K=e s(1+R);

32

6=e-"(1+R+-',R').

' A. Unsold, Z. Physik 43, 563 (1927).
8 C. A. Coulson, Proc. Roy. Soc. Edinburgh 61, 20 (1941).
9 K. A. HylleraB, s, Z. Physik 71, 739 {1931).
~0 I,. Pg,ulmg, Chem. Rev. 5, 173 (1928).
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TABLE I. H2+ electronic energy curve. The exact result of
Hylleraas and various approximations. Energy is measured in
units of e'ja=27 ev, where a=Bohr radius.

Hylleraas
SEI+aE&
(2 terms)

b,Eg+b,Eg,Q d,EI+AEP,Q
(2 terms) (1 term)

+0.0477—0.1026—0.0776—0.041

—12.237—0.353—0.101—0.051—0.023

—0.028—0,123—0.084—0.047
—0.023

+0.019—0.106—0.079—0.045
—0.023

I', (p+1)= )~ e
—

&pdg
0

(35)

is the incomplete I'-function. The quotient I' (p+1)/
I'„(P+1)=I(x,P) has been tabulated by Pearson. "
It is always between zero and one and approaches unity
as x increases, more slowly the larger the value of p.
The higher multipole interactions are therefore reduced
more by this correction. This is reasonable since these
interactions received proportionately larger contribu-
tions from the region of configuration space where V'
is divergent.

The new polarization force series resulting from the
above steps is

1 ~ (2) +2)! I(2R, 2)i+2)
(36)

eR' i =i 2'"+'(2)i+1) R»

» K. Pearson, ed. , TabLes of the Incomplete F-funct'ion (H. M.
Stationery Office, London, 1922). Pearson actually tabulates
g(u, p), where u=x//(p+1)&.

The Pauling first-order energy DE1 plus the first two
terms of Kq. (30), i.e.,

~Z,—9/4R —g1/SR', (33)

is compared with the Hylleraas energy in Table I. The
tremendous overestimate of the polarization energy at
small values of R is apparent. If more terms of (30)
had been included the results would have been even
worse.

The origin of the overestimate has been explained.
We now propose to eliminate it in the following simple
manner. In evaluating matrix element of V" we shall
limit the integration to the region Q(r(R) of configur-
ation space in which V' is convergent and entirely
neglect contributions to the interaction energy arising
from regions outside Q. This procedure cannot be
rigorously justified, although it is certainly more
reasonable than the use of V' where it is divergent.
(It should be noted that the whole concept of multipole
interaction is only meaningful within the region of
convergence of V'.)

The eGect of this procedure is to replace the matrix
elements (olr'"Io) in (28) by

(oI""lo).=(ol""Io) & a(»+3)/I'-(»+3), (34)

where

This series is convergent for E)0. The Pauling energy
plus the 6rst two terms of AE2, Q is tabulated in Table I.
A marked improvement in the position of the minimum

(R—2a) and the depth of the minimum will be noticed,
although the curve is still somewhat below thatof
Hylleraas. If only the first term of (36) is used in

conjunction with the Pauling energy (Table I), a
surprisingly accurate result is obtained, agreeing with
the Hylleraas curve to within 5 percent everywhere
around the minimum.

The conclusion to be drawn from these results is that
the suggested procedure for removing the divergent
behavior of the intermolecular force series greatly
improves the quantitative accuracy of the perturbation
method of estimating these forces. The uncorrected
procedure makes increasingly larger errors in the higher
multipole terms.

V. THE INTERACTION BETWEEN HELIUM ATOMS

The helium atom is structurally the simplest chemi-
cally saturated atom. The theory of Van der Waals
forces thus meets its first important quantitative test
in the case of the interaction between two helium
atoms, "

A number of estimates of the dispersion force in the
helium case have been made. Slater and Kirkwood13
were the first to calculate the dipole-dipole component.
They used a variational method. Margenau' subse-
quently recognized the importance of the higher multi-
pole terms and. employed second-order perturbation
theory to compute the dipole-quadrupole and quadru-
pole-quadrupole interactions. A later re-examination of
the problem by Margenau" resulted in the expression

E(R)=(770e '"" 560e ' "rr 1—.39R '—3.0—R. ')

X10 "erg. (37)

(R in A.) The first term in (37) is the first-order ex-
change energy computed by Slater. "The second term
is a small second-order exchange energy. The remaining
terms are the dipole-dipole and dipole-quadrupole
Van der Waals energies.

%'e propose to apply a correction of the type described
in the preceding section to the Van der YVaals force
terms in (37).

"The problem is complicated by uncertainties affecting the
repulsive exchange force. Slater's calculation )Phys. Rev. 32, 349
(1928)g, which uses very accurate state functions, has been
regarded as the most satisfactory. N. Rosen { Phys. Rev. BS, 255
(1931)j in a recomputation has found a weaker repulsive force.
Recently, P. Rosen fJ. Chem. Phys. 18, 1182 (1950)j has arrived
at a much stronger force than either of the above. The value of
this latter work is in its retention of higher exchange integrals
which Slater neglects. This advantage may, however, be offset
by his use of poorer wave functions. The results of the present
paper seem to show that Slater's potential, when modi6ed in
accordance with Eq. (37), is essentially correct."J.C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931)."H. Margenau, Phys. Rev. 56, 1000 (1939}.



CONVERGENCE OF INTERMOLECULAR FORCE SERIES

If orbitals of the Slater type

$0= (Z/ma')&e e"', Z= 27/16= 1.688, (38)

TAsr, z II. Interaction between helium atoms. Equations {37}
and {44).Energy in ergs, R in A.

are employed for each electron in the two helium atoms,
a straightforward application of second-order pertur-
bation theory in conjunction with (2) or (3) yields
for the dipole-dipole and dipole-quadrupole energies,
the expression:

AE& ———A(0lr'l0)'R '—B(Olr'l0)(0lr'l0)R '. (39)

A and 8 are constants, as are

R(A)

2.5
2.6
2.7
2.8
2.9
3.0
3.2
34

Equation (37)
~&~ X&o«

+ 7.74—15.49—18.57—19.01—18.06—16.46

Equation (44)
az&,o x&0«

+10.76—337—10.60—13.76—14.57—14.13—11.74—9.07

(Olr'l0) =)t |t '4nr4dr=1. 05a'
0

(Olr4l0)= '' f '47rr'dr=2 79a'0 (41)

8/2

(Ol r'l 0)a = l +o'4nr'dr
Jo

(42)

(Olr4l0)D= I P,'4xr'dr (43)

%e then adjust the constants A and 8 so that as R
approaches infinity, the resulting expression agrees with
the Van der Waals terms in (37), which is presumed to
be accurate for sufficiently large E.

The effect of this procedure is, as before, the intro-

%e choose this form for AE2 because it expresses the
approximate dependence of the Van der %aals energy
on the matrix elements (Olr'l0) and (Olr'l0). The
integrations involved in these matrix elements extend
over all configuration space, and therefore necessarily
involve regions in which the dipole-dipole and dipole-

quadrupole terms of V' as given by (2) or (3) are
incorrect. A minimum region 0 of this space in which
t/" is convergent and in which these terms are accurate
is that where the r for each electron is allowed to
range only from 0 to R/2.

Therefore in Eq. (39) we replace (0 l
r'

l 0) and

(Ol "lo) by

duction of incomplete 1'-functions and (39) becomes

DEg a=(770e ' "a 560e '—"a 1.39R—'[I(x) 4)]'
—3.0R 'LI(x, 4)I(x, 6)])X 10 "erg (44)

with x= ZR/a= 3.191R(A).
Equation (44) is tabulated in Table II along with

Eq. (37). The new curve has a minimum at R=2.9A
and an energy of —14.6X10 "erg or —9.11X10 ' ev.
It is in close agreement with low temperature experi-
mental data. Buckingham, Hamilton, and Massey, '5

working with low temperature data, find for the position
of the minimum Rt) =2.93A and for the depth
Eo= —14.2X 10 ' erg. Kistemaker and Keesom'
studying the isotherms of helium from 2.7 to 1.7'K
find —EORO'= 120X10 "erg-cm'. Equation (44) yields

o~o'= 123X10 '2 erg-Cm'

On the other hand, Schneider and Yntema, "on the
basis of high temperature second virial coefFicient
measurements (0—1200'C), have recently reported a
very much weaker helium atom interaction energy.
They find that the values Eo——11X10 " erg and
Ro—3A best fit their experimental data.
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