GYROMAGNETIC EFFECT IN A SUPERCONDUCTOR

amplitude:
6o=(2m/e) (4R B/ uo)(1/16m) = 3.87X1072B radian,

where B is expressed in webers/m?.

This angular momentum is that of the supercon-
ducting electrons, but since the total angular momen-
tum around the vertical axis does not change, the
angular momentum of the positive ions and remaining
electrons composing the sphere must change in just the
opposite sense and by the same amount. It is this latter
change that is observed.

Another way of looking at this phenomenon was
suggested by Meissner.®> The magnetic field penetrates
only a short distance below the surface of the sphere,
but as it changes, an electric field is present, which acts
both on the superconducting electrons and on the
remaining positive ions. Since the superconducting
electrons do not drag the ions with them, the two sys-
tems move independently with equal and opposite
angular momenta. The motion of the positive ions is
the one observed by the experimental arrangement used.

IV. DISCUSSION OF ERRORS

In spite of much care the tin sphere had a slightly
ellipsoidal character, the field was not exactly uniform
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over the volume of the sphere, and the switching of the
magnetic field did not always occur precisely at the
same point. In zero field a certain rest point or zero
point about which the oscillator swung was noted.
With a steady upward vertical field of 10~2 weber/m?,
the zero point shifted 0.3 mm to the right on the scale
corresponding to 1.2)X107° radian of angle. With a
steady downward vertical field of the same amount,
the zero point shifted 0.9 mm to the right. These errors
might be further reduced with greater effort should
greater accuracy justify such action, but differences
between the experimental and expected values may be
attributed to these experimental errors.

V. CONCLUSION

The experiments gave rough agreement with the
theory as to the magnitude of the effect. The result
was 15 percent low for the 102 weber/m? driving field
and 4 percent low for the 0.51X10~? weber/m? driving
field. The direction of driving torque was such as to
produce an angular impulse on the superconducting
sphere just as if the Faraday induction were operating
on the positive ion lattice.

The authors are greatly indebted to the constant
assistance of Professor C. F. Squire. One of us (R.H.P.)
held the Shell Fellowship during this work.
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The Hartree and Thomas-Fermi models of the atom and nucleus are compared in their predictions for
the angular momentum distributions. It is found that the most natural quantity to compare is not the
“first appearance” of a given orbital angular momentum, but the mean squared angular momentum.

I. INTRODUCTION

ECENTLY the subject of the distribution of

angular momentum in nuclei has been given
considerable impetus by the discovery of certain
“magic numbers’? which indicate a shell structure in
nuclei. The interpretation of the magic numbers in
terms of a ‘“‘shell model””? enables us to make detailed
statements about the angular momentum distribution
in nuclei. Several authors® have attempted to find an
interpretation of this shell structure in terms of a
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Thomas-Fermi model of the nucleus. Now, apart from
objections to their detailed handling of the Thomas--
Fermi model, it seems to us that these authors have
also interpreted the appearance of closed shells in an
incorrect way. They have identified the closing of a
shell with the first appearance of a particle with a higher
orbital angular momentum than was previously present.
It is very easy to see that even in the atomic case these
two phenomena are not related. In atoms the closed
shells (noble gases) occur at Z=2, 10, 18, 36, 54, and
86, while the first appearance of electrons with orbital
angular momentum 1, 2, 3 occurs at Z=3, 21, and 58,
respectively. In the nuclear shells, say for neutrons,
the shells close at N=2, 8 20, 28, 50, 82, and 126
while the first appearance of /=1, 2, 3, 4, and 5 occur
at N=3, 9, 21, 41, ~64, ~100. The closing of a shell
is a phenomenon which is connected with the filling up
of a group of energy levels which are relatively isolated
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from the rest, and in general has little directly to do
with the emergence of new orbital angular momenta.

While we believe that the Thomas-Fermi model can
give no information about the location of the closed
shells, still it does give some information about the
distribution of orbital angular momentum. It was
thought that it might be of interest to compare its
predictions with those of the shell model. The first
question which arises is exactly what one should com-
pare. Usually—in the atomic case—one has compared
the “first appearance” of a certain /. This question is,
however, a very poorly defined one in the Thomas-
Fermi model as shown in Sec. III, since the orbital
angular momentum has a continuous range of values
instead of the discrete values which one obtains in a
rigorous quantum mechanical theory. We prefer there-
fore to make the comparison between something which
is well defined in the Thomas-Fermi model, and the
predictions of the shell model. For this purpose we have
chosen to compare the mean value of the square of the
orbital angular momentum. Since the Thomas-Fermi
model gives a unique expression for the number of
particles with orbital momentum between L and L+dL
—which we will denote by #(L)—the mean value in
question is given by

(IP)n= f In(L)dL/Z. )

Here Z is the number of particles of the type we are
considering.

As soon as we have decided on a level scheme in the
shell model, we then know how many particles there
are with each /, and we have for comparison :*

(IHn=23l(l+1)/Z,

where the sum goes over all the Z particles.

In Sec. IT we shall make this comparison for the
atomic as well as the nuclear case, and shall show that
for a reasonable density distribution in the latter it is
possible to obtain excellent agreement. In Sec. III we
shall return to the question of the ‘““first appearance” of
a particle of given orbital angular momentum.

II. THE MEAN SQUARED ORBITAL ANGULAR
MOMENTUM

Let us define dN (p, r) as the number of particles with
momentum p at the point r in a small element of
volume of phase space. Then the basic assumption of
the Thomas-Fermi model is that all states are filled
equally as long as a certain maxima momentum is not
exceeded, after which they are all empty. Thus, with
h=1,

dN(p, r)=2drd’p/(2w)* if p<P(r),
dN=0 if p>P(r).
The factor 2 comes from the fact that the number of

4 We have chosen units such that z=1.
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states is doubled by the presence of the spin. P(r) is
the maximum momentum allowable at a given point.
By integrating this expression over p one obtains

p(r)=2-(4m/3)P*(r)/ (2m)>. )

‘This is the fundamental relationship between the density
. of particles p(r) and the maximum momentum. To

find the angular momentum distribution function it is
convenient to consider not #(L) itself but its integral,

N(L)= f "L,
L

N(L) is the number of particles present with angular
momentum greater than L. Now L=rXp, and therefore
L*=r*p? sin®9, where ¢ is the angle between r and p.
Hence,

N()= f N (p, 1),

where the limits of the » and p integrations are given
by the conditions pr sind=L and p< P(r). By integra-
tion over the angles and p we obtain immediately

N(L)=(4/3r) f [P2r*— L2 )idr/r. 3

The integration over 7 is to be extended over that
region where the radical is real. From N (L) we obtain
n(L) by differentiation,

(L) = —dN(L)/dL= (4L /x) f [Pr—LTdr)r, (4)

which is a well-known result.® Using this, we obtain
from Eq. (1):

8 ® dr
(L >Av=1‘5—7r2£ 7(7P) . (5)

By means of (2) we know (L2, as soon as we know
the density p.

In the case of the Thomas-Fermi atom this density
is well-known and can be expressed in terms of a uni-
versal function ¢ for all atoms. If we put 7= ux,
where u=23%2""3737-%/me?, and make use of the defi-
nition ¢(x)=(r/Ze*)(P*(r)/2m), we obtain

onerifZ) ([ )

The integral in the brackets is a pure number and has
been obtained by a numerical integration; its value is
0.370. This gives us finally

(L?)n=0.262Z3. (6)

Figure 1 gives a plot of this function along with a plot
of the empirical value of (I?)y as computed from the
known ground state configurations of the elements.

5 E. Fermi, Z. Physik 49, 550 (1928).
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One sees that there is a general tendency to give too
high angular momenta for the lighter elements, but as
Z increases the Thomas-Fermi model gives a very good
average variation of (L%, with Z. This is just in line
with the usual idea that the Thomas-Fermi model
improves with increasing atomic number. (Needless to
say, we could not possibly hope for more than such a
correctness in the average, since in the Thomas-Fermi
mode] all properties of atoms vary smoothly with their
atomic number, and therefore, all effects due to closing
of shells are averaged out.)

In the nuclear case we are faced with the difficulty of
not knowing p. The equations determining the density
in the Thomas-Fermi model are not even known
exactly, since the nuclear forces are unknown, and even
if they were it would seem to be a prohibitively difficult
task to solve them. None the less one can ask whether
or not it is possible by a reasonable assumption con-
cerning the density of protons and of neutrons in the
nucleus to obtain a fit of the observed angular momenta
distribution. In treating the nucleus we shall treat the
Z protons and N neutrons as separate systems, each
obeying its own Pauli principle, and each with its own
density function. Such a treatment is certainly implicit
in the usual conception of the Thomas-Fermi model.
We shall therefore deal with the proton system, though
of course the neutron system may be treated in an
identical fashion. Let us write

P(r)=Pof(x), )
where R is a quantity of the dimension of a length and
of the order of magnitude of the nuclear radius, while
Py is a constant with the dimensions of a momentum.
The function f(x) is defined such that f(0)=1, so that
P, is the maximum proton momentum at the center of
the nucleus. Since the relationship of density to maxi-
mum momentum is given by (2), we can eliminate R
and P, from the expression for (L?)u, by making use of

Jpdr=_Z, and obtain
dx
5 [—tafye
x

(I2)p= 12437852723 C®)

[3 | d—j{xf(x)}s]m

The numerical factor in front of Z% is 0.885. Exactly
the same equation holds for the neutron (L%, if we
replace Z by N and f by another function suitable for
describing the neutron density in a nucleus. Since the
empirical data on neutron shells and proton shells
indicates that the angular momentum distribution is
roughly the same for both, we shall restrict ourselves
to the same function f for both neutrons and protons.
The simplest choice of f(x) would be

f=1 for x<1, and f=0 for =x>1.

This assumes that the nucleus is a sphere of radius R
and constant density. The ratio of the integrals in the

r=Rux,
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F16. 1. Comparison of the mean squared angular momentum
of an atom as calculated in the Thomas-Fermi model with the
empirical values. Thomas-Fermi model; ---- empirical
values.

expression for (L, is then unity, and we obtain
(LH=0.8852%,

A plot of this function along with the plot of (L2
obtained from the shell model is given by the dashed
curve in Fig. 2. One sees that this density distribution
gives on the whole too large angular momenta. This
result is not very surprising since the assumption of
constant density right up to the edge of the nucleus
over-emphasizes very much the contribution to (L?)s
from larger values of x. These however—as can be seen
from the expression for (L?)s which involves an integral
over the fourth power of x—make the largest contribu-
tion to (L?)an. Therefore, our result is very sensitive to
the density near the edge of the nucleus. Certainly a
more realistic density distribution is given if we assume
that the density is constant up to a certain point and
then drops off to zero in a Gaussian fashion. Other
distributions are also possible, but we choose this for
ease of calculation. By a very reasonable choice of the
thickness of this surface layer we shall see that it is
possible to obtain as good an agreement as in the
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Tic. 2. Comparison of the mean squared angular momentum
of the protons or neutrons in a nucleus as calculated in the
Thomas-Fermi model with the values obtained from the “shell
model.” ——- -~ Constant nuclear density; Gaussian drop
in nuclear density at the surface; - - - - values from shell model.
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TaBLE I. Values of Z for the first appearance of various values of 7.

l=1 =2 1=3
Fermi (approximate integration) 5 21 55
Fermi (exact integration) 4.0 16.2 44.0
Definition in text 2.4 14.8 43.0
Empirical 5 21 58

atomic case. Let us choose then
flx)=1 for
=exp(— (x—1)%/38) for
Choosing for 8 the value

1.8X 1078 cm\ 2
e (Y i
R

where R is determined by the condition that inside
the nucleus the proton density has the value (Z/A4)(1.4
X107 cm)~3, we obtain the solid curve given in Fig. 2.
This choice means that we have chosen a surface layer
of “thickness” 1.8X107* cm independent of R. We
notice that the agreement with the shell model pre-
dictions is excellent, and therefore it is not necessary—
as proposed by Yang®—to assume a surface layer with
thickness proportional to A%, Since it is not easy to
decide exactly which curve is to be considered the
“best fit” for the empirical facts, the B-value given is
necessarily more an order of magnitude than a precise
conclusion from the data.

With this choice of the constant 8, we can obtain a
value of the nuclear radius. Let us define the nuclear
radius Ry as the distance from the origin at which the
density falls to half its value. Thus we obtain

Ro=R{1+[(log2)87#} = R+1.8X 10~ cm.

The resulting R, does not exactly satisfy the require-
ment that it is proportional to 4%, though it does to a
very good approximation. We obtain for the ratios of
the values of RyA~? the values 0.95, 0.97, 0.98, 1.0 for
Z=12, 30, 90, =, respectively. In the limiting case of
large A we have, of course, Ry=1.4X10"84% Thus
although we cannot satisfy simultaneously both the
requirements of constant internal density and nuclear
radius proportional to 43, we can do it well within the
experimental accuracy of these facts. We could, of
course, have just as well determined R by the require-
ment of Ry4 3= constant, in which case we would have
found that the density at the origin decreases slightly
for lighter atoms; a result which in itself is perhaps
not too implausible.

x<1
x> 1.

III. THE FIRST APPEARANCE OF A GIVEN ORBITAL
ANGULAR MOMENTUM

Since in the Thomas-Fermi model the angular mo-
mentum is not quantized, but has a continuous distri-
bution of possible values, the question, at which Z a
particle with a certain L=[I(l+1)] (I=1, 2, 3, etc.)
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appears for the first time, is less unique than would
appear from the literature.

We would like to discuss here a definition which we
believe to be the best possible within the framework of
the Thomas-Fermi model: All particles with a given
angular momentum L will be said to have the quantum
value ! which makes [[(l+1)]% closest to L. In this
case the “number of particles with an angular momen-
tum /,” say »(l), will be given by

l 0+ D 00~ D }

14 =1

y V’[1(z+1)]%+[(z+1)(l+2)]%1
5 .

This differs from the definition of Fermi in two ways:
he replaces [/(I4+1)]* by I+ %, and replaces the integral
involved in N (L) by its approximate value obtained
by multiplying the value of the integrand at the center
of the interval by the length of the interval. The latter
approximation turns out to be quite poor because the
integrand is really a very rapidly varying function of
L, and therefore, we have undertaken to repeat the
work carrying out the integral in question numerically.
As soon as one has »(/) one may define the ‘“first
appearance” of / by the condition that for that Z,
we must have »(I)=1.

The results of these calculations for the Fermi-atom
are given in Table I. By comparison of the first and
second entries one can see the effect of replacing the
exact integration by the approximate one. The exact
integration leads to much poorer agreement with the
empirical data. Further, the effect of replacing [1(I+1)]*
by I4+% can be seen on comparing the second and
third entries. With the most straightforward definition
the agreement with the empirical data is poorest. If we
consider the percent error we find for the Fermi case
(exact integration) 20 percent, 23 percent, 24 percent,
and for our case 52 percent, 32 percent, 26 percent for
I=1, 2, 3, respectively. Thus the error for Fermi’s
definition increases with Z, while that for the definition
above decreases. Since all properties of the Fermi
model improve with increasing Z, it seems to us that
definition given above would be the preferable one.
However, in any case, we feel that the quantity »(J) is
so poorly defined in a model with continuous L, that it
is not worth considering in the nuclear case.* For a
comparison with experiment the natural quantities are
averages such as (L.
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University of Wisconsin. He would like to indicate his
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