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The consequence of a perturbation in the expanding universe is investigated. It is found that the density
gradient decreases with time, while the ratio between the perturbed density and the background density
diverges more and more from unity. These results are essentially in agreement with observation and explain
why even in “point source” cosmologic models, condensations of extremely high densities are not to be

expected at present.

INTRODUCTION

HILE it is usual to regard the nebulae as conden-
sations out of a homogeneous cosmic fluid, the
presence of such condensations offers an interesting and
rather intriguing problem. The earlier investigations of
Tolman! and Sen? seemed to show that the Friedman
model (i.e., pressureless homogeneous expanding uni-
verse) is fundamentally unstable to perturbations either
in the distribution of material density or in the rate of
expansion ; and as such one could expect the formation
of condensations as a result of infinitesimal perturba-
tions. Gamow?® has, however, more recently reported
that an expanding universe is stable against small
gravitational perturbations, and that in particular a
rudimentary condensation is bound to expand and mix
up with the rest of the universe. Gravitational influ-
ences, alone, cannot thus explain the formation of
condensations, and Gamow and his collaborators con-
sidered the interaction between radiation and gas
particles as a probable causative agent. Later calcula-
tions are, however, said to have belied this hope;* so
that according to the Gamow school the occurrence of
these condensations remain an unexplained phenom-
enon. Gamow has, however, partly used classical non-
relativistic concepts in his considerations, and this
throws some doubt on the validity of his conclusions.
Lifshitz,® too, in considering arbitrary small perturba-
tions of the gravitational field and of the distribution
of matter in the expanding universe, has found that
these perturbations either decrease with time or increase
so slowly that these cannot serve as centers of formation
of nebulae.

In view of such conflicting conclusions, and the
interest of the problem, it seems appropriate to investi-
gate the problem anew and with a minimum of ad hoc
assumptions. Our result seems to show that the differ-
ence in conclusion regarding the fate of a rudimentary
condensation depends essentially on how one defines
the degree of condensation.
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Hoyle® has recently criticized the ever-expanding
relativistic cosmologic models on the ground that “in
the early stages of expansion, the material in the general
background is unstable against formation of conden-
sations. Thus condensations would be formed in the
material with density much higher than the mean
densities within the nebulae. No such condensations
are observed. Detailed considerations show that this
crucial objection cannot be overcome through the
action of gas or radiation pressure.” We shall see that
our results will provide an answer to this criticism as
well.

2. BASIC ASSUMPTIONS IN THE PRESENT
DISCUSSION

We shall take the line element in the universe to be
of the form

ds?= — et (dr*+r*d6>+1? sin?0d %)+ e”di? ¢y

where u=u(r,{) and v=v(r,{). The line element of
form (1) implies that we are assuming spherical sym-
metry as well as spatial isotropy. Spatial isotropy has
not been assumed by Tolman' and Sen,? who have
taken the line element in the form

ds®= — err®— e*(d6%+ sin?0d o?)+e*d 1 2)

where N, w, » are functions of » and ¢. It is easily seen
that the necessary and sufficient condition that the
line element (2) can be transformed to the form (1)
without destroying the comoving nature of the coordi-
nate system is that A—w must be a function of 7
alone.” In the perturbations considered by these authors,
the time derivatives of X and w are not equal, so that
although the unperturbed universe is isotropic, the
isotropy is lost afterwards and the radial and cross
radial dimensions increase at different rates. We do,
however, think that the observable universe does not
warrant such non-isotropic perturbations; and that no
special loss of generality will result from the assumption
of spatial isotropy.

We introduce also the usual assumption that the
cosmic materjal and energy constitute a perfect fluid at

8 F. Hoyle, Nature 163, 196 (1949).
7 See, for example, R. C. Tolman, Relativity, Thermodynamics,
ggg gggmalogy (Oxford University Press, London, 1934), pages
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rest in the coordinate system of (1). This means that,
besides isotropy, the possibility of a “co-moving’’®
coordinate system in which there is no net flux of
energy or momentum is assumed. However such a
coordinate system exists only under some restrictive
conditions, e.g., we can use such a “‘co-moving” coordi-
nate system only if all the different forms of energy
existing at a particular point have the same proper
macroscopic velocity. If, however, there be different
velocities for different forms of energy at the same
point, no such “co-moving’ coordinate system is feasible.
Thus, for example, when there is a flow of heat relative
to the material contents, the coordinate system in
which the matter is at rest will still show a flux of
energy corresponding to the flow of heat.

It is clear, therefore, that in these perturbation
problems introducing nonhomogeneity, this use of
“co-moving” coordinate system is not quite justifiable.
For instance, if the perturbation consists in a small
adiabatic compression of the cosmic fluid in a certain
region, there would then be a rise of temperature in
this region and a consequent flow of heat away from
this region. Similarly, any conversion between matter
and radiation in a certain region would cause a change
of pressure and a consequent flow of radiation relative
to the cosmic mass.

However, in all these cases, if the perturbation be
small, the flux of energy will be extremely small com-
pared to the other (static) components of the energy
tensor and can perhaps be neglected without introducing
sensible error.

3. FATE OF NONHOMOGENEITIES IN
EXPANDING UNIVERSE

With the foregoing assumptions, the energy momen-
tum tensor components are Ty'=T2*=T¢=—p, Ti!=p,
and 7,#*=0 when u#v; p and p denoting the pressure
and energy density. The gravitational equations then
assume the form?®

8mp=e v w50V + (W' +v) /7]
—e (it —3)+A  (3)
8rp=e s [F(u"+v")+ 1+ (W +v)/2r]
, —e (it =)+ (4)
8mp=—e#(u/+Eu 20" /r)+ie i — A ©)
0=24"—j'. 6)

In the above expressions, dashes denote differentiation

with respect to r and dots with respect to ¢. The energy

momentum tensor satisfies the divergence identities
. »=0 which gives two nontrivial relations

p'=—3(p+p) ™
p=—5(p+p)p ®

8 See reference 7, pages 301-302.
9 See reference 7, pp. 251-252.

These two equations are however not independent of
Egs. (3)-(6) and can be obtained directly from them.

Differentiating (8) with respect to » and substituting
for p’ from (7) and then eliminating »" with the help of
(6), we get,

p=—%0"k )
Or,

(9/08)(log| p'|) = — 3. (10)

We assume, as seems reasonable, that a small perturba-
tion does not reverse the expanding nature of the space
at the point under consideration. This would obviously
be true at least at those early stages when the rate of
expansion was very large.!® 4 is therefore positive, and
Eq. (10) shows that the nonhomogeneity as measured
by ¢’ would decrease with time. Thus, if one takes the
gradient of density (or the difference of density between
two points) as a measure of the degree of condensation
(or rarefaction), then the condensation (or rarefaction)
is smoothed out in an expanding space.

One may, however, define the degree of condensation
also by p'/p, ie., the percentage rate of change of
density.!! We get using (8) and (9),

(8/08)(p'/p)=30ixp/ 20"
Or,
(8/01)(log| '/ p|)=3ixp/2p. (11)

Equation (11) shows that if p’/p be taken as a measure
of the degree of condensation (or rarefaction), then in
expanding space (i positive) the condensation (or
rarefaction) would go on increasing with time.

We can therefore picture the consequence of a pertur-
bation in the following way. In view of (10), the
difference of density between any two points will go on
decreasing, while (11) shows that the ratio of density
at any two points diverges more and more from unity.
Thus, consequent to an original perturbation in the
early career of the universe, we should have at the
present epoch a much smaller difference and a much
larger ratio between the densities of the condensations
and the background. These conclusions are not incon-
sistent with observation. For suppose that, when the
density was very large, a perturbation in the density
actually took place. This perturbation, although very
small compared to the then prevailing density, might
still conceivably be much larger than the present differ-
ences of density between the nebulae and the back-
ground. (E.g., a perturbation in density, say, of the
order 102 g/cc, when the background density was of
the order 108 g/cc, constitutes a small perturbation but
is much larger than the present average densities of the
nebulae.) The ratio of the perturbed density to the

10 Gamow’s semiclassical investigations also confirm this point.
See reference 3.

1 This, in effect, has been done by Tolman and Sen. See
references 1 and 2.
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background density, while originally very nearly unity,
has now a far greater value, in agreement with the
requirement of (11).

The limit to the excess of density in the condensations
being thus set by the magnitude of the original pertur-
bation (and not the original density), one sees that in
spite of condensations occurring in the highly dense
cosmic fluid early in the life of the universe, conden-

sations of high densities, as envisaged by Hoyle,® cannot
be met with at present.

In conclusion, we note that a particularly satisfactory
feature of the present investigation is that we have not
introduced any assumption regarding the pressure, the
pressure gradient, or the mechanism and nature of the
original perturbation. We have also not introduced any
nongravitational interaction.
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The commonly used perturbation method of estimating the Van der Waals forces between atoms is
shown to lead, when carried to the extreme, to divergent results. The method employs an expansion of
the classical electrostatic interaction between the atoms in a series of inverse powers of the internuclear
distance. The divergence arises because this expansion is utilized in regions of configuration space where
it is not convergent. In this paper, the resulting divergent intermolecular force series are shown to be
asymptotic to the true molecular interaction. The divergence is removed in an approximate way and the
second-order attractive energy so obtained is added to the first-order exchange energy between the atoms.
The method results in an electronic energy curve for He* in reasonable accord with the exact result of
Hylleraas and in a new interaction between helium atoms in good agreement with recent low temperature

experiment.

I. INTRODUCTION

HE Van der Waals force between two atoms, at

an internuclear distance R, is usually estimated

by the use of an expansion of the classical electrostatic

interaction between the atoms in a series of inverse

powers of R. This expansion is considered as a pertur-

bation upon the combined system of the two atoms

and the Schrédinger perturbation theory or the varia-

tional method is employed to evaluate the resultant

shift in energy levels. The shift is identified with the
potential energy of the interatomic force.!

The expansion of the electrostatic interaction between
the atoms is convergent and meaningful only in a
limited region of the configuration space of the com-
bined system. It is, however, commonly employed
throughout this configuration space. This paper reports
an investigation of the uncertainties arising from this
procedure and suggests a method of overcoming them.

Let H4 and Hp be the (unperturbed) Hamiltonians
of atoms 4 and B. The corresponding state functions
and energy levels will be designated by ¢4, E4@
and ¥5®, Eg®, where s and ¢ are quantum numbers.
We shall refer the Hamiltonian and wave functions of
each atom to a coordinate system (rectangular or
spherical) with origin at its nucleus. The coordinates

* Part of a dissertation submitted to the Graduate School of
Yale University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.
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of charges e; belonging to atom A are (x, ¥, 2;) or
(74, 05, ¢i). Those of charges ¢; belonging to atom B are
(&, 5, ¢5) or (pj, wj, x;). The z and {-axes are directed
along the internuclear line from 4 to B.

The intermolecular force results when the electro-
static interaction

V=3 :;e/ri (1)

between the atoms is taken as a perturbation on the
compound system having the Hamiltonian H 4+ Hp,

state functions ¥4 ¥ and energy levels E4 )4 Eg®.

In carrying out a perturbation or variational calcu-
lation (1) is usually expanded in a series of inverse
powers of the internuclear distance. Margenau®? has
given some of the lower terms in this series:}

1
V= ——3 eiei(22:—xiki— yamj)
R34

+i 2 eier2ti— 2
2R% i
+ (it +2ym;— 32:85) (2i— §5) ]
+£I€; ; eieflriof—Salp—5r ¢ 2— 1555
+2(4zi—wi—ym) I+ -+ (2)
* H. Margenau, Phys. Rev. 38, 747 (1931).

3 H. Margenau, Revs. Modern Phys. 11, 1 (1939).
1 The symbol V' is used to denote an expanded form of V.



