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Scattering of Plane Waves by Soft Obstacles. III. Scattering by Obstacles with
Syherical and Circular Cylindrical Symmetry*
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A new variational method is devised for obtaining the "best" parameters for trial wave functions of a
given type for insertion into the integral equation Lsee Eq. (1.4a)j for the scattering of scalar plane waves
by obstacles with spherical and cylindrical symmetry.

The variational procedure is applied to the determination, in the least square sense, of the square well
potential which most closely approximates the potential under consideration for a given propagation
constant (kp= Zx/Xp) of the incident wave. We then use as a trial function in the scattering integral equation
the sphere (or cylinder) wave function (with the "best" parameters) which was derived in the first two
papers of this series.

The differential and total scattering cross sections for scattering by Gaussian, exponential, and screened
Coulomb potentials are obtained in simple closed forms. The Born approximation predicts the ratio of
the total scattering cross section to 27.b' (where b is qualitatively the effective range of the scatterer) to be
a monotone increasing function of 22rb/Xp, while in our theory it is a bounded function.

The main advantage of the procedure developed. in this paper is that, while it is superior to the Born
approximation, especially for large b/Xp it is equally simple to apply.

INTRODUCTION 6eld at each infinitesimal point scatterer. Mathemati-
cally the method is expressed through an integral
equation (1.4a) in which the wave function at a given
point is an integral over that at all other points.

The classical approximation technique is that of
Rayleigh, Gans, and Born' (henceforth referred to as
the R.G.B. or the Born approximation), in which one
assumes that each in6nitesimal Rayleigh scatterer is
excited by the incident plane wave in the same manner
that it would be in the absence of the remainder of the
obstacle. In terms of the integral equation (1.4a) one
substitutes the wave function of the incident wave into
the integrand of the integral and carries out the required
integration to compute the scattered wave function.
The limitations of the R.G.B. approximation are very
striking if one plots the ratio of the total scattering
cross section to the geometrical cross section as a
function of 2sa/Xs, where a is a characteristic length
of the scatterer and Xo is the wavelength of the incident
plane wave in the absence of the scatterer. This quantity
is a monotone increasing function in the R.G.B.
approximation, while in the exact theory' ' it is usually
a bounded function of 2rra/Xs (see Fig. 1).

In all iterative procedures for solving integral equa-
tions the quick achievement of accurate results is
facilitated by a good first approximation to the solution.
The problem of improving on the R.G.B.approximation
then resolves itself into finding reasonably accurate
and convenient forms to represent the trial wave
functions.

In S-I and S-II this has been done for the scattering
by spherical and elongated obstacles having sharp

'HE tremendous volume of recent experimental
data on the scattering of plane waves by obstacles

(scattering of light by macromolecules, of high energy
particles by nuclei, of sound waves by various types of
obstacles, etc.) has led to a renewed interest in the
development of approximation methods for the solution
of scattering problems.

Variational princip. es have been derived and applied
by Schwinger, Hulthen, and their collaborators and
followers. In most applications to two- and three-
dimensional problems the practice has been to express
the scattered wave function as a series in I.egendre
polynomials and to find the "phases" and hence the
coefficients by variational principles.

In an investigation of scattering by obstacleswith
sharp boundaries (spheres, circular cylinders, spheroids,
etc.) Hart and one of the authors' have been ledto
approximation procedures which avoid the calculation
of phases and lead to scattering cross sections directly.
This paper is concerned with a generalization of these
procedures to scattering by spherically and cylindrically
symmetrical scatterers which have no sharp boundaries
but which diminish in strength monotonically with the
distance from the scattering center.

One may develop the theory of scattering by con-
sidering each in6nitesimal volume element of the scat-
terer as a point Rayleigh scatterer and characterizing
the total scattered wave at a point of observation as the
sum of all the waves scattered by the point scatterers.
To apply this procedure one must know the exciting

*This research was supported by the ONR.' R. Hart and E. Montroll, J. Appl. Phys. 22, 376 (1951) and
22, 1278 (1951); R. Hart, J. Acoust. Soc. Am. 23, 373 (1951)
See also A. L. Latter, Phys. Rev. 83, 1056 (1951),where some o
the same ideas have been discussed independently. The mrs
two papers listed above will be referred to as S-I and S-II, respec
tively.

2Lord Rayleigh, Proc. Roy. Soc. (London) AS~, '25 (1910);
1 A90, 219 (1914); R. Gsns, Ann. Physik 76, 29 (1925); M. Born,

Z. Physik 37, 863 (1926); 38, 803 (1926).
3 H. C. van de Hulst, Recherches Astronomiques de l'observa-

toire d'Utrecht 11 {1946).
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FIG. 1.Ratios of the total scattering cross section of a spherical
potential well t k'(r) —kp'=k1' —kp', r&a; =0, r)aj with geo-
metrical cross section in the limit as k1/kp~i. The upper curve
is the Born approximation LEq. (3.21)j. The lower curve is the
soft sphere approximation LEq. (3.20)g. The parameter y is
defined by y= kpa(kI/kp —1).

boundaries (square well potential). If kp=2~/Xp and
ki= 2n./Xi are the propagation constants for the exterior
and interior of the scatterer, it was found that the
essential features of the correct theory are retained by
choosing the interior trial wave function to be of the
form exp(ikis) rather than exp(ikos) as in the R.G.B.
approximation.

In this paper we shall generalize the previous results
by approximating the wave functions of scatterers
which do not have sharp boundaries by those of spheres
ancl cylinders with width and depth of potential well
chosen so as to give the best comparison in a certain
variational sense. This procedure consists essentially in
determining, erst, in the least square sense, the square
well potential which most closely approximates the
potential under consideration for a given incident
propagation constant. We then use as a trial function
in the original integral equation the sphere (or cylinder)
wave function with the appropriate parameters.

We shall consider mainly soft scatterers (Iki —koI/
ko«1), but one should be able to extend the range of
our results without too much difficulty. In particular
we shall examine the scattering by Gaussian, expo-
nential, and screened Coulomb 6elds. The primary
merit of the new method is that while it is significantly
superior to the R.G.B. theory, it is nevertheless equally
simp e in application, and, in fact, gives all results for
the differential and total scattering cross sections in
rather compact closed forms for the scatterers con-
sidered.

1. WAVE EQUATION FOR SPHERICALLY
SYMMETRICAL SCATTERERS

I,et us consider the scattering of a scalar plane wave
of propagation constant k0=2~/Xo (Xg being its wave-

length in the absence of an obstacle) by an obstacle in
which the wavelength of a transmitted wave and hence
k=2m/X varies from point to point. The character of
the scattered wave can be discussed in terms of the

~ 00

[k'(r) ko'7'r'—dr& ~ and, Lk'(r) —ko'7rdr& ~.
Jo

The wave function of an incident plane wave propa-
gated in the direction of the unit vector so is

P, =expI iko(r so)7, k0=2~/Xo. (1.2)

If P, (r) is the wave function of the scattered field, the
solution of (1.1) is of the form

P(r) =P,(r)+expik, (r so), (1.3)

where P„(r)—&0 as 1/r. Hence P, (r) satisfies the integral
equation4

~ikpIR —rI

P,(R)= ——t Lk02 —k'(r) 7&(r)dr, (1.4a)
IR—rl

where the integration extends over all space.
When IXI is much larger than the range of the

scatterer, the scattered wave function P, (R) can be
approximated by

P(r) I
k'(r) —ko'7

P exp L
—iko(i' ' si) 7dr. (1.4b)

The Horn (Rayleigh-Gans in the case of vector waves)
approximation for the scattered wave function is ob-
ta, ined by replacing f(r) in (1.4) by the wave function
of the incident wave, expiko(r so), and integrating over
all space.

4 N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford University Press, London, 1949},p. 114.

solution of the wave equation.

PP+ k'(r) P =0.

We restrict ourselves in this paper. to situations in
which the required solutions of (1.1) are continuous and
have continuous first derivatives, even though k(r)
might be a discontinuous function. These correspond
to the usual quantum-mechanical boundary conditions,
to the scattering of sound waves by obstacles whose
density is the same as that of the medium in which
they are embedded, and to the scalar analog of the
scattering of electromagnetic waves by nonconducting
dielectric particles. Equation (1.1) is equivalent to
Schrodinger's equation if k02 is identified with 2mB/k'
and k'(r) with 2m(E —V)/k'.

We locate the origin of our coordinate system at the
center of a spherically symmetrical obstacle and postu-
late k(r) +ko—as r—+~. Actually our analysis will be
limited to forms of k(r) with the properties: $k'(r) —k027
—+0 more rapidly than 1/r as r~~ and increases as
r +0 at —a rate no faster than 1/r (if it increases at all for
small r). More precisely we shaH require that
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Equation (1.4) has, in S-II, been applied to the
scattering of plane waves by uniform isotropic soft
scatterers with sharp boundaries. For example, in a
spherical scatterer of radius a and propagation constant
ki (i.e., the case of scattering by a square well potential
V(r) of width a and height proportional to kiP) Eq. (1.4)
becomes (since k(r) =ki for r & a and = kp for r) a):

(k 2 k 2) )exkp(R —x)P (r)

J [R—rl

e'"'P
J tax(xr) exPL —ikp(r si)]dr, (1.5)

4xE.

where the integration extends over the volume of the
sphere and fx(r) is the wave function of the interior of
the sphere.

The following approximate wave function has been
derived for a sphere in S-I:

2kie" i~' ~» Lexp{

ski�(r

sp) )
—xxe"' ' exp{—iki(r sp))]

(1.6)
(ki+kp)l 1—xx' exp4iaki]

The first term in the numerator corresponds to the
transmitted wave through the sphere and the second to
the internal reflected wave. The approximate scattered
wave function that is derived by substituting (1.6) into
(1.5) is, for r))a (J.*,(s) is the Bessel function of order 2),

p, (r) =A,r '{Jx(~a)/(xpa)'* xxe'-""xJ.(pa)/—(pa)'), (1.7)

with xp and p defined by (3.5), and

A.,r= a'(2xx) 'ki(ki —kp) e'&x" "p&'+"'"x'p/(1 —xx'e"'P'), (1.8)
r. = (m —1)/(m+1), m= ki/kp.

This result is quite accurate when m=ki/kp&1. 3 and
is useful for m(1.5. The ratio of the total scattering
cross section to the geometrical cross section approaches
the exact value for all size spheres as k~—+kp. This is
not the case for the Born approximation.

Expressions similar to (1.6) and (1.7) have been
obtained in S-II for the internal and scattered wave
functions of infinite circular cylinders. Approximate
scattered wave functions were derived for finite cylin-
ders and oblate spheroids in S-II by approximating
their internal wave functions by those of infinite cylin-
ders, substituting these wave functions in (1.7) and
integrating over the entire volume of the obstacles.

We shall now apply this technique to the determi-
nation of approximate scattered wave functions of
spherically and cylindrically symmetrical scat terers
which do not have sharp boundaries. We shall approxi-
mate the internal wave functions of these scatterers by
those of spheres and cylinders whose radii a and propa-
gation constants ki for a given propagation constant of
the incident wave kp will be determined by the varia-
tional scheme discussed in the next section.

2. A VARIATIONAL SCHEME'

Let the propagation function of the scatterer of
interest be k(r). Then the wave equa, tion for an incident
plane xvave is (1.1). Now suppose we cannot easily
solve (1.1), but that we can solve the wave equation
that corresponds to a similar scatterer with propagation
function kp(r) (which might depend on several param-
eters):

(2 1)V'Pp+ kpP (r)Pp
——0.

The identity,

V'Pp+k'(r)fp= I k'(r) —kp'(r)]fp (2.2)

suggests a variational scheme. If k, (r) were equal to
k(r), the quantities on both sides of (2.2) would vanish
for all r. Hence, if we could choose the parameters in
the approximating function kp(r) I and hence in Pp(r) j
in such a way as to minimize the integral

I=
i

IkP(r) —kp'(r)l IA(r)l'dr, (2 3)

f
aI=a

I
v —vpl'IAI'«=0. (2 4)

Equation (2.4) .is a general variational principle that
can be applied either to an initially chosen form for the

5 Variational methods for solving scattering problems have been
used quite extensively by Harold Levine and Julian Schwinger,
Phys. Rev. 74, 958 (1948);75, 1423 (1949);W. Kohn, Phys. Rev.
74, 1763 (1948); and others. To the best of our knowledge the
simple particular variational scheme of this section has not been
used explicitly before.

we would, in the least square sense, have the best
approximating function of the initially chosen form of
kp(r) Equ.ation (2.2) implies that minimizing I is
equivalent to minimizing V'Pgp+kP(r)fp, or finding the
parameters of |kp which make Pp the best solution of
(1.1) of the given form.

It is to be noted that Pp(r) and hence the "best"
parameters of kp(r) depend on the wavelength, or
energy, of the incident plane wave.

The physical meaning of the integral (2.3) is immedi-
ately apparent if the incident waves correspond to a
steady stream of particles of energy E emitted in the
direction of the scattering center of potential Vp(r)
and we interpret

I Pp
I'dr as a quantity proportional to

the particle density in the volume element d~. Let the
parameters of kp(r) be fixed, while those of k(r) are
varied to minimize I. Then the solution of the varia-
tional problem 6I=O yields the best least square fit of
k(r) to kp(r) with each volume element in space weighted
by its proper quantum-mechanical particle density
function. Actually it will be easier to solve the varia-
tional problem with kp(r) fixed and k(r) varied, and
through successive guesses of the parameters of kp(r) to
find those which will give the best k(r) its required
parameters. In terms of the scattering potential V(r),
SJ=O corresponds to
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wave function fo(r) or of the scattering potential Vo.
«t A(r) (with several parameters) be chosen to have
roughly the form which should correspond to the
potential V(r) T. hen define the approximating po-
tential function Vo(r) by

Uo ——(1/lto) {2k 'V'Po+Ego}, (2.5)

where E is the energy of the incident particles. The
best values of the parameters in fo are then derived
from (2.4).

The approximate wave function Po(r) with the best
parameters can be improved further by inserting it into
the integral equation (1.4) and integrating to obtain a
better scattered wave function.

The integral (2.3) is useful for comparing two differ-
ent forms of approximating wave functions. If the
best parameters are found in two different forms of
tPo(r) that form which gives the smaller value to (2.3)
is the better approximation of P(r).

3.APPROXIMATE SCATTERED WAVE FUNCTIONS FOR
SPHERICALLY SYMMETRICAL SCATTERERS

We shall now consider scatterers for which

~
k-'(r) —ko'

~

is a monotone decreasing function of
r. Some important examples are k'(r) ko2=Ae ~",—
A exp( —Bro), and Ar 'e ~". The Gaussian form occurs
in scattering by randomly coiled polymer chains, and
all forms have been used for the scattering of funda-
mental particles by nuclei.

A natural approximating form for such k'(r) ko"is--
that of a uniform, isotropic spherical scatterer of radius
a. Then

Now we could substitute the exact sphere wave
functions into (3.2). This procedure gives us new scat-
tered wave functions which are complicated infinite
series of Legendre polynomials and which must be
summed numerically. Since we are interested here in
soft scatterers (high energies of incident waves) we can
better use the closed form approximate sphere wave
functions that were derived in S-I. This allows us to
obtain simple closed form wave functions for many
scatterers of interest (as we shall soon see, these new
wave functions will be no more difhcult to use than
those of the Born approximation even though they are
significant y more accurate). The main contribution to
P,,(R) in (3.2) comes from the integral from 0 to a
because k'(r) —ko2 is small for r) a. Hence we can use
approximate wave functions in the second integral of
(3.2) which need only be accurate in the neighborhood
of r= a but which might be rather poor (provided they
are bounded) for very large values of r.

We shall use the internal sphere wave function for all
values of r (including those outside the sphere. ') as an
approximate wave function. Since f,(r) and its first
derivative are equal, respectively, to [P,"&(r)
+exp{iko(r so))] and its first derivative at r=a, lt, (r)
is a good approximation to the exterior wave function
for a short distance beyond a sphere boundary (especi-
ally if k'(r) —ko' decreases exponentially with r). Hence
we can write

gikpB

i},(R), exp{—iko(r si))
4~x~

ko'(r) ko'=—kg~ —k02 if r(a,
if r& a.

(3.1) X[k2(r) —ko2]f i(r)dy, (3.3)

and

t
4 (r) r&a

,(r) =
IP, & o(&r)+e Px{i k(orso)} r&a

giRkp

4"(R)-
4xR

22r exp{—iko(r si))., J,
X[k'(r) —ko2]goy2 sin8'dydee'

+22y ' exp{—2ko(r si)) [k'(r) —ko']
4a ~O

Since the wave function fo is well known for this type
of scatterer, one can obtain best values of k~ and a for
a given spherically symmetrical scatterer and ko by
applying the variational principle discussed in the last
section. Suppose this has been done. Then an improved
scattered wave function i&t, is derived by substituting
Po for P in the integrand of the integral equation (1.4b).

Let Ps be the transmitted or internal wave function
of the sphere and P, io& the scattered wave function.
Then

where the integral extends over all space.
I.et us substitute the soft sphere internal wave

function (1.6) into (3.3) to obtain

kieic(21—oo)+i&ioo[li &ie» 2112]
4.(R)- (3.4a)

R(ki+ ko) [1—&o' exp(4iaki) ]
where &i is defined by Kq. (1.8),

[k2(y) ko2]cirro cos Yy2 sjnydy (3.4b)
aJ 0

~ 1t'

[k2(y) ko ]circ cos&&y sjnpdp (3 4c)

y is the polar angle between the variable vector x

which spans space and the fixed vector (kiso —kosi),
and P is the polar angle between r and the fixed vector
(kiso+kosi). Also

io2= ikiso —kosii'=ki'+ko' —2kiko cos8, (3.5a)

X[/, io&(r)+exp{iko(r so))]r' sin2&'dydee'}. (3.2) 2&'= ki'+ ko'+ 2kiko cos8, (3.5b)
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8 being the angle of scattering (the angle between sr
and so).

The integrations over y and P in (3.4) are elementary
and yield

ca= a/b,

then we obtairi the equation

(3.10a).

By equating (3.9a) to (3.9b) and integrating by
parts, we find that if

A R-') [k'(r) —k(Pjr'
', a'f-(cx) = x'j(x)dx

elo
(3.10b)

sing
~~2iak1

vrhere

2k1 expi[a{k1—ko)+koR j
(k1+ko) [1—z' exp(4iak~)]

(3.6a)
A'= -', u'(kP —ko')f(e) x'f4(x)dx

Jo
The diBerential scattering cross section is then

a(8) =&'I4.(~) I'
=-',P-'(k, '—k,'). (3.11)

dr ~3.6~ Hence (3.10a) and (3.10b) give the relation between a
and b. Once n has been determined, A2 is expressed in
terms of a through (3.9a) and (3.10b):

[k'(r) —k,2]r'
sing

sinvr
pe 'btsk 1 dr . (3.7)

F= I [(k'(r) —k ') —
(koan(r) k')]'I P—/I'dr, (3.8)

for the special case

k'(r) —ko' ——A'f (r/b),

We must now 6nd relations between the parameters of
the scattering potentials and those of the approximating
sphere. This is done by applying the variational scheme
of Sec. 2. At this plaint we derive the relations for very
soft scatterers. The method of improving the accuracy
of these is straightforward but leads to lengthy equa-
tions which we shall not exhibit here.

We wish to minimize the integral

As A—&0 this is the correct limiting relation.
Since the terms of order ~ and rP in all of the equations

derived below {3.18—3.37) are of the same order of
magnitude as the corrections required in the relations
(3.10) and (3.11) between A' s, b's and k~'s and a' s,
they should not be used without these corrections.

The total scattering cross section 0, can be obtained
in two ways: by integrating 0(8) over all angles or by
using the imaginary part of the scattered amplitude in
the forward direction. These two results are identical
only when 0.(8) is exact. Since it is possible to integrate
our approximate expressions for 0(8), we prefer to do
the former to obtain a more unified presentation. It
should also be noted that in the integration over 8 one
uses the weight function sin8. The largest errors in our
approximate formulas occur in the range of small 8.
Hence the integration procedure should give the better
results. We shall now summarize the formulas for o(8)
and r, for very soft scatterers.

After neglecting the terms of order ~ and ~' in (3.7),
we have

ko'(r) —kop = he —k02, r& a, 4k~2A4b4 2

/r(8) = xf(x) sin(bxa))dx . (3.12)
~'(k1+ko)' o

with 1I//, given by (1.6). For very soft spheres we can
neglect the term of order ~, which is the coeKcient of
the reflected wave in the sphere. Then

I
f/I'= constant

and the variational equations,

The total scattering cross section is given by

SkpA'b41r
xf(x) sin~bxdx sin8co 'd8. (3.13)

(kg+ka)'&0 & 0

8F/8 (A') =0 and 8F/8b =0, (3.9) It is desirable to introduce N=b~ as the new angle
variable to replace 8. Then

pe
5/

A'= (kP —kIP) ) x'f(x)dx x'1' (x)dx, (3.9a)
8&&~4&2

1I'b ko(kl+ko)

)s/5
A'=' (kP—

koan) ) x'f'(x)dx x'f(x)f'(x)dx (3.9b). b (k1+k0) Qo 2

&& I u ' ~ xf(x) singxdx' dl. (3.14)
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In the limit of super soft scatterers or high energies
(ki—+ko), the natural parameter in which to express the
results is

Now
y= (A/kp)'(bko). (3.15)

00 oo 2

= 2y' l u '
~l xf(x) sinpcxdx die. (3.16)

7rb' yp ~ o

The fj.rst special case of this formula was derived by
van de Hulst' for a uniform spherical scatterer. There
f(x) =0 for r)b, 1 for r(b, P=1, and y=bkp[(ki/kp)'
—1j and Eq. (3.20) results.

We shall now give the results of the application of
the above equations to four types of scattering po-
tentials.

(a) Sphere of Radius a

I.et

b(k, +kp) = 2PA'b/(ki —ko) =yP/[(ki!ko)
b(ki —ko) = 2pA b/(ki+kp) =yp/I (ki/ko)+ 1].

Hence as ki~kp for fixed y, b(ki+ko)~op and b(ki —ko)

=yP. The coefficient of the integral in (3.14) becomes
2/2 ~

With these asymptotic results, the total scattering
cross section of a super soft spherically symmetrical
scatterer is

a,,/pra'= 2y'. (3.21)

This equation represents o,,/v. a' as a monotonically
increasing function of y, which becomes infinite as the
sphere radius becomes in6nite. The exact equation
(3.20) represents a bounded oscillating function of y.
The exact total scattering cross section is compared
with the Born approximation in Fig. 1..

I.et

(b) Gaussian Scatterer

k'(r) —kp'= &A' exp[ —(r/b)P). (3.22)

o.(0) =
~
A,,

~

'(A'b'v/16) (exp( isb'oP—) —2» cos(2k, a)
Xexp[ —pb'(cp'+v')]+»' exp( ——,'b'v')}. (3.23)

Since f(x) = &exp( —x'), n satisfies

The Born approximation expression which corre-
sponds to (3.19) is

o /pra = 2a (ki ko)P(1 pr*'Ht(4ako)/(2ako) }.
In the limit as m—+1, the range in which the Born
approximation is best (provided that 2ora/Xp is small),
we get

k'(r) kp'—
0 if r) a.

&,'—&o' if r(e)
(3.17) so that

n= a/b= 1.235. (3.24a)
Then J (aco)
p (8)= —', ~

A,
~

'(kpo —kio)'a'

cos(2aki) Jp(aco) J,*(av)»'J*,'(av)—2» + . (3.18)
(aco)t(av)& (av)'

cr,/pra'= 2(or/y) lHt(2y),

as ~~, cr,/pra'~2.

(3.20)

This result agrees with that derived iri S-I and S-II for
soft spheres.

It is shown in S-I and S-II that

l H;(2x[m —1j)
2pr4'x'm '(m- 1)'l-

I (x[m 1])"'—
H,* (2x[m+ 1j)

(3.19)
(x[m+1])P"

where x=akp=2pra/Xo, m=k, /kp, and H.;.(s) is the
2th-order Struve function,

H,*(s)= (s/2pr)'(1+2s ') —(2/prs) l(sins+s ' coss).

If we define y=x(m —1) and let m-+1, we obtain
the exact total scattering cross section of super soft
spheres) '

It follows that

16 p2l ~

A'= &—
l

—
l

(kip —kp')ap exp( —n')
3 &x)

-'m'A4b'k ' (1+»')
&s=

(ki+kp)'(1+»' —2»' cos4aki) kikob'

X (exp[ ——',b'(ki —kp)'j —exp[ —-', b'(ki+ ko)'] }

—4» cos(2aki) exp[ ——,'b'(kio+kp') j . (3.25)

The limiting expression for super. soft scatterers (high
energies) is derived by substituting (3.24) into (3.25)
and neglecting terms of order sc and a'. Then, for
small A,

cr„/orb'= pi pry' exp( ——',y'P'), y= (A/k, )'(bk, ),
p =0.2867. (3.26)

This total scattering cross section is compared with

~&1.744(kio —k ') (3.24b)

The total scattering cross section of a Gaussian scat-
terer is obtained by integrating (3.23) over all angles.
Then
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the Born approximation,

(3.27)

in Fig. 2. Notice that as ~pp, o,/rrb' &~ i—n the Born
approximation and zero in our approximation.

Then

(c) Exponential Scatterer

k'(r) k—pP =a A' exP( —r/b). (3.28) I

8

o (8) =4b'A'i A, !"-((1+pp'b') '+ ~'(1+v'b') '
—2Kcos(2ak&)(1+v'b') '(1+co'b') ') (3.29)

Here f(x)=~exp( —x). Hence 1+a+-',n'+puP=e,
o.=2.318, and we have

FIG. 2. Ratios of the total scattering cross section of a Gaussian.
sphere Lk'(r) —k0~=~A'exp{ —{r/b)~}j with mb' in the limit as
A /k0~0. The upper curve is the Born approximation LEq. (3.27)j.
The lower curve is the present approximation LEq. (3.26)j.
The parameter y is defined by y= (A(k0)'(bk0).

A'= &(8/3)(kp —kpp)npe ~~&3.270(kp —kpp). (3.30) We obtain the total scattering cross section by inte-
grating (3.35):

Since

sin0d0 1 1

J (1+&PbP)4 6bPkzkp [1+bP(k kp)~]P

[1+b'(kg+ kp)']'

sin0d0

o.= prA'b4iA. i'(kgkp)
—'

X (1+x')
1+b'(k —k )' 1+b'(k +k )'

2x cos2ak~ 1+b'(k~+kp)'
log — . (3.37)

1+b'(kg+ k pP) 1+b'(kg —kp)'

The limiting expression for super soft scatterers is

~ p (1+pp'b')'(1+ v'b')' 4kgkpb'[1+ b'(kg+ kp')]' -./-b'=y'/(I+ye), fl= 1 »9, (3.38)

4kikob'
X

[1+b (k +ko) ][1+b (k —kp) ]
(1+b'(kg+kp)' )

[1+b'(kP+kp')] (1+b'(kg —kp)'~
L'21

we have

o, =gb A pr((1+~')Lq —2pL2 cos(2aki)) l Aa~' (331)

The limiting expression for super soft scatterers is

o,/ b'=pr(4/3)y'(1+ P'y') ', P =0.1529. (3.32)

The corresponding Born approximation is

while the Born approximation yields

o,/ prb'= y.
' (3.39)

Equations (3.39) and (3.38) are compared in Fig. 4.
It is of interest at this point to see if (3.35) reduces

as b—+~ to the exact differential cross section of a
Coulomb scatterer. Let us consider the scattering of
an electron by an ion of charge Ze. Then

k'(r) kp' ——(2m——Ze'/rh') e "" kp'= 2mE/hP =mv'/h'

where e= charge on the electron, m= electron mass, and
~ =velocity of incident electron.

From (3.34), A'b= 2mZe'/h . Then, from (3.36),

o./vb'= (4/3)y'. (3.33) 2Zme'/bh'=0 379(k '—k ')

Equations (3.33) and (3.32) are compared in Fig. 3.

(d) Screened Coulomb Scatterer
Let

k'-(r) —kpP = &[A'/(r/b)] exp( —r&b). (3.34)
Then

o (0) =A4bP! A, P((1+(a'b') "+ '(1+xv'b') -'
—2K cos(2akg)(1+~'b ) '(1+v'b ) ') (3 35)

Here f(x)=Ax 'e *. Then n satisfies e =1 +n +'n'

and 0.=0.807; hence,

A'= &(4/3)n'(kg' —kp )e ~~+0.379(kP—kpP). (3.36)

Hence as b—+~, ki—+ko so that

aP = k '+ k '—2kgkp cos8 = 4m'v'h ' sin-', 6

and (3.35) approaches

o-(0) = (2mZe'/h')'(u '~[(Ze-' csc'-', g)/2mv']'

the Rutherford scattering formula. Our approximation
is equivalent to that of the Born approximation for this
problem. Equations (3.18), (3.23), and (3.29) all reduce
to the corresponding Born approximations when k~= ko,
for then co'—+4ko' sin'-,'0 and ~=0. The resulting expres-
sions are independent of the parameters of the sphere
whose approximate wave functions were used.
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bq

0 2 so 12 1%

FIG. 3. Ratios of the total scattering cross section of an expo-
nential sphere Pko(r) kpo= —&As exp( —r/b) j with 4rbs in the
limit as (A/ko) —+0. The upper curve is the Born approximation
fKq. (3.33)j. The lower curve is the present approximation
fEq. (3.32)j.The parameter y is defined by y= (A/ko)'(bko).

As A, and therefore as (kts —kp'), increases one must

use a better approximation to f, in (3.8) in order to
obtain more accurate relations between the sphere

parameters and those of the scatterer of interest.
The above results are generalized in the next section

to scatterers with the symmetry of an infinite cylinder.

4. SCATTERING BY SOFT OBSTACLES WITH
SYMMETRY OF INFINITE CIRCULAR

CYLINDER

(4.2)

Since the theory of scattering by an infinite circular
cylinder is essentially the same as that of a sphere,
we shall not include as much detail in this section as
we did in the last. We shall merely summarize the main
formulas and give a brief indication of their derivation.

We let the s axis of our coordinate system be the axis
of our scatterer and let our incident plane wave be
propagated in the direction of a unit vector sp which
lies in the x—s plane and makes an angle 0.0 with the
s axis. We shall use the approximate internal wave
function of an isotropic circular cylinder of radius a and
propagation constant k&. An angle 0.& defined by

ki coscli = kp cos(l'0, (4.1)
and a set of "starred" parameters

k,*=k; sinn;, m*= kr*/ko*

enter naturally into the theory.
The starting point of our analysis is the integral

equation (1.4a). We approximate ii (r) in the integrand
by the wave function P4 of a soft cylinder. As was
shown in S-II, the value of ib4 at a point r, s, 0 (in
cylindrical coordinates) is approximately

2(m*) & exp[ia(kt* ko*)]—exp(iskp cosnp) [exp(ikr*r cos8) i s exp(2iakr*) —exp( —irkt* cose)]
4(r) = (4.3)

(1+m*)[1+44' exp(4iakt*)]

If (4.3) is substituted into (1.4a), the integration over s and 0 can be carried out in the manner discussed in S—II.

Then
i(re*)l(2or/Rkp*)i exp[ia(kt* ko*)+—i(Rko* oor+k—os cosnp)]

0"(R) =
(1+m*)[1+44' exp(4iakt*) ]

X
~

r[k'(r) —kp'][Jp(r4o, )—4 exp(2iak, *)Jo(rt, )]dr, (4.4)
0

where
to '= kt*'+k *'—2k&*ko* cosO~

nrs= k *'+k *'+2k~*ko* cosO.

The differential scattering cross section is then given by

2mm*

kp*(1+m*)'(1+~4+2~' cos4atkt*)

screened Coulomb potential leads to a divergence in the
(4.Sa) integrals needed to relate the parameters of the cy-

lindrical scatterer with those of the screened Coulomb
potential.

As in the case of scattering by spherically symmetrical' scatterers, we use the variational scheme of Sec. 2 to
relate a and k~ to A and b. We again limit ourselves to
soft scatterers so that we can assume

l
ibo l'=constant.

The integral to be minimized is

X )l r[k'(r) —ko'][Jo(roo, )
0

I= 2or ([k (r) —ko ]—[ko (r) —ko']
Jp

In our cases of interest

is exp(2iakr*) Jp(rlt)]dr .—(4.6)
while

The integrations are easily carried out in three of the
four special cases considered in the last section. The

kg' —kp' if r &a
kp'(r) —kp' ——

0 if r& g.

k'(r) —koo =A'f(r/b),
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The variational equations r)I/BA'=0 and BI/Bb=0
imply

0.5
f tX

A'= (kts —kp')) xf(x)dx
0 U p

xf'(x)dx (4.7) 0.4

(la 00

A'= (k,s—ko') x'f'(x)dx ' x'f(x) f'(x)dx (4.8)
4p J,

~ 03

0.2
o.=u b. (49)

By equating these expressions for A', we Gnd that a is

the real positive root of

O.f

n'f(n) = xf(x)dx,

and A' is related to k~ by

f
A2 (k 2 k 2)npf(n) xfs(x)dx

(4.10)

(4.11)

FIG. 4. Ratios of the total scattering cross section of a screened
Coulomb scatterer Pk'(r) ko' =+—{A'/(r/b) }exp( —r/b) g with
m b in the limit as (A/k0} —+0. The upper curve is the Born approxi-
mation PEq. (3.39}j.The lower curve is the present approximation
(Eq. (3.38)g. The parameter y is defined by y= (A/ko)P(bko)

As an example, we shall present here only the results
for the Gaussian scatterer. In that case

General expressions can be derived for the total
scattering cross sections of very soft scatterers in the

following way. Equation (4.6) implies in this case

4prpsA' -2

o,= rf(r/b) Jp(rpp)dr dO.
ko(1+m)'~ o & o

I.et us introduce the new integration variable I=bee.
Then

dO~=sds/b ktkp slnO~.

SinO~ is obtained as a function of s from (4.5). Then

4mnzA4b'

o,/2b=
kt(1+m)'

xf(x)Jp(xu)dx
f b(k1+kP) pal p

X
~

& pip —s l [bs(kp+kt)P us]'[uo —bs(kt —k—p)s]'

In the limit as A—+0 (i.e., prp~1) it is convenient to
introduce a new variable

y = (A/kp)'(bkp) = -'P '(k '—k ')/kp.

k'(r) —
kpP = &A' exp —(r/b)'

xm*b4A4

o(e)=
2kp*(1+rtp*)'[1+F4+2a' cos(4akt*)]

X (exp( ——',b'tpt')+ a' exp( ——',b'o P)

+2a sin(2akt*) exp[ ——',b'(kt*'+ko*')]). (4.13)

The de6ning equation for u for a Gaussian scatterer
is 1+2n'= expn'. From this we find n= 1.121 and

A'= &4n'exp( —n')(kts —kp') =&1.431(k '—k s). (4.14)

The total scattering cross section of a very soft
Gaussian cylinder to plane waves where direction of
propagation is normal to the cylinder axis is (we have

dropped the stars on our m's and kt's and let m = kt/kp)

prrrpb'A4

&s= exp( —sb (kt +kp 2ktkp cosO~))dO
ko(1+m)'J p

mx'b4A4
exp[ ——',b'ko'(1+ 5$')]Is(b'kp'pre) i

ko(1+ r0)'

I= 1+(A'/1. 431kp')

o,/2b -', pry'

"Pv

xf(x)Jp(xu) dx
Sdu p

(Ss Psy2) $

Then for 6xed y

(k,+k,)b=yP/[k, /k, —1]
(kt —kp)b=yP/[kt/kp+1]- &', Py

and

/. (4.12)

where Ip(x) is the zeroth-order Bessel function of purely
imaginary argument. In the limit as A—+0 we can use
the asymptotic formula (4.12) to obtain

C

l
"u' exp( ——,'u')du

o,/2b s' pry'
J [Ss ppyp]$

pr (pr) *

y' exp( —-'p'y').
8 E2)
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One might attempt to generalize the results of this
paper to scatterers in which the scattering force cannot
be expressed in terms of a potential which depends
only on the distance from the scattering center; to the
scattering of vector waves; to the scattering by shell
stluctures ~

and to the scattel lng by pellodlcally dis-
tributed scatterers. One might also attempt to make
improvements by using step function potentials as the

trial forms. Some of these problems are now under
investigation. It would be desirable to investigate
some slightly more complicated improved forms of the
approximating wave functions then those used here.

The general program on scattering, of which this
work is one phase, was initiated through a grant of
the Research Corporation while one of the authors
(K.W.M.) was at the University of Pittsburgh.
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Magnetostrictive Vibration of Prolate Spheroids. Ni-Fe and ¹-CuAlloys*

J. S. KOUVELITESf AND L. %. MCKEEHAN
5loage Physics Laboratory, Vale

University,

Rem HaeerI„Connecticut

(Received February 20, 1952)

The study of the different magnetic properties determined. from
the magnetostrictive vibrational behavior of small ferromagnetic
prolate spheroids was extended to a large number of Ni-Fe and
¹i-Cu alloys. The computed values for the saturation magneto-
striction, the total change of Young's modulus with magnetization,
and the initial permeability of plain-annealed (i.e., annealed in
zero magnetic Geld) specimens of these materials, were inserted
in two independent expressions, derived by Kersten, for the
internal stress. The agreement between the two sets of values was
quite good. The Ni-Fe alloys were also studied after having been
magnetic-annealed; moreover, the 68-percent Ni Permalloy,
having exceedingly strain-sensitive properties, was investigated
in cold-worked, baked, and annealed conditions. In general, the

changes of the calculated internal stress with heat treatment
appeared consistent with the corresponding variations of proper-
ties such as the initial permeability. Even more revealing in this
way were the values for the domain size determined from the
computed dissipation factors and internal stresses and found to
agree very well with previous measurements of Barkhausen
discontinuities. When, for all the plain-annealed specimens, the
relative change of Young's modulus was plotted against the
relative magnetization, it was discovered that all the curves were
almost identical. With the support of previous work, we were
able to conclude that these curves should be similar for all plain-
annealed face-centered cubic structures at room temperature.

A SMALL centrally-clamped prolate spheroid of a
ferromagnetic material was forced magneto-

strictively into longitudinal vibration in its fundamental
mode. The perturbing agent was a small axial high
frequency magnetic field superimposed on a uniform
and. axial static 6eld. It was shown in a previous paper'
how the incremental permeability, magnetostriction
constant, modulus of elasticity, and dissipation factor
of the ferromagnetic spheroid could be accurately
computed from the resonance changes of the impedance
of the high frequency magnetizing coil. Moreover, it
was found that the values obtained for these parameters
for a wide composition range of Ni-Fe alloys were in

qualitative agreement with previous theory and experi-
ment.

Here, the results are presented for a larger number of
compositions and for a variety of heat treatments, and
the extent of corroboration with previous work is
indicated as quantitatively as possible. More important,

~ Assisted by the ONR.
t Now in the Physics Depart. ment of the University of' Leeds,

England.' Beck, Kc ]velites, and McKeehan, Phys. Rev. 84, 957 (1951).
The following corrections for errors missed in proof should be
made in this paper. On p. 958 the last part of Eq. (9) should con-
tain the additional factor ~, the last two parts of Eq. {10)should
have the Grst plus sign changed to a minus sign, the 1ast part of
Eq. (11}should contain the additional factor X„e""'.

on the basis of our results, it is now possible to extend
present information on certain properties of ferro-
magnetics at low magnetizing 6elds.

All the measurements were made at room temperature
and with a high frequency held of 0.35-oersted ampli-
tude.

PLAIN-ANNEAL AND MAGNETIC-ANNEAL

The compositions. chosen for study were nickel, the
Xi-Fe alloys of atomic percent nickel: 88, 84, 79, 68,
56, 45, and the Ni-Cu alloys of atomic percent nickel:
90, 84, 81, 71, They were all commercially pure, the
impurities amounting to less than 0.5 percent.

Structurally, all the above compositions are face-
centered cubic. The two alloy systems represent, how-
ever, examples of addition to one ferromagnetic metal,
of various amounts of either another ferromagnetic or
of a nonferromagnetic. It is therefore likely that any
statement found to apply to both systems will be
applicable with equal validity to most other f.c.c.
binary nickel alloys.

A spheroidal specimen of each composition was
studied in what hereafter will be called the plain-
annealed condition, which is achieved by a three-hour
anneal at 700'C in a hydrogen atmosphere followed by
a slow cool. The nickel and the Xi-Fe specimens were
subsequently heated again to 700'C in hydrogen but


