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The most important effect of these new data is on
the discussion in Sec. IV. The “possible” curve in
Fig. 7 can now be constructed by extrapolating the
(@P/dT)y curve in helium II from 1.74° to intersect
the (dP/dT)u curve in helium I at 1.764°, so that a
better agreement with the “predicted” slope is obtained
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(using a new (dP/dT)\=54.5 atmos/deg). A difference
of a factor of three or more still exists in the slopes,
however, and this seems to be outside experimental
error.

Detalils of the capillary blocking and A-point-pressure
experiments will be published elsewhere.
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In this paper the effect of second-order radiative displacements of the energy levels of a bound electron
on hyperfine structure separation is examined, and a correction to the Fermi formula for s levels is obtained.
The treatment is based on an approximate evaluation of a finite, completely renormalized, and exact ex-
pression for the second order energy. The correction, which is restricted to atoms of small «Z, is found to be
[e/27—a?Z(5/2—1n2)]Ey, where Eg is the Fermi energy. The effect of this and other corrections to the
Fermi formula on the presently accepted value of the fine structure constant is discussed.

INTRODUCTION

HE interaction of the quantized electromagnetic
field with the electron field modifies the properties
of the electron and thus causes displacement of the
energy levels of electrons bound in atomic or prescribed
external fields. The existence of electromagnetic dis-
placements was first recognized through observation of
energy level separations, and it is through precise
measurement of these separations that the various pre-
dictions of quantum electrodynamics are accessible to
detailed experimental investigation. Previous theo-
retical treatments of this problem have been limited by
the fact that weak field approximations are made in the
process of recognizing and removing charge and mass
renormalizations. In the case of the hyperfine structure,
‘the radiative corrections have never been calculated
directly, previously obtained results having been in-
ferred from the anomalous magnetic moment of the
electron.! It has long been realized, however, that a
direct evaluation of the second order radiative dis-
placement might yield, in addition to the effect of the
second order moment, corrections to the hyperfine
structure frequency of order o?Z. As such corrections
arise from the high momentum parts of the external
field and electron wave function, their evaluation and
comparison with experiment may serve to extend the
domain in which the theory has been investigated.
Furthermore, in view of the important role played by
the hyperfine structure formula in recent determinations
of the fine structure constant, it is clear that such cor-
rections may significantly affect the numerical value
which one obtains.?™
* Work supported in part by the Signal Corps and ONR.
17J. Schwinger, Phys. Rev. 73, 416 (1948).
2H. A. Bethe and C. Longmire, Phys. Rev. 75, 306 (1949).

3J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951).
4J. W. M. DuMond and E. R. Cohen, Phys. Rev. 82, 555 (1951).

THE SELF-ENERGY FORMULA

In order to deal systematically with the energy level
displacement problem it is desirable to begin with an
exact expression for the second order correction. Such
expressions in noncovariant form were in fact the
starting point of the earliest calculations of the level
shift®¢ and have been given in covariant form by
Feynman” and Schwinger.® We shall briefly derive these
here following the methods of Dyson.®

As a starting point we consider our theory to be cast
in a modified interaction representation in which the
effects of the external potential appear in the equations
of motion for the field variables, while that of the inter-
action between the electron and photon fields appears
in the interaction Hamiltonian.!® That is, the develop-
ment of the wave functional in time is described by

6\1’[0':]__ iH ()9 )

oo (x) h he #¥lel @
where

H‘L(x) = ——j,‘(x)A,,(x)/c, (2)
and

Juw) =%iec[P () vl () —¥ @) v @1 3)

The operators ¥(x), ¥(x), and A4,(x), which describe
the electron-positron and electromagnetic fields, respec-
tively, satisfy the equations of motion
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and the usual commutation relations. 4,°(x) is a speci-
fied external potential.

Mass renormalization can be formally inserted into
these equations by means of a unitary transformation
which takes (2), (4), and (5) into
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Equation (1) has the well-known solution
V[t ]=U(y, t)¥[-],
where
U EW( ) f
XP[Hi(xl), feey H{(xn)]dﬁh' . -d4xn.

Second-order radiative corrections are contained in
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since H, is already of second order in the coupling
constant. The second-order correction to the energy of
an electron in a stationary state a of the external
potential is given by the relation

—(@/B)(+—i_)AE®
=imaginary part (¥,, U(t, t)¥a), (7)

where ¥, is the wave functional of the uncoupled elec-
tron photon system corresponding to the presence of a
single electron in the specified state and no photons.
The time difference (¢.—¢-) is to be taken large, and
any oscillating dependence on the limits ¢, and {_ is to
be ignored. Equation (7) simply states that a change in
the energy of the state ¥, manifests itself by a change
in phase. The real part of the expression on the right
side of (7) corresponds to the decay of the state ¥,
arising from a transition to a lower energy state accom-
panied by emission of a photon.

The expression (7) can be conveniently analyzed by
means of Feynman diagrams in a manner entirely
analogous to the corresponding problem for a free
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F16. 1. Feynman diagrams for the self-energy of a bound electron.

electron. One obtains
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corresponding to the diagrams in Fig. 1. ¢a(x) and
¢a(x) are the normalized c-number solutions of the
Dirac equation and its adjoint (4’ and 5’) corresponding
to a designated stationary state. Dr(xs—x) is the
photon propagation function defined by Feynman and
Dyson (the notation and normalization are Dyson’s),
while Sr¢(xs, x1) is defined in a manner analogous to the
free electron propagation function by

1Spe(wa, 1) ap= (P[¥a(®2), ¥s(x1) Doe(ay, x2),

where { ) denotes the vacuum expectation value.!

We shall refer to the energy represented by diagram
(@) as the fluctuation energy, AEF@. It contains a mass-
like part which is to be just canceled by the energy
corresponding to diagram (c).

The energy corresponding to diagram () will be
referred to as the polarization energy. It can be written
3.512

AEp=—"—
c(ty—122)

1t Note that the vacuum state with respect to the matter field
is defined by the condition y¥*(x)¥,=0 and ¥~ (x)¥,=0 and
differs from the vacuum state used in the free particle interaction
representation.

12 Spe(xq, ¥2) is to be understood as 3 Lim [Sre(xy, x.”)
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+Sre(x2”, x5")] where xy’ is earlier, x," is later than x,. [See
Schwinger, Phys. Rev. 82, 664 (1951).] This definition insures

f Faa)red P @) pule)dis,  (9)
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where
A F(x1)=(3/2c) f Dy (1~ %) 7P (¥2)dsxs,  (10)

and

(11)

An explicit form for Spe(xs, x1) in terms of the sta-
tionary states of the external potential is given by

JuT (2) = Fiec Tr[vuSre(xz, 22) J= (fu(%2) )o.

%SFe(x% xl)aﬁ
= X (#r(®2))a(dr(%1))s;
Err>0

== 3 (¢p(®2))a(Pp(x1))s;

P
E,<0

(xa—21)0>0,

(xz—x1)0<0. (12)

Use of this form in (8) followed by integration over the
time variables in dyx: and dax. reduces the above formula
for AE to the possibly more familiar form used by
Kroll and Lamb?® and French and Weisskopf.®

We shall, in fact, find it convenient to carry out one
time integration at this time. In view of (12), S#®(x, x1)
depends upon the time-like components of x; and x.
only through their difference xo= (x2—x1)o. This same
remark applies, therefore, to the entire integrands of
8(a) and 8(b), while the integrand of 8(c) is independent
of the time-like component. Thus in the limit ¢,— o,
t——o one time integration may be performed
immediately, yielding

AE=real part{ —iamnhc f Ga(22) ¥ uSre (22, %1) Vs
X ¢a(#1) Dr (%2 —21)dx10X2d2%0

—ie f Gal@1) Al P (1) a(a1) 1

——:——m f aa(xo%(xl)dxl}. (13)

REDUCTION OF THE SELF-ENERGY FORMULA

Although the expression (13) is exact, AE® contains
an infinite mass term which must be isolated and
canceled against AE®@, while AE® contains an infinite
term corresponding to a charge renormalization which
must be recognized and removed. The renormalization
program will be carried through in such a way as to
yield an expression which is still exact and whose
individual terms are finite and well defined.

We first rewrite our expressions in momentum space
by introducing the appropriate Fourier transforms

that (ju(%2))o=3dec Tr(vuSr(xs, x2) ]=0 for zero external field.
It is for this reason that diagrams like (b) are omitted from the
usual Feynman rules, which apply for a representation in which
the matter field operators obey a free particle equation of motion.
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defined by*

Ga(2)= f 6a(p)8(po— pa)ei? “dup,
Fa()= f $a(p)8(po— pa)e~ 7 *dup,

Sv#(an, )= [[ S5, 293 Cor—poe]
X et (p2-z2—p1 -Z1)d4P1d4P2,

‘ —2i e
Dp(x)=po(k)6’k'xd4k= f dsk,
(27)* k?

(14)

Au(x)= f A,5(q)6(go)e™ “dayg,

AP (x)= f AP (@)8(go)e “dag.

Inserting these in (13), carrying out the coordinate
space integrations, and the trivial momentum space
integrations, we find

AE= Rel — aﬁc(27r)4f<5a(p2)7usr"(?2— ky, p1—k)
dsk
X 7M¢a(pl>;2—dpldp2
—ie(2)? [ Gulpe) v P (P 26l

~Eneny [ b nn]. 15)

(a) Renormalization of the Polarization Energy

We first note that as a consequence of its definition
and the equations of motion (4’) and (5'), Sr®(xs, 1)
satisfies

LAY ie .
7u—_+[_—7MA ue(xz)‘l‘K]SFe(xz, 1) = 2064(wo— 1),
c

6x2,,

and (16)
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e
Yut-Sre(2, xl)[ - ;—'YMA w () + "]
C

X1u
= 2’1:54(962—961),

13 The following remarks concerning the notation may be useful.
Four vectors will be denoted by ordinary type (p, %, etc.) while
boldface type (p, k, etc.) will be used to denote their respective
space parts. The notations p,k, and p-k will be used inter-
changeably to denote the four dimensional scalar product, so that
puku=p -k=p-k—poko. It is hoped that the use of the same
symbol for a function and its Fourier transform will not be a
source of confusion. They are, of course, not the same functions of
their respective arguments.
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which in momentum space take the form

(@ pat6)SEe(ps, p1)

=——f~/ ~A%(pa— p3)SFe(ps, Pl)dps-f-( 22): 53(1’2 P,
and an
S Fe(;ﬁz; )iy prt«)
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Tteration of these equations in combination then yields
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Xy-4%(pa—p1)
Ptk

ie \ 24y pa—K
+(5) 22 fraw
e P22+K2
iy pr—«k
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( )Sp(i’z)
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Y 2y seol o

X Sre(pa—y, P1+Q')‘Y'A"(Q')dqdq,]SF(z”l)- (18)

=Sr(p2)d3(p2—pr)— (_%

The definition of 4,F(x) given by (10) and (11) yields
fOI' A!‘P(q);

A,7(@) = —e(2n)Ds(g) f TeLv,Se(p, p— ) dsp. (19)

On inserting the expression (18) for S in (19) one finds
that the contribution from the first term vanishes, while
that of the second is identical to the weak field polariza-
tion potential which has been computed many times
before. Using this result in the form quoted by Karplus
and Kroll'* we have

292(1—1?)
p—— =
42+¢*(1—2%)

X4, (@)+04,5(q). (20)

4R, Karplus and N. M. Kroll, Phys. Rev. 77, 540 (1950).
Equation (14).

a o 1
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The first term of (20), which contains the infinite
constant factor A, is the well-known charge renor-
malization term and is to be henceforth ignored.
8A,F(g) is the part of the polarization potential which
arises from the third term of (18) and is of importance
only in the case of a strong external field. It is, however,
finite and entirely free of effects to be attributed to
renormalization. Using (20) but omitting the renor-
malization term we find for the second-order polarization
energy, the finite exact expression,

AEp= —ie(27)%a j; 1dv f Ga(D2)

202 (1—30%) (pa— p1) ¥y - A°(pa—p1)
41+ (pa—p1)*(1—2?)

¢a(p1)dp1dpe

—ie(2n)? [ 8oy 047 (pr— )2 ).
21
(b) Rearrangement of the Fluctuation Energy

The fluctuation energy can be treated in a manner
entirely analogous to our treatment of the polarization
energy. That is, Sr®(ps, p1) appearing in AE® can be
replaced by the right side of (18). The first term then
contains the mass term which one cancels with AE®,
while the first and second terms each contain an infinite
charge term which can be isolated and are found to just
cancel. The remaining expression is then finite and
exact. This particular separation of terms, while
straightforward, turns out to be unsuited to the approxi-
mations which we shall subsequently make. We use
instead a separation of terms which is due to Feynman!®
and is'based on the pair of identities,'¢

2ip1—iy-ky
vu=—[tv (p1—k)+«] - .
—2171k
2ipru—iy-ky,
W[zy pl—i-x:l, (22a)
2ipa—iyuy-k
= IAse + S ——
Yu=[iv- pat«] P 2pk
2ipou—1ivuy
BT e Bi). (22b)
B2—2py-k

5 R. P. Feynman, private communication. The authors are
indebted to Professor Feynman for describing this method to them.
16 Tt is to be noted that each of the two terms appearing in these
identities are singular at the zeros of the denominator. It is con-
venient to displace this singularity from the real axis by replacing
2—2p-k by k2—2p-k—ie, where ¢ is a small positive quantity. It
is then possible to treat these denominators on the same footing
as those arising from Dp(k) and Sr(p) and thus to apply Feyn-
man’s contour integral method to the evaluation of the k-space
integrals. While e will not be explicitly displayed in any of our
formulas, it is to be tacitly understood that these quantltles are to
be set equal to zero only after the entire calculation is completed.
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We insert these in expression (15) for AEF@, the form
(@) for the v, on the right, the form () for the v, on the
left. Each free electron operator, iy p-«, then appears
with the appropriate momentum and adjacent to a
wave function or the propagation function Sr¢. Now in
addition to Eq. (17) for Sr¢ we have

ie
(iV‘P1+K)¢a(P1)=ﬁ_ f’y'Ae(Pl“Pll)%(Dl')dpl',

c
) (23)
_ ) ie .,
Ga(p2) (@7 * patk) Y f Ga(p2’)y - A°(p2—p2)dps'.
c
Applying these as well as (17) we obtain?
AE®=C+L+Q, (24)
where
iy (p+k)
C=dilica f 2Oy ¢a<p>~—dp, (25)
23 w,;y -k
L= —Zzhca( )[ f Gulpe) L
2ipyp—ivy-ky, dik
Xv-4 (pz—pl)m%(m);;dpldm
—pa-k+po?
Y s
—2ps- k)2

dib
><'y-Ae(pz—pl)%(px)—k;dpldm], (26)
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= —Kp
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Inserting (30) into (25) and applying (23) we find

dyk
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Q=—ﬁca(21r)4( ) [ 6090 an )

XSFe(pT_k_qQ’ Pl—k‘l‘%)@n(% plx k)

dik
X ¢a (Pl);;dpldpzd(hd(h, X))
where,

2ipr—iv-ky
@ulgs, b, B) = — v+ A°(q1)——————

—2p1-k
2i(pr+q1)u—

—2(prtq1) -k
2ipou—ivuy-k

@,/ (g2 P2, k) = =7~ A°(ga) k*—2py-k
2i(ps—qa)u—

-

—2(pa—q2) -k

We now proceed to a rearrangement of (24) with the
objective of isolating and removing renormalizations.
From (25),

iy kv,
v Ae(ql)a

(28)

i'Yu'Y -k

v-A4%q2). (29)

C=difca f Fo(0)I(2)d(p)d,

with
iy (ptk) dik

Ie)= f(k2 28 R

Following the procedure of Karplus and Kroll,®® we find

'3f o ]+(' +)[ g [
"2 J (k) AR i 2f(k2+x2)2]

Yoy ptu]liv- p(1—22)—2k(1—2) J[dv- P+K]

= (P )z 0

](%e;) f Ga(D2)* A°(D2—D1) ba(P1)dp2dp:s

+67r2hca( ) f Ga(p2)y- A%(P2—ps)

v+ A*(ps—P1) $a(P1)dp1dpedpsdz, (31)

K— Ko o I:97r2 3if dik ]
w  oila 2 J [erepl

K2— (p32+ K2)Z

1t is worth noting that the form of (24) is very similar to that of the expression which would have been obtained had (18) been

substituted for Sr°(ps, p1) in AE@. The essential difference is the appearance of the factors @,
k)vy and v, Sr(ps—k)iv- A°(qs). The 51gn1ﬁcance of this difference will be discussed later.

XSr(pr—

@’ in Q in place of iy-A°(qy)

18 See reference 14, Eqs. (16) to (23). The expression I(p) above is very similar to I(iy-p-+«) there evaluated.
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The first term is the well-known divergent mass term Lp is that part of L which diverges in the infrared.
and is just canceled by AE®. The second term is also Itis given by
divergent and corresponds to a modification of the

electron’s charge. It will be canceled by a similar term Lp=—8ilica ( ) f b (92)
inL ‘ —2p2-

Applying similar methods to (26) we find
P 2p Plﬂ

] X
L"‘—4h6a["‘ﬂ'2+'—if [k2+ 2]2](5‘) k2—2p2k k2—~2p1~k
‘ dik
Xd’a(pl)];;dmdpl- (34)

)‘Y'Ae(Pz—Pl)

X f Pa(P2)v - A°(P2—P1) da(D1)dp1dp2

There is, of course, a compensating divergence in Q.

In order to make evident the fact that Q-+ Lp is finite
_ 2 —_ ]
O hca( ) f $a(2)7- A°(D2—p3) we note that Lp may also be written

L 2i(p2—q2)u
x_My-Ae(ps—p1)¢a(p1)dpxdp2dp3dz Lp= k““(z")4( )f . [k2

k2— (ps2+«2)z 2(pa—go) -k
ie _ Z’ipg,,
+21r2ﬁca(——)f ba(p2)A . (p2—p1) ——‘—]’Y'AG(Qz)SFe(Pz—Qw 1+qn)
he k2—2ps-k
X Ku(p2, p1)¢a(p)dpidpet Lo, (32) [ 2i(prtq1)a 2ip1a ]
where? B—2(pr+q1) -k E2—2p1-k
Ku(p2 p1) dik
Xy Ae o(p1)—dp1dp2dqidqs. (35
(pa—po)? L2—6y(1—y) y(1—7) v A°(q1)pa(pr) P P1dp2dqidqe.  (35)
= — f ( ; _ ; )dydz
K 0 Ay A In order to verify the identity of (34) and (35) one need
i(pa—po (1 dy merely note that (17) and (22) imply
2 . -
£ A (/1) [ S@ILIPe) = - Ao
1
+j(: K P X Sr(ps, p)dpedps= —[2i/ (27)*16(p) f(p),
. . where f(p) is any function of momentum which is
+0y b0y pitw) diagonal in the spinor indices. The coefficient of (35)
— 1@y pot k) 2y u— Evu(iv- prtx)? is e.que‘xl %n magnitude anq opposi‘te .in sign to that of Q,
while it is apparent that in the limit of low %,, the two
—iy(pa— p1),0 Gy prt«) integrands become identical.
. ) We obtain finally for the fluctuation energy
+i(1=9) @@y pot) (p2—p1)y0w }
! dydz AEp= AE<a>+AE<c>—27r2hca( ) f Fa(D2)
+ [ - piv @9
K2A22
) XA 22— 1) K (P2, p1)ba(D1)dp1dp2
with
Al=1=L(pr+ )y + (P + ) (1~) —Gwzﬁca( ) f¢a(l’2)7 A°(p2—ps)
— (p2—p1)*y(1—3) ],

Al2=1—x2 2 2 21 . 2)(1—
’ LBt (i )(_( yzz Yyz(1—3) ] [2iy- paz+k(1—22)]
pa—pr)yal =) ). X v-A*(ps—p1)
" . 2= (ps*+ %)z
19 Tn writing out . (33) we have omitted terms of tl_qe form
%1 tx;l] \(/gil.is‘})\lf:s?r?daél'};?ﬁitg st(;). choose our gauge so that this quan- X $a(p1)dp:dpedpsdzt (Lp+0Q).  (36)
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THE FORM OF THE EXTERNAL POTENTIAL

In order to apply the general expressions derived
above to the problem of hyperfine structure it is neces-
sary to specify the form of the external potential. We
shall confine our attention to hydrogenic atoms; for
these the potential is given by

YA e 1
—A o(r)= ——0u—— ——XV( )
fic r fic 4w r

where « is the fine structure constant, Z the atomic
number, and u the nuclear magnetic moment operator.
The first term is simply the Coulomb potential produced
by the nuclear charge, while the second is the magnetic
dipole potential produced by the nuclear magnetic
moment. u can be conveniently expressed in terms of
the gyromagnetic ratio, g, the nuclear magneton,
|e|#/2M¢, and the nuclear spin operator, X, by
u=g(le|h/2M¢)XE, yielding

e iaZ a m 1
'};A M"(l‘) = —75”44‘5;%‘?2 Xv (;) . (37)
From (14) one easily finds
YA

e
— g o) = — St
ﬁcA" @ 2m%g? -

a miEXq
%M 2w%g?

e e
=—4,P(q)+—A4,"(q), (38)
hc fic

where the superscripts (E) and (H) refer to the electric
and magnetic parts of the potential, respectively. The
Fermi formula for the hyperfine structure together with
the Breit relativistic correction is obtained simply by
treating the magnetic potential as a small perturbation,
thus

=—thf%WWAwwzmwmmmwl

For S states, which will be our principal concern here,
this formula yields 2
En=3mag(m/M)(¢’/*)(14bna’Z?) (o Z)me*,  (39)
where ¢ is the value of the Schrédinger wave function
at the origin. The energy for the higher angular mo-
mentum states is of the same order of magnitude.

In considering radiative corrections to (39) we shall
confine ourselves to terms which are linear in the
nuclear magnetic moment. These corrections will be
expressed as multiples of Ex and will be confined to
terms of order « and o?Z.

* E. Fermi, Z. Physik 60, 320 (1930); and G. Breit, Phys. Rev.
35, 1447 (1930). The subscrxpt 7 in b,, refers to the principal
ua.ntum number of the state in question. Breit’s results imply

61—3/2 b,=17/8.
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EVALUATION OF THE POLARIZATION ENERGY

The polarization energy appears as the expectation
value of the polarization potential for the state in
question. The polarization potential can be regarded as
consisting of a Coulomb part, which is independent of
the nuclear moment, and a magnetic part which involves
the nuclear moment linearly. The magnetic part is
simply a modification of the nuclear magnetic field and
can accordingly be expected to produce a modification
in the hyperfine structure. There is, however, also an
effect from the Coulomb part which arises from the
fact that the lower energy hyperfine structure states
are the more tightly bound, and therefore spend more
time in the region where the Coulomb polarization
potential is large. These two effects are, in fact, exactly
equal, and we shall arrange our calculation in a way
which makes this apparent at an early stage.

We consider first the contribution of the first term
of (21),

AEp' = -—ﬁca(27r)2(-;ic)£l dv f Ga(p2)

20%(1—39%) (pa—p1) v+ A*(Da—11)
¢a(p1)dp1dp:
4kt (pa—p1)*(1—27)

=—ﬁca(21r)2( ) f a2 (1—40?)

_ v+ A%(pa—p1) da(pr)
xfm@)
42+ (po— p1)2(1—2?)

+ (P12 %) — 2(k*— pa*) — 2p1 - p2 1dp1dps,

where p, is the time like component of p; and p, and
is determined by the state. For hyperfine structure the
third term of the above expression is, apart from a
numerical factor, essentially AEgX (k2— po2) . (kK2— po?)
is of course proportional to the binding energy or (aZ)?,
so that this term is a correction of order a*Z2Ey and
can be ignored. The contribution of the last term to
hyperfine structure is also of order a®*Z2Ey. Now, noting
that p?4-«?=—(iv-p—«)(¢v: p+«) and recalling (23),
we find that the first two terms yield

[(p24«?)

AEp—ﬁca(Zw)z( )f dv20?(1—%02)

_ v A4pa—ps)liv- ps—«]y-A(ps—p1)
x[ f ba(p2)
424 (pa— p1)*(1—12?)
X ¢a(p1)dp1dp2dps
. v Adpe—ps)iv- ps— ]y A%(ps—p1)
+fmm
4?4 (ps— p2)2(1—12?)

X a (Dl)dpldl’zdps]. (40)
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Equation (40) involves the external potential quad-
ratically and makes no reference to which factor 4,¢
appeared originally in AEp’ and which factor arose from
application of the wave equation. It is therefore clear
that the two effects discussed in the first paragraph are
equal. Relabeling variables and noting that the two
terms of (40) are equal, we obtain

'ie 2 1
AEp'=2hca(27r)2('h") f dv20*(1—30?) f Sa(p2)
C 0

% v-A*(pa—pi—Q)[iv- (pr+9)—«]y-A%(q)
42 +g*(1—2%)
X ¢a(p1)dp:dpadq.

We now consider

(Z)zfdv%?(l—%v?)qu

XW'A”(pz—pl—q)[iv- (hrt+g)—«v-A%(q)
4x24-¢*(1—1?)

=G(p1, p2).

The form of ¢a(p1), $a(p2) is such as to confine |p;| and
| p2| to values of the order of @Z« while the ¢ integration
yields its main contribution for ¢’s of the order of «.
Thus it is reasonable to suppose that replacing G(p;, p2)
by G(0, 0) gives rise to an error of order aZAEp', which
we shall soon see is of order a®Z2Ey.?' In evaluating
G(0,0) we may of course also replace p, by «. Thus,

G(0,0)= (hc) f d020°(1—1?) f dq

X'v-A‘(—q)[iv-q—-x(1+74)]7-/1”(q)-
4P +g*(1—22) '

We now note that - A4°(—q)(1+~v4)v-4%(q) contains
no terms linear in the nuclear moment, while

aZ m e-qX(EXQq)
84
472k M (g®)?

ie\?
(~) v-A«(—qQiv-qy-4°(q)=
#ic

o2 m ¢ X
= Y
6mick M ¢*

(41)

on averaging over angles. Equation (41) plays an im-
portant part in the evaluation of all of the a2Z correc-
tions to be obtained later, as all operators which con-
tribute to these corrections are easily reducible to the

2 The authors are indebted to H. A. Bethe for pointing out to
them the fact that integrals like (40) might be approximated in
this way.
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form on the left. We find therefore that

2 m 1
G0, 0)>——rg—v0-= | dv202(1—10?)
N 6ric M * 0 :

dq
>< S — —_
f *(4x*+g*(1—12?))

2Z m 2
g——'y c- Ef dv2*(1—3?)——
T M T (1=
o’ Z m
= g—0 X,
167«? M
since
192(1—3%0?) 37
f L M
Thus?? o (1=t 16
us
1a22r m
AEP,_*i g——mc2f Fa(D2) V10 - Eo(p1)dp1dp:
K3
1a22r m . yme?
=- g—o (0 X)mc
2 8 M
=302 Ey. (42)

It is clear that there are no a2?Z corrections for states
with nonzero angular momentum.
We now consider briefly the second term (21). The
explicit form of 64,F(q) is
. P.._ K

w )= e (hc) f I Yu Pt
XSr(p—q2 p—q+q1)v-A°(q1)
v (p—g)—
X w]d(hd(n (dsp).
(p—9)*+«*

To estimate its magnitude we again insert (18) for
Sre(p—qs, p—g+¢1) and drop the last term obtaining

—2ie fie \*® iy p—k
34,7(g)~ =Y | T,
@ i (ﬁc)f r['y P’
iy (p—qo)—«
X——————-
(p—gq2)*+«?
iy-(p—g+q)—«
(P—g+a)*+e
iy-(p—q@)—«]
Xu—x]aaidqz(dd’),
(p—9)*+«*

2 One must use Pauli-Schrédinger wave functions with spin
rather than Dirac wave functions here. For Dirac wave functions
the momentum space integral diverges unless G(py, ps) is used.
The error is of order o222 In(aZ)AEp’.

v-A4°(qz)

v-A°(qe)

A(q—q1+qz)

A(qr)
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the leading term having vanished as a consequence of
the Furry Theorem.?® It is clear from the occurrence of
two extra factors (ie/fc)y-A¢ that 64, would be at
least a factor a?Z2 smaller than the leading term of 4,7,
so that the contribution of this term to the hyperfine
structure is of order a*Z3Eg.2

EVALUATION OF THE FLUCTUATION ENERGY
(a) First-Order Part

It is convenient to consider separately those parts of
AEp which involve Sr¢(ps, 1) and those parts which
do not. By the first-order part of AEr we shall mean that
part which comes from C and L. However, in view of
the fact that Lp has been cast in a form similar to Q,
we shall postpone discussing it and consider it in con-
nection with Q.

The simplest of the first-order terms is the second

term of Eq. (36), which, for convenience, we denote by
AEF(Dt

ie\ 2 -
AEpM = —67r2hca(;i—) f q§u(p2)< v-A¢(pa—p3)
c _

9 [2ziy- pst+x(1—25)]
K= (ps’+ %)z
X ¢a(p1)dp1dp2dp3dz.

v~Ae<p3—p1>:>

43)

This expression is very similar in form to (40). We
therefore treat it in the same manner, that is, after
writing ps=g+p1, we set p1=(0,0,0, ik)=p, in the
portion of (43) bracketed thus (_ ). Making use of
(41) we find

2 hca*Z m dq
AEpM——— g—(o-2)¢02fzdz—
12§§§'K2 M q2 K2__q2z

K dq

3
= ——E11a2ZdeZ .
11'3 K2___ q2z q2
We find, therefore, thus AEF® is a term of order a2ZEg
multiplied by a definite integral. We now note that the
real part of

kdq ©  kdg
dQ=4r® f =0
f K2—q%z 0o K*—q% ’

where ® denotes the principal part, so that AEF® does
not contribute in the order of interest. The integral does
have an imaginary part which we could evaluate had
we paid due attention to the small imaginary quantities
which should be retained in the denominators through-
out the calculation.’® As noted before, however, we are

2 Wendell H. Furry, Phys. Rev. 51, 125 (1937).

2 This argument might be insuficient if 64 ,7(g) were singular
at small g. However, the gauge invariance of 7,* and the absence
of charge renormalization effects in 84 ,* imply that the momentum
dependence of 54 ,F(q) is ¢?4 ,,%(¢) f(g%), where f(g?) is finite at ¢=0.
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interested only in the real part of the energy. It is to be
noted that the essential difference between this result
and that obtained for the vacuum polarization arises
from the fact that here the coefficient of ¢? in the de-
nominator is negative for all values of the auxiliary
variables. We shall see that this is a characteristic
feature of the denominators of K, as well.

We turn now to a consideration of the first term of
(36). We consider first the contribution of the first term
of K,(p1, p») which we may write

K, (p2, p1)

2—6y(1—y) y(1—y)
= Gumpi | e

yielding )

e
AEF<2>=21r2ﬁm(;L—) f dydz f a(D2)
c

X (P2_P1)2'Y'AG(PZ_P1)¢a(p1)
X[2—6y(1—y)_y(1~y)

KzA]_2 I(2A22

]dpldpg.

This expression is identical in form with AEp’ and may
be dealt with in a precisely similar way. One finds that

AEF(2>-——)

o’z daf 2—6y(1—y)x  y(1—y)«
'-‘—EH f dydz——[ ]
7['3 q? KZ___y2q2 K2___y2zq2
Again the integration over ¢ gives rise to a vanishing
real part so that like AEp®, AEp® yields no a or o2Z
contributions. The third and fourth terms of K, are
similaf in structure to K,4 and can be similarly shown

to give no « or o?Z contributions.
There remains
K,®=i( ) o
=1 PZ_'PI vO uy —
* * 0 ICA12
to be considered. We note first that K,® may be split
into two terms K, B+ K,®" with

KM B = [7:(1’2* PI)V/K:'O'MH

and
KM(B)N=1-(P2_P1)V‘7M
y(Pr124 k)4 (1=9) (P24 k%) = (p2— p1)>y(1—7)
dey .

K3A12

The contributions from K,®" are of the same general
character as those from the previously considered parts
of K, and can similarly be shown to give no a or a?Z
contributions.

K,®’ corresponds to the anomalous moment of the
electron, which appears here as a point dipole. It is
clear, therefore, that it will contribute a correction to
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the hyperfine structure §,Ex where §, is the fractional
change in the electron moment. Thus

(3)—27:-2ﬁca( )f a(pz) 171)»
XA (py—p1) pa(p1)dpdpe.  (44)
Now,
) e
¢(P2“P1)u0'wAu(H)(P2—P1)("‘)
fic
a m o (pe—p1) X (EX (P2—p1)
ZKSM 274 (pa— p1)? ’
so that
2 2 s (po— _
AEF@)—?L—g—”i me? ’ pz)ﬂ (P2—p1) X (EX (p2—p1))
2 M & (pa—p1)?
X ¢a(p1)dp1dp:
a
=—Ep.
2w

We note that the anomalous moment is «/27 Bohr
magnetons, in agreement with previous calculations.

The anomalous moment also gives rise to a spin-orbit
interaction obtained by using 4,® instead of 4, in
(44). Now one might inquire as to whether this inter-
action is different for different hyperfine structure states
in a manner analogous to the interaction with the
Coulomb polarization potential. One might anticipate
that this will not be the case as the spin-orbit interaction
is, roughly speaking, distributed throughout the atom
instead of being concentrated at the center as is the case
for the polarization potential. Therefore the small dif-
ferences in the wave functions of different hyperfine
structure states cannot have a large effect on the spin
orbit energy. A detailed examination shows this effect
to be of order a®Z2Ey.

We summarize the results of this section with the
remark that apart from Lp, the total significant con-
tribution of the first-order part to the hyperfine struc-
ture is simply (a/27)Ey arising from the anomalous
electron moment. A more detailed investigation than
has been given here indicates that the omitted terms
are all of order a’Z%Ep.

(b) Second-Order Part and Lp?

The remaining part of the fluctuation energy consists
of the second-order part, which has been denoted as Q,
and the infrared divergent part of L, namely Lp. These
expressions both involve Sré(ps, 1), for which one has
either an expansion in powers of the external potential
or a sum over the stationary states of the potential. On
the other hand, one notes that Q+4-Lp involves the

% The treatment given Q is essentially the same as that used
by M. Baranger [Phys. Rev. 84, 866 (1951)] in the evaluation of

its contribution to the aZ corrections for the Lamb effect. We are
indebted to him for providing us with a copy of his thesis.

885

external potential quadratically and has an over-all
coefficient of order @, so that in view of the results
obtained for the polarization energy and first-order part,
one would expect it to yield at most an a?Z correction.
Thus one might hope to evaluate these expressions in
lowest approximation by replacing Sr®(ps, 1) by
Sr(p2)ds3(p2—p1). In order to see that this is in fact the
case, it is worth inquiring as to the circumstances under
which Sr(p)ds(p—p’) is a good approximation to
Sré(p, p’). Some answer to this question can be obtained
by considering the first two terms in an expansion of
Sre(p, p') for the Coulomb field. Referring to (18) and
(38) one finds

Se*(p, p+9)~Sr(p)3(g)

aZ iy (p—q)—«
27 = 2p- g+ p+x*
A comparison of the two terms is simplified by inte-
grating over ¢, thus

"‘SF(P)%

f Sr(p, p+q)dq

So(5)—Su(s) aZ ld iy p(1+a)—«
~Sr(p)—Sr(p 74—2—1‘; x[x(p2+x2)—x2p2]%

It is clear that when p?>+«? and p? are of order o®Z%?,
the two terms are of the same order of magnitude, while
for “large” p (i.e., (p*+«) large) the second term is a
factor aZ smaller than the first. Thus the validity of
replacing Sré(ps, 1) by Sr(p2)ds(p2—p1) depends upon
the weight given low momenta in the integral in which
Sr¢ appears. In the case of Q the arguments of Sr® are
of the form p+4%+g. Now p*4«* and p? are kept small
by the form of the wave function; low % is favored by
the factors k*(k*—2p-k)(k*—2p'-k) appearing in the
denominator, while low ¢ is favored by the factors 1/¢?
in the potentials. On the other hand, one notes that, if
Q@u(g, p, k) is written

v Ay -kye  tv-kyey-A° )
—2p-k —2(p+q) -k
21'( (?’{’Q)u b )'y-Ae,
B=2(p+q) -k k*—2p-k

the numerator of the first term vanishes with & while the
coefficient of v-A¢ in the second term vanishes with ¢.
In addition, the fact that one of the external potentials
refers to the dipole field introduces an additional factor
¢. It turns out that these last two factors are just suffi-
cient, and one can accordingly show that contributions
from the next term in the expansion of Sp® are no larger
than «®Z%In(aZ)Eg.2 It should be observed that had

26 A more complete discussion of the validity both of this
approximation and the small momentum approximation first
introduced in evaluating the expression in Eq. 40) will be given
by H. A. Bethe and M. Baranger in a forthcoming publication.

Qulg, £, k)= (
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we based our treatment on an expansion of Sy® as it
appears in Eq. (18) rather than on the Feynman iden-
tities (22), then the terms corresponding to @&, would
not have had the afore-mentioned important property.?
An attempt to demonstrate the validity of the expan-
sion based on an inspection of individual portions of the
higher order terms fails.?”

The evaluation of Q0+ Lp, after replacing Sr® by the
propagation function for a free electron, is a straight-
forward matter and proceeds in a manner entirely
similar to the previously considered’ terms. Considering
Lp first, and recalling that

one obtains

e\
Lp=—2ifica (——-) f ba(p2)
fic

27;(?1+9)u 2ipou
(20 2y
B2=2(p1+q) -k k2—2ps-k
iy (prtq) —«
: v-A(q)
¢*42p1-q+p124-«?
2i(p1+q) 2ip1u dik
( - - : )idq]%(pl)dmdpz-
B=2(p+q) -k B—2p-k/ k?

Using again our previous approximation, we neglect the
small momenta and binding energy of the initial and
final state when these appear in the bracketed [ ]
portion of the expression. That is, we set p1=ps=p
=(0, 0, 0, 7x). Making use of this fact, integrating over
#1 and p; and using Eq. (41) we find for hyperfine
structure

4/ia2ZKl‘2 bo m 1321
Lp —ar—g (c~2)m02]qudk(——) —
o L3 em 2

¢/ R
X[ ¢ 42(k- g)? ]
(B2—2(p+q)- k)2 (B2—2p-B)(k*—2(p+q)-B))

It has been remarked previously that Lp diverges in

AND F.
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the infrared. It might therefore be preferable to combine
it with Q before integrating over k. We shall see im-
mediately, however, that in the above approximation
Lp vanishes, so that the suggested combination is
unnecessary. Considering the first term only and re-
placing 1/%2 by 1/(k*+\?) to control the infrared diver-
gence, we obtain

1
i f dqdsk
(kN (B2 —2(p+-q) )

L xdq
= —q? f dx
o [A2(1—a)+(x2—g¢?)a?]g?

dg
=—A4q7d f xdx ,
k224N (1 —x) — g2
whose real part vanishes.

The other part of Lp vanishes similarly. The fact
that the contribution from Lp vanishes in this order
is not surprising in view of its similarity to the rest of
the first-order part of AEp.

For Q we have, on replacing Sr°(p, ') by Sr(p)
Xo(p—1"),

e \ 2
Q= Ziﬁca(gg) f qga(p2)[@u/(j72_?1_97 P% k)

% iy (prtg—k)—«
E2=2(prtq) - k+q*+2p1- g+ pi*+

dsk
X @u(g, p1, k)mdq:l%(m)dpzfipl.

Again we set p1=p,=9p in the bracketed expression so
that using (28) and (29),

0= 2iﬁca¢02(§;)2< f

iy (p+g—k)—«
k=2(p+q) - k+¢*

dik )
kz-{—)\qua“ (_‘q7 P: k)

Gula, k>>

7€ \ 2
=2iﬁca¢02(;£—) (I4I1+111),
¢

with

I= qud L(Z'ifu_ viy-k)y-A(—q) @y (p+q—k)— K)y - A(Q) 2ipu—iv-kv.)
) (B*+N) (k2= 2p- B)* (= 2(p+9) - b+ ")

)

- qud Lv-Ae(—q)[%(i)-qu)u—wiv-k][iv- (p+g—k)— [ 26(p+Qu—iv kyuly-A°(Q)
v (B4 A) (B —2(p+q) - B)* (R — 2(p+-q) - k+-¢°)

b

dqdsk
III=~—fT{v-Ae(—q)[Zi(P—FQ)u—wiv-k][iv~(P—l-q*k)—K]%Ae(q)[%?u—iv-kw]
+[2ip—yuiy-kJv-A(—QLiv- p+g—k— ][ 2i(p+g)u—iv kyulv- 4@},

27 Notwithstanding the above remark, an evaluation based on such an expansion broken off at the quadratic turn does in fact
yield the same result as will be obtained here. This suggests that if one groups the higher order terms properly, a proof of their
smallness might be possible.
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and
D= (R4 N)(k2—2p-k) :
X[&2=2(p+q) - kIR —2(p+9) - k+¢*].
For brevity we confine our discussion for the moment

to II. The treatments of I and IIT are identical. Using
the well-known denominator combining formula

1 1

ab%

x2ydxdy
o La(l—a)+bay+cx(1—9)]"
and letting k—&-+ (p+q)x, one finds

II=6 f dadik TaydadyNs
= 4R .
[R+ k2024 g2 (1—x— )+ A2 (1—x) ]

The numerator N, involves various products of spinor
matrices and momenta from which one is to pick out
contributions to the hyperfine structure. This operation
is facilitated by reducing all terms to the form
v-A(—q)iv-qy-A(q). For this purpose the following
facts and equivalence relations are useful.

vqy- A« =—v-A(qQ)yq,
v+ A(—q)v-A°(q)—0,

()v-A(—q)vey-A°(q)( )—0 regardless of the content
of the brackets. A factor v, appearing on the extreme
right or left of an expression may be dropped.
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Using the above one finds
No—[2(k2— ) (2—4a+ a2+ %) — F2(5+3x) ]
Xy-A(—q)irv-qy-A(q).
Carrying out the % space integration and inserting (41)
yields

0 2he
= 3

@ 2 ZZ " \ 2, d d dq
1r2x¢0 o g—ﬂz(o-z)fx yda y;—z—
{ (2—4x4-224-23) (k?—¢?)
[eat N —a) g (1—a— )
5+43% }
[N (1—2)+ g (1—a—)])

We now recall (39), carry out the angular ¢ integration
and transform ¢—qx, A=A« so as to make the integral
dimensionless, yielding

4027

Qu=— Ey f dgx*ydxdy

(@—4a+ar+at)(1—g?)
{Ex2+>\2(1—x)+q2x(1—x—y)]2
54 3%
_x2—|—>\2(1—~x)+q2x(1——x—y) }
Identical methods yield for the rest of Q,

2

o2 (1—2)+gx(1—y) (1—x+wxy)

1—3x(1—v) }
2 N(1—2)+ ¢ (1—y) (1 —x+2xy) ’

4027 2— 254 32— 23— 222y+ 23y — g% (1 — )2 (1 — a+xy)
Or=— En f dqx2ydxdy[
7|'2
8a?Z
Qui= ; Ey f dqx2ydxdydz[
™

There remains only the purely numerical problem of
evaluating the above integrals. The main points can
be illustrated by considering the leading terms of Qr,
namely,

dgx*ydxdy

A= ,
J [ N (1—2)+ 2 (1—w—9)

3 f q*dgx*ydxdy
J e n-a)tgei—a—y) T

In the first integral it is simplest to do the ¢ integration
first, thus,

T 1 1 x?y
A=—f dxf dy .
4 1z [N (1—2) fad(1—x—y)t

It is to be observed that the coefficient of ¢* appearing
in the denominator may be positive or negative, de-
pending upon the values of the auxiliary variables, As

2—3x+qx(1—yz)[1—x(1—yz)] 1 }
[ N2 (1 =)+ g2 1—y—a(1—y2)2]]2 e A2(1—2)+g[1—y—a(1—y2)?])

the integral is to be evaluated as a principal part when
the denominator has a pole on the real axis, it has a
nonvanishing value only when this coefficient is positive.
This is the origin of the lower limit 1—x in the ¥
integration. The remainder of the integration is straight-
forward and will not be discussed further.®

For the integral B one must integrate over y first,?

28 Tt might be mentioned that for Qrr1, the fixing of the region
for which the coefficient of ¢2 is positive 1s facilitated by the sub-
stitution z=(1—u)/y, 1>u>1—1y.

29 If one integrates over ¢ first, the y integration diverges at
y=1—ux. The procedure used can be justified by remarking that the
auxiliary variables have no physical significance and are in fact
part of the % integration. Thus in any case in which it makes a
difference one should complete the auxiliary variable integration
before performing the ¢ integration. One can also deal with the
problem by rounding off the singularity of the Coulomb field.
That is, one modifies the Fourier transform of the Coulomb poten-
tial by a factor A%2/(A%-+¢?), where A is assumed to be large. With
this factor present the integral is finite and independent of the
order of integration. The result obtained in the limit A— is
identical with that given above,
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obtaining
1—x 1—x
ln( 2 )
x x?
- f ~

1—x 1—%

In|1—

X

q? I 2 AN(1—1x) —x%?

Lrl—xy\#
=7rf (———) dx=—
0 X

Only the first of the three terms contributes.

Proceeding in the manner outlined above all terms
reduce to simple integrals over one, two or three auxili-
ary variables, a typical form being

f f [xy(l xy)]%

Certain of these, like 4 above, diverge in the limit A—0,
but yield a finite limit when taken together. The final
result obtained is simply

Q0= —02ZEy(13/4—1n2).

(45)
SUMMARY AND CONCLUSIONS

The second-order radiative corrections to the hyper-
fine structure of S states are given by

AEP= %oﬂZEH,

a 13
AEp= [——— o7 (—— In2 ) ]EH,
2w 4
AE= [——— erZ(—— an)]EH

For higher angular momentum states there is an order
a-correction arising from the anomalous electron
moment but no a?Z correction. While our derivation
has been confined to hydrogenic atoms, the effect of
screening on the radiative corrections is, aside from its
effect on ¢o?, only of order a3Z% This result is a con-
sequence of the fact that the a2Z correction comes chiefly
from distances within a Compton wavelength of the
nucleus.

A principal application of this result is to the deduc-
tion of the fine structure constant from the hyperfine
structure formula. The hyperfine structure frequency of

yielding®

(46)

3 This result has been reported previously by N. M. Kroll and
F. Pollock, Phys. Rev. 84, 594 (1951). The same result has been
obtained by a different method by Karplus, Klein, and Schwinger,
Phys. Rev. 84, 597 (1951).
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the ground state of hydrogen is related to other
accurately known experimental quantities by

16 Mup my 8
Av=—a%R, (—) (———) (143a?
3 M m

a 2.973a? a 2973a
x5

az(g—an) )PTPS. (47)

In applying the above expression we use

¢=2.997902X 10 cm/sec,* (3.0 ppm)
R,=109,737.324 cm™,* (0.1 ppm)
Ay=1420.4051X 108 sec1,3 (0.3 ppm)

(us/ up) = 658.2087, (2.0 ppm)

(m/m)?=0.99836790.4

The small a-dependent corrections are evaluated using
1/a=137.036. The factors P, and P, are inserted to
take into account proton recoil effects and possible
departure of the proton magnetic field from that of a
point dipole. From (47) one finds

1/a=(137.03651-£0.00028) P, 1P, (48)

The contribution of the a?Z term in Eq. (46) to this
result is —0.00658.

An independent determination of 1/a by Lamb and
Retherford® from the fine structure separation of the
2P;, 2P; levels in deuterium yields

1/a=137.03320.0006, (49)
a result which tends to confirm the presence of the new
electrodynamic correction obtained above. It is worth
noting that the comparison of (49) and (48) is inde-
pendent of the values of ¢ and R., and substantially
independent of the anomalous electron moment.

The factors P, and P, in (48) might possibly affect
the value of 1/« by a few parts per 10°. A more accurate
measurement’ of the fine structure of deuterium would
make possible an experimental estimate of their mag-
nitude.
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