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The Solution of the Fluctuation Problem in Electron-Photon Shower Theory
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The analytical solution is given for the fluctuation problem arising in electron-photon shower theory
under approximation A. The diffusion equations for two fundamental distribution functions are derived,
and by transforming them into matrix recurrence relations their solution is obtained directly. From one
of these distribution functions follows the analytical solution for the (n, m)th moments. The method of
solution is similar to that previously employed by Messel and Potts to solve the fluctuation problems in
nucleon shower theory. The G-equations used by Janossy and Scott play no role in the solution of the
problem.

I. INTRODUCTION

A LTHOUGH the fiuctuation problem in electron-
photon shower theory has received much atten-

tion in the last fifteen years, little progress has been
made towards its solution. Furry, ' Arley, ' Euler, '
Nordsieck et al. ,

' and Scott and Uhlenbeck, ' who were
among the 6rst to discuss the problem, were mainly
concerned with the simplified "Furry" model of the
shower. More recently the problem has been investi-
gated by Arley, ' Bhabha, 7 Bhabha and Ramakrishnan, '
Janossy, ' Janossy and Messel, " Messel" and Scott
Even when ionization loss has been neglected (approxi-
mation A) explicit analytical solutions have been
obtained for only the first and second moments of the
distribution function " for these, Janossy and
Messel' have given extensive numerical results, and
using them Messel" has calculated the probability
function, assuming it to be a Polya distribution.

It is the purpose of the present paper to give the
analytical solution of the Quctuation problem in ap-
proximation A. We have previously" "given the solu-

tions of similar problems in nucleon cascade theory and
the present work is a further application of the methods
developed there. In the present problem, the method
consists essentially in transforming the "last-collision"
diGusion equation for the distribution function into a
matrix recurrence relation, the solution of which
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follows immediately. A similar procedure is used for
obtaining the eth moments.

II. DEFINITIONS

Let Pn m (&&ly
' ' '

q i&n! &&a+1' ' ' 'p gn-bm! &)d&&i' ' 'drlnbm
be the differential probability that after a depth x
cascade units a primary (j) of unit energy has given
rise to n electrons with energies in the ranges»b, i&b+d»b,
k=1, , e in any order, and m photons with energies
in the rangeS»n+&, »n+&+d»n+&, /=1, , t&b in any
order. When j= 1, the primary is an electron and when
j=2, a photon. Further, Iet q„&' (&», ,i. , r&n; r&n+i, ~ ~,

»„+,x)d»& d»„+ bethedifferentialprobability that
that after a depth x a primary (j) of unit energy has
given rise to e electrons with energies in the intervals
dgj„k=1, , e and to m photons with energies in the
intervals dp +&, l'=1, . m and to any numbers of
electrons and photons with arbitrary energies.

The relation between q, &&' and p, &'& is expressed
by

c e)

qn, '"= Q Q — den~i ~ d»n+a
p g=p gtb~~ 0 J p

tbb
1 ~1

X d&&n+a+m~l' ' ' d'gn+a+m~bPn+a, mob q (l)

and the inverse relation

( f)a+b pl pl
p (ii —Q dgn+l ' ', ~gn+e

~=0 b=o gIg
l i

X An+a+m+i
~

An+a+m+bgn+a m+b'" (2). .
~o 0

Hence, if either p„. t&' or q„„&» is known the other
may in theory be determined. It is found, however, to
be more expedient to derive diffusion equations for each
of the P„, &'& and q„, &'& and to solve them directly.

The (m, m) th factorial moment T„, &'&(g; x) is defined

by

2'm-"&(n; z)

(e+a)! (m+b !
=RE

a=p 5=0 gI
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where o)„+,, +b('&()&; x) is the probability that after a
depth x a primary (j) of unit energy has given rise to
22+(b electrons and 2&2+b photons with energies ))&
and any numbers of electrons and photons with energies
&p. The inverse relation is expressed by

III. THE SOLUTION FOR P,
By considering all possible last collisions, the diffusion

equation satisfied by the p„('& is obtained in the form

(8/&&x+22n "&+2&bn(2&)P„,„&'&

Here again, if either y„, (&) or T„, (&") is known the
other can be found by a double summation, but this
may be exceedingly di6icult to perform.

The function (o„, &)' is related to the p„,„("by

)1 t)l

(
a=o b=o)2!b!22!2&2!J„J,

)) 1

X) d„...„t'd„...„,

1

X l~ dgn+a+m ' dan+a+m+1
~Jp

I (1)fgn+]. )
' ' '

p Qn+m —1 j ~J gran p gn+m J

&r
~ I.+P P))—2, )))+1 ()&1 )
' ' ') )&I—2 ) )&))+1)

+222

1'+)&„',x)w(2& ()& 1', )&„'), (8)

with the initial conditions

p„, ()'&(x=0)= 8 +,, 28 pl, )b(1—2&1).

In (4), the sum over Ci" and C2" signify summations
over all possible choices of p„' and &„1',p„' respectively
from the gI„k=1, , e and the sum over C1 signifies
summation over all possible choices of g„+

' from the

g+) l=i . m
If we define the Laplace transform of p„,„("as

X t d)&. . «p. .. "'. (5)
0

P„„()'&(&),) = e '*p„„—()& (x)dx,
Jp

(10)

The moments T, '&' may be expressed in terms of the
distribution function q„~&) by means of the simple
relation (see reference 15),

then (8) may be transformed into the matrix equations

&(EN+ P (2N(lb) PN()&i, ~, 2&N; ll)

~l ~1
T„, ('&(2&; x) = d)&1 ~ ~ ~ d2&„+ q„'

Jq

Q WN 1(2&N 1) )&N)PN 1()&1)
gp'

VN 2) )&N 1+)&N) l()) '++—1 (—11)

It is this relation which will be used for obtaining the
T„, &&'). Once the, solution for q„, ~&' is known, the
moments are obtained by an elementary integration
over the energy variables.

For the cross sections, the Bethe-Heitler expressions
in the full-screening approximation will be used;
w('&(2&b, )&1)d2&&dx will denote the probability that an
electron of energy 2!2+2&1 emits in a distance dx a
photon of energy in the range )& 1, )& 1+d)&1 and
w'- ()&b, )&&)d)&ldx the probability for pair production.
For the total cross sections we write

'

1

n()'& —
„

t w()'&()&2 2&&)d&&l

Jp

For j= 1, this integral diverges (the infrared catastro-
phe) and to obtain numerical results for the p, ('& it
is necessary to impose a cutoG at the lower limit of
integration. In the solutions for the q, (&') and the
T~ &&' the divergences cancel out.

and

Ll(E1+ (21(1)]Pl()&1 )() Eib(1 )&1) + 1 ~ (12)

EN is the unit matrix of order 2N. The (2N(k) are given

by the direct product of E matrices

0-
(2N(&) = E&X. X X X Ei. (13)

0 n&')
kt:h place

The Pg is a 2 X2 matrix the columns of which corre-
spond to Po& and P('& and the rows are ordered by
writing g1 ~ pz as a binary number with digits 1 and 2,
standing for an electron and photon respectively. The
w~ 1 is a 2 X2 ' matrix in which the nonzero
elements w&" ()&2, )&&) are ordered according to the
following rules:

(1) Ef in the binary number q&
~ q&, gf, = 1 and q~=1, then all

the elements of the row corresponding to this number are zero
except for the term 2m(2)(gf„q~), which is placed in the first
even-numbered column in which this term has not already
appeared.
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(2) If q@ 1 and q~= 2; then all the elements of the row are zero
except for the term m(')(qq, qg}, which is placed in the first odd-
numbered column in which this term has not already appeared.

(3} If pe=2 and g~=1, then all the elements of the row are
zero except for the term m&o(y~, qq), which is placed in the first
odd-numbered column in which this term has not already ap-
peare{I.

(4} If pe= 2 and q~=2, all the elements of the row are zero.

According to these rules there will be two non-zero

elements in each odd-numbered column and one in each
even-numbered column.

Equation (11) is a simple matrix recurrence relation,
the solution of which is immediately given by"

P)v(1)1, , 2))v, X)= 'g p XE1+1
E~N—1 Cg&+&

1

+ 2 ~1+1(&) Wl(nl, el+1+' +V~)

X[)E,+u, (1)]-1S(1—~,—"—~ ), (14)

where the sum over C2'+' signifies summation over all

possible choices of 2)„, 1)1+1+ +rf)v from rf1, r)2,

rf1, l)1+1+ +rf)1. The p„&') are now obtained by
taking an inverse Laplace transform.

The solution given in (14) should be compared with

that given for the corresponding functions appearing
in nucleon cascade theory. ""The delta function in

(14) merely ens'ures the conservation of energy in the
shower, which is a consequence of the full-screening

cross sections used and the neglect of ionization losses.
ln order to illustrate our notation, the case E=3

will now be discussed in detail.

From (14)

Ps(rf1, 2)2, 2)3, X)

),El~1+ p 131+1(k)

X Wl( ))4 2)i+1+ ' '+'l3)

y [)iE,+e,(1)]-9(1—~,—~,—~,)
=Z [)E+ (1)+ (2)+ (3)3-' (~, ~)

X[~E.+"(1)+-.(2»- .(. , "+~)
x@El+nl(1)]-'ii(1—rf1—))2—2)3).

Prom the binary numbers

ggg2q3=111, 112, 121, 122, 211) 212, 221) 222,

the explicit form for Ps(ill, 2)2, 2)3, X) is

P3, 0 (rf]) 2)2) 2)3 j X) P3, 0 (Yf1~ 2)'~ r)3 j X)

P2, 1 (81 rfs rfs )1) P2, 1 (rf1 '92 2)3 )t)
P2, 1 (91) rl3 j r)2 j ~) Ps, 1 (rf1) r)3 j r)2 j )t)

P;, 1&')(rf,, 2)3, rf1, X) Ps, its)(2)2, r)3, 2)1, X)
Pl, s")(ns; nl, ns; &) Pl. '")(ns; nl, ns;)t)
P1,2&')(lls, rf1, 2)2,

.X) P1,2&')(2)3, rf1, r)2, X)
P0, 3 ('Vl r)2 rls )1) P0, 3 (2)l r)2 r)3 ~)

From the rules (1)—(4) above and the binary numbers

rf1, rfs+2)3 ——11, 12, 21, 22 the matrix wt(rf1, 212+2)3) is

2w")(~1, vs+vs)
wo)(nl, vs+vs) 0

Wl(ql~ res+'gs) =
O)( + )

and from the binary number g~q2gq

W2(r/21 gs) =

0
w")(n2, n3)
w&')(r)3, rfs)

0
0
0
0
0

2w") (ns, ~3)
0
0
0
0
0
0
0

0
0
0
0
0

w")(ns, ns)
wO)(r)3, 2)2)

0

0
0

2w@)(2)2, r)3)

0
0
0

0
0

w")(nl, n2)
0

W2(r)1& 'V2) = o)x

0
0
0

2w&2) (rf1, lfs) 0 0
0 0 2w&')(rf1, r)2)

0 0 0
0 w")(2)1, r)2) 0
0 0
0 w ' (i)2, ))1) 0
0 0 0
0 0 0

"Scott (see reference j.2} has recently considered the Quctuation problem for a simplified model of the electron-photon shower.
Although he was able to obtain a recurrence relation for the distribution function he was unable to solve it. His recurrence
relation is a very special case of (ll) and its solution is (in his notation)

1

g (g~+g~+1+. +g~) '
N-1 { 2f+&

where the sum over C2'+' signifies summation over all possible ways of choosing E~, Eg+1+ ~ ~ +E~ from E~, ~ ~, E~, Eg+~+ ~ -+Eg.
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0
0

X+2a(')+ n(2)

0
0
0
0
0

0
0
0
0
0

A+a"'+2n(2&
0
0

0
0
0
0
0
0
0

P +3a(2)

In a similar way one obtains w2(»1, »2). It should be noted that w2(gl, g2) cannot be obtained from w2(g2, "2) by
merely changing the variables in the elements of the matrix.

From (13) XE;+&22(1)+np(2)+ &22(3) is the diagonal matrix

X+3n('& 0
0 0
0 0
0 l&+ n&')+2a "&

0 0
0 0
0 0
0 0

and similarly one obtains XE2+a2(1)+&22(2) and
i&El+ &21(1). The inverses of these matrices are obtained
by replacing the diagonal elements by their reciprocals.

By carrying out the matrix product one obtains, for
instance,

P 2w")(r&2, r&2)w")(r&i, r&2+&&2)
Cg3

(rrjl& 2&2& r&2& )
(p+3n(1)) (p+ n(1)+ a(2)) (p+ n(1))

X &) (1—»1—2&2
—

2&2).

are given by

and
gn m (&=0)= &n+j, 2&m+1. j~(1 gi)

qp, p(j)(x=0) =1. (16)

We define the n-fold Mellin and single Laplace
transform of q, (&') by

(i) & n ~ ~
n, m ($1& '''r Snr Sn+lr ' 'r Sn+mr rr)

dXg1
0 0 0

Similar expressions are obtained for I'2 1")(»1, r&2 7&3 &&)

and P&, 2 "(2&1,' r&2, 2&2, l&). The solution for pp, p "(2&1, 2&2,

2&2, x) follows by taking the inverse Laplace transform
of I'2, p(')(&&1, r&2, &&2, r&).

and

W&"(sl, s2)

Xgn m'" S "*gn m"' (1&)

~1

+g
J

(fn+l. m 1(r&l»' ' '
2&n& u

r
—2&n+1 r

(i) f
C,N2

~ ~ ~

&jn+m —1 r +)W (u 'gn+m & &jn+m )du (15)

where Ifp, p(j)(x)=1. The initial conditions for q„,

IV. THE SOLUTION FOR q„, (1) AND T„,

The "last-collision" diffusion equation satisfIed by
q„,

(&') is given by

(&j/&&X+22n")+ma('))&7 &»
(1&

2&n+I&
' 'r &&n+m& +)

(g')f / / / l /.~,gn, m —1 (gl y
~ ~ ') Qn —1 ) gn ~gn+m )

C1" C1222

/ (1) r'
'gn+1 y

~ ' ~

p gn+m —1 j ~)~ ('gn y 'gn+m J

+P I(rn —2, m~1 ('gl r
' 'r &jn—2 r 2&n+I&

(s) l
C~22

2&n+m& 2&n-1 +2&n'& *)W"'(2jn 1& 2jn )-
1

+ZJt gn —l, m+1 ('Vl r
' ' r'Vn 1& 'Vn+'1&—

2&„+„,u; x)2w(2)(u —&j„', »„')du

1

+~. I(rnm (r&l r
' ' 'r r&n —1& u&»n+1&(n(

Cp

2&„~„;x)w(')(2j„', u —»„')du

I'1( "1 ' "(=
J ] [ ( [ w(j)(YJ1, r/2)df/2 (18).

P E7jl+'92) Etil+'023

By taking the Mellin-Laplace transform of (15) we get

(A+un(')+mn(2))Q „&'&(s s„;
Sn+lr ' ' 'r Sn+nrr X) 8n+j, 25m+1, j

=p p Q, —1&'&(si', , s —i', s '+s +m','

Cp C,~

Sn+1 »' ' ' Sn+m —1 & X)W (Sn & sn, +m )

2 Qn —2, m+1 (Sl»' ' ' Sn—2 & Sn+1&+ (~')( / / ~

s„+„,s. 1'+s„', X)W(')(sn-1'& s„')

+Q Qn, —l, m+1 ($1& ' ' 'r Sn—1 &

C,a

s +1, , s„+„,s„', X)2W(2)(s„', 0)

+P Qmm&" (si, , sn;
Cp

s +1, , s +m., X)W")(s„',0)

+Z Qn+1, m-1 (Slr ' ' '
& Snr Sn'm

s +i', , s„+ i','X)W("(0, s + '). (19)

The first two terms on the right hand side of (19)
are similar in form to those in (8) and may be expressed
in matrix notation as before. By transferring the last
three terms of the right hand side of (19) to the left
hand side, the equation may be written in the following
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matrix form:

N

71EN+ Q ~N(s)p) QN($1 ' ', $N', &p)

and from (6) the analytical solution for the moments is

1 Qt+f (edS

T, (s'(2&;X)=
(22r2) "+"+'& „-*~ $1

and

=P WN, (SN „SN)QN 1($„
CN

$N 2p s—N 1+$N —
p &p)p ++ 1 ( 0)

$422+2)2 —S (&o d S ass ~O+4 oo

X
n+m

u, —i~ Sa+m~ 0 i~

DIE1+Al($1)]Q1($1, 7() =El E 1. (21) X 2&

—(sp+ "+so+os)Q (i) (26)

Al(s) =A(s+1) =42('& —W('&(s, 0)
A2(s) = —B(s+1)= —2W "&(s, 0)
A2(s) = —C(s+1)= —W("(0, s)
A. ($)=D=n(2&.

(23)

Note that the divergent term 0.('~ has cancelled out in
A1(s) above.

The solution of Eq. (20) is

QN($1, , SN, l() = II
L=N—I F2~+1

+ 2 ~1+1(sk) Wl(sip sl+1+ ' ' '+sN)

X [XE,+A1($1+ +$N)]-'p (24)

where the sum over C2'+' signifies summation over all
possible choices of sl, Sl+1+ +$N from $1, , sl,
sl+1+. +$N, and where for 4=3+1, the matrix
Al+1($2) stands for Al+1(sl+1+ .+SN). For example,
when l=2, the expression inside the brackets in (24) is

Ll(E2+ A2($1)+ A2($2)+ A2($2+ +SN)] '

X (Wo(S2p S2+ ' ' '+SN)+W2(Slp $2+ ' ' '+SN)
+W, ($1, $2)).

By taking the inverse transform of (17) we immediately
obtain the solution for the q,

V-, ")(nl n- n-+1 " 'n-+-, &)

1 $41+1 P2O

Sy'''
(2~2) ps+ ppp+1j

Io
sos+op +i op

X ' dSn+m
022+222 —f OO

p
kp+i co

X&&1
—(op+1). . .

2&

—(so+ps+1)Q (i) . (25)

The matrices QN and WN 1 are constructed in a manner
identical to that used for PN and wN 1 in (11). The
AN($2) are given by the direct product of 1V matrices:

A 1($2) A 2($2)
4($2) = Elx X X X E„(22)

A2($2) A 4($2).
kth place

where, as in reference 10,

This completes the analytical solution of the Quctu-
ation problem in approximation A; as all functions of
interest may be obtained from the P„, (2'&, pf„,

(2'& and
T, &') we have complete knowledge of the number
behavior of the shower.

IV. DISCUSSION

In the solution (14) for PN, the elements of the
inverse diagonal matrices are reciprocals of linear func-
tions of ); and as these are independent of the summa-
tions over the energy variables, the inverse Laplace
transform may be easily taken. Apart from the depth-
dependent factor, the solution for p„(s'& is a sum of
products of various combinations of the cross-sections
m &" and m&'&. The complexity of this result reduces its
usefulness for numerical calculations, especially as the
physically interesting distr'ibution function p&') is
obtained from the p('& by a diScult double summation.

The solution (24) for QN is of direct physical interest
because it leads to the general analytical solution for
all the moments, including the correlations between
electrons and photons. The diffusion equation for the
moments as previously derived" from the Janossy
G-equation was not in a form amenable to direct
solution. The relation (6), however, enabled us to
by-pass the G-equation and obtain the solution for the
moments by a simple integration over the energy vari-
ables of q„, "'. The solution (26) for the moments
contains the special cases m=1, m=0 and m=1, m=1
already calculated by Janossy and Messel. "Bhabha"
has recently given a recurrence equation for his correla-
tion functions similar to (19) without, however, ob-
taining a solution.

In this paper only the fluctuation problem neglecting
ionization loss (approximation A) has been discussed.

Any results which can be obtained for the problem
including ionization losses (approximation 8) will be
even more complicated in nature and less amenable to
numerical calculations than those obtained above. The
numerical evaluations in approximation A for p(i&, pf(s&,

p&~' and the moments T'&) will be discussed in a later
publication together with those for the nucleon cascades.

"H. J. Bhabha, Proc. Indian Acad. Sci. 32, 154 (1950).


