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A mathematical model, the spherical model, of a ferromagnet
is described. The model is a generalization of the Ising model; and
one-, two-, and three-dimensional lattices of infinite extent can be
extensively discussed. A three-dimensional lattice shows ferro-
magnetic behavior and provides a statistical model of the Weiss
phenomenological theory. The limiting free energy appears in a
form which contains two of the essential features of the exactly

known Ising model results in one and two dimensions. This sug-
gests the probable form of the limiting free energy for the three-
dimensional Ising model. A simplified model, the Gaussian model,
is briefly discussed because this model also contains some of the sig-
nificant features of the Ising model. However, the Gaussian model,
unlike the spherical model, is not defined for all temperatures.

INTRODUCTION

t 'HE subtlety and dif6culty of the theoretical prob-
lem of the phase transition of a ferromagnet has

been well established by the work of Bloch, Kramers,
Heisenberg, and Onsager. In fact, the only nontrivial
systems exhibiting a phase transition which can be
exactly discussed are the Bose-Einstein gas and the two-
dimensional Ising model of a ferromagnet. One may
also include the work on the condensation of a non-ideal
gas by Mayer and by Kahn and Uhlenbeck.

The problems are purely statistical mechanical, and
the idealizations of the underlying physical problems
are readily formulated. All that remains is the explicit
evaluation of the partition function (even if only in the
limiting case of an infinite number of particles). This
evaluation is, of course, the difhculty.

There does not appear to be any single technique of
sufhcient generality which can be applied to the evalua-.
tion of partition functions. This lack of a general tech-
nique is very apparent now because of the work of
Qnsager on the Ising model. Onsager evaluated the
partition function of the two-dimensional Ising model
by an algebraic technique. ' This, method, a magnificent

*This work was supported in part by the ONR.
)An outline of this paper was presented at the New York

Meeting of the American Physical Society, January 26—29, 1949
[Phys. Rev. TS, 1298iA), {1949)g.' L. Onsager, Phys. Rev. 65, 117 (1944).
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achievement, is apparently restricted to the two-dimen-
sional case. Nevertheless, the situation that presents
itself is that no analytical method is available for the
Ising model, whereas the Bose-Einstein condensation is
demonstrated by a purely analytical method and the
appropriate algebra is not available.

The partition function is the result of a generally
complicated interp1ay between the Boltzmann factor
and the weighting factor. One can expect that the
characteristics of either factor may be responsible for a
transition or the characteristics of both factors may be
required. It is diKcult to separate the relative impor-
tance of these factors with respect to their inQuence for
a transition and also to discover the derivation of par-
ticular features of a transition. For the Bose-Einstein
gas, condensation occurs in three dimensions but not in
one or two dimensions. In this case, the transition can
be ascribed to the weighting of the momentum states
for the given Boltzmann factor.

We agree with Onsager that it is desirable to investi-
gate models which yield to exact analysis and show
transition phenomena. It is irrelevant that the models

may be I'ar removed from physical reality if they can
illuminate some of the complexities of the transition
phenomena.

We shall analyze two mathematical models: the
Gaussian model, and the spherical model. These models

1
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Q~(I) =2— Q exp[Kg'e;a;], (2)
{ef= ~1) ) 7

with P;, , counting a given i, j twice, that is the matrix
of the quadratic form is symmetric.

We are essentially interested in the limiting free
energy per particle which means that

P/kT= limlV —' lnQ~(I)

THE GAUSSIAN MODEL

This model assumes that the probability of finding a
given spin e; between e; arid e;+d'e; is given by

(2n )
—i exp[ —ei2/2]de, . (4)

The model simulates the Ising model insofar as (e,)=0
and (cP)= 1.

The normalized partition function is

are continuum modifications of the Ising model of a
ferromagnet. MontrolP has formulated more general
continuum models in the hope that they will converge
on the Ising model. The low temperature features of
continuum models are obviously spurious. Neverthe-
less, we do not consider this aspect as detrimental to
the discussion of possible transition phenomena. The
Gaussian model becomes invalid for temperatures below
a certain critical temperature (the partition function
becomes complex). The reason for this behavior will

become apparent, but it is surprising that the Gaussian
model exhibits some of the general features of the ex-
actly calculated one- and two-dimensional Ising models.
The spherical model is a valid model for all tempera-
tures. The one- and two-dimensional models do not
exhibit transitions, whereas the three-dimensional
model does. This model, in fact, can be regarded as
a model for the Weiss phenomenological theory of
ferromagnetism.

THE ISING MODEL

It is assumed that there is a spin at each site of a
regular lattice of E sites. The interaction energy be-
tween neighboring spins may be written as —Je,e;,
where J is the interaction energy and each spin can take
on the discrete values &1.The partition function, nor-
malized to unity, is

Q~(I) = 2—" P exp[(J/kT)g'e, ~,],
{e;=W1j

where {c;}denotes a given configuration of spins and
P' denotes the sum over nearest neighbors. If we write
K= J/2kT,

Assuming that the quadratic form is negative definite,
N

Q (G) =g (1—2El~„)-'

=exp[—-', Q In(1—2EX„)], (6)

where X„ is given in Appendix A for the several simple
lattices. The free energy per particle is then, in the limit,

= lim — P ln(1 —2K'~) .
P7 N~oo 2g 0=1

The limit of the above sum over the characteristic
values is discussed in Appendix B.The following results
are obtained.

One-dimensional lattice:

p2x

dhoti in[1 —4E costi]; (Sa)
kT 2 2m~o

Two-dimensional square lattice:

1 1

kT 2 (2ir)' ~
0

X in[1—4K(coscoi+cos&o2)]; (Sb)

Three-dimensional cubic lattice:

1 1
deed jdG02dM3

kT 2 (2m)' 4
Q

X in[1—4E(cos~i+cos&02+cos&oa)]. (Sc)

It is to be noticed that these results break down at a
critical E which is K,= 1/4N, where e is the .dimen-
sionality of the lattice. For temperatures smaller than
the critical temperature, the model is not defined since
the free energy becomes complex. The source of this

difhculty is obvious. Inspection of the characteristic
values of the quadratic form shows that the form is not
definite. Consequently, Q~(G) diverges for T&T,.

This failure of the Gaussian model is trivial and is not
the point. What is of interest is the comparison with
the known results for the one- and two-dimensional
Ising models.

One-dimensional Ising:

~2m

devi in[cosh4K —sinh4E costi]; (9a)

Qg(G) = (2~)—~"
~

dpi dog

N

Xexp[—2 g ei'+K Z' ~,~,].
7'=1 sl7

2 E, %'. Montroll, Nuovo cimento VI, 264 (1949).

Two-dimensional Ising:
21r

1 1 r

(5) kT 2 (2s)'&
'

Aoydco2

0

Xin[cosh'4K —sinh4E(cosa& i+cos&02)]. (9b)
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The comparison is striking in the closeness in the
formal structure of the expressions for f. The two
features are the appearance of the logarithmic form and
the structure of the cosines. The source of the formal
appearance of the Ising model results is not clear. But
the source is clear in the Gaussian model. The number
and structure of the cosine terms arise from the "perio-
dicity" in the interaction matrix. This periodicity is not
simply due to the number of nearest neighbors because,
for example, a doubly periodic interaction matrix is
obtained for a plane regardless of the number of nearest
neighbor interactions. Furthermore, we note that for a
two-dimensional hexagonal lattice the structure of the
cosine terms, easily obtained for the Gaussian and
spherical models, is precisely that obtained by use of
Onsager's method.

%e shall now proceed to discuss the spherical model
which retains the important formal features of the
Gaussian model, but which also has the advantage of
being valid for all temperatures.

I

THE SPHERICAL MODEL

A way of geometrically describing this model is the
following. Let us suppose that we have S spins e; with
j=1,2, ~,X. Construct an X-dimensional cartesian
space. A point I' in this space is represented by the set
of E coordinates {e;}.The point P represents a spin
con6guration of the Ising model if ~, = &1 for all j.The
2N configurations in the Ising model are the vertices of
an E-dimensional cube. Suppose that an X-dimensional
sphere is circumscribed about the hypercube. The radius
of this sphere is E&, and the points on the sphere are
given by the equation

g 2+ q 2+ . . ' +gx2 —g (10)

The spherical model allows every point on this sphere
to be an acceptable configuration. The model is a step
closer to the Ising model than was the Gaussian model
in that not only is (eP) = 1, but also

6 ~=X

for every configuration. Furthermore, the interaction
energy can now be replaced by a definite quadratic form
so that a partition function valid for all temperatures
is obtainable.

There are obvious defects in a continuum model. The
entropy at absolute zero is in6nite and the speci6c heat
per particle is finite rather than zero. These defects,
however, should not distract one's interest from the
transition mechanism.

One can also raise the question that the spherical
condition (10) allows configurations wherein a small
number of spins can be very large, since ~s;~ &1V&, so
that these configurations could contribute a large mag-
netic moment to the system, It will be shown later that

such states are not responsible for the behavior of the
model. In fact, condition (10) implies that fluctuations
are small.

The partition function for the spherical model is

Q~(S) =A~ ) dei de~ exp[E g' ~;e,], (11)
sf 7

N
Z ej2 =X

where

tA~= der deN ——2s-~~'E&I'~ '&/I'(g/2). (12)

N
Z eP=K
j-1

4E= [dj.(s)/ds]z=*, . (14)

A solution s, (K) is possible for all temperatures for
z =1 and 2. The reason for this is that the right side of
Eq. (14) approaches inflnity as s, approaches the branch
point of fi(s) and f2(s). Therefore fi and f'2 are regular
functions of T and no transitions are obtained. In the
three-dimensional lattice, the right side of Eq. (14) has
a 6nite value, called 4K„when s,,=3, the branch point
of f3(s). For T& T., or E)K., the new path of steepest
descent has a, cusp at s= 3. Then for T& T„P3 is given

by Eq. (13) when we put:, —=3. This "sticking" of the
saddle point corresponds to a phase transition. The
phase transition corresponds thermodynamically to a
discontinuity in the temperature coeKcient of the

specific heat.
If we let U, C denote the internal energy per par-

ticle and speci6c heat per particle, respectively, for an
e-dimensional simple lattice, m=1, 2, 3, then

d2

U„=-',J (P„/kT); C„= kE' (P /kT). (—15)
dE dE'

3 J.von Neumann, Ann. Math, Stat. 12, 367 (1941),in particular
pp. 372—374,

There are various ways of evaluating the multiple
integral. One can use the method of von Neumann, ' one
can use the Dirichlet factor' to remove the condition on
the variables, or one can most conveniently use the
delta function to evaluate the integral. The integral is
evaluated using the delta function technique in Ap-
pendix C, where the details are also discussed.

If we let e denote the dimensionality of the simple

lattices, then the result of the evaluation in the limit of
X—+~ is that

P„/k7= ——-', ——', in4X+2Ks, —-',f„(s,), (13)

where p„ is the limiting free energy per particle. The
parameter s, is the saddle point of the steepest descent
evaluation of the partition function. It is the solution of
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Now

8
(g „/kT) = (oto„/kT)

dE BE

Therefore, using g~(S) as given in Appendix C, Eqs.
(C3) and (C4), we have

i =-& '*i oy~, x=( o'/kT)(yP)o

1
too+zoo

(P„/kT) = (P„/kT). (16) (y& )=Q&
2gi~., i.

The last equality is true since (8/B», )g „/kT) vanishes
when the saddle point exists. In the case m=3, T&T„
then», =3 and is independent of E so that d», /dK
vanishes. We then have

Xexp[cVs])I )tdy, .
dykey,

'

.1
Q „/kT) = —2»„Q./kT) =-

dE 2E dE'

Consequently,

ds—2 . (17)
2E' dK

Hence,

N

)&exp[—P (s—KX )yoo]. (22)

aild
U =J[(1/4K) —»,],

C„= ', k[1+4K'd»—,/dK].

d»(» —-', X~)
—oe"«*&

(19)

(lg)
(y ')

2»i jzoo i oo—

It is clear from the analysis that s, is a continuous func-
tion of T so that U is continuous. 'lt is shown in Ap-
pendix C that d», /dE is a continuous function of T and
vanishes at T, when m=3. Hence, C„ is a continuous
function of T approaching —,', k as T approaches absolute
0. However, for m =3, CB=—,'k, for T&T„and it is shown
in Appendix C that d'», /dK' is discontinuous at T= Too

Thus, C3 has a break. in slope at the critical temperature.
A sketch of the behavior is shown in I'ig. 1.

The mechanical nature of the transition may be eluci-
dated without difIiculty. We shall show that the transi-
tion corresponds to spontaneous magnetization.

If p, o denotes the magnetic moment associated with
a single spin, then the magnetic moment per particle of
a given spin configuration, p, is given by

t,
zo+i ~

27rt zo —z ~
d»(4K) —'(»—-,'7o~)

—&e~z&z&. (23)

Whenever a normal saddle point s, exists, then

(yP) =1/[4E(», —-,'Xg)]; x= po'/[2J(», ——',Xg)]. (24)

We see that y~~ when s,—&-', )». In the one- and two-
dimensional lattices, T=O corresponds to s,= —,'X». In
the three-dimensional lattice,

x= i o'/[2~(». —3)], (25)

for T&T„and x is in6nite at the transition tempera-
ture. This result implies the finiteness of p for T&T,.
We shall compute this magnetic moment. Because of
the directional symmetry of the model (iz) =0, we there-
fore calculate

~=(i o/&) 2 eo.

The magnetic susceptibility is given by

x=y/kT)(i').

(20) (li I)=& '~o(ly~l).

With the procedure used above,

d»(» —-,'X~)—&e~«*&

(26)

We now compute (iz'). Using the orthogonal transforma-
tion of the variables (e;) to the variables (y;) discussed
in Appendix A, we note that

pZ0+i eo

2+i ~„; d»(2».K) &(»——,'Xg)—'e~z&z& (27)

N

y&
——S—'P o, . When the normal saddle point exists, then

(lygl )= [2».K(»,——,'xi)]-l,
(Iizl )=izo[$2»K(», ——',),~)]

—
&—+0,

(28)

F»G. 1. The speci6c heat per particle versus temperature.

in the limit X—+~. Hence, in the limit 1V~~, (lizl)=0
for the one- and t&vo-dimensional models and also in the
three-dimensional model for T& T,.

For T&T., the numerator of Kq. (27) must be re-
considered. . In the numerator, ere note that the branch
point, a=3, of the integrand is also a pole. Conse-
quently, the contribution to the integral is obtained
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from the infinitesimally small circle about the pole. The
path of integration is shown in Fig. 2. We then find that
for T(T„

pZQ+? (O

dz(s 3) leN—g(z)~eNg(tt)
4%1 &zo —s~

p )')Iat)e

2m'$ ~@)—g ~
ds(s —3) 'e «*)~[N2m. (E—E,)]-& eNg(').

where

FIG. 2. The path"of integration for T(T,.

Therefore,

& I y) I )=N'Ll —E./E]';
&I i I )=»L1—E /E]'*= i oL1—TIT.]'. (30)

This result proves the onset of spontaneous magnetiza-
tion at the transition temperature T,.

The possibility remains that the magnetization is due
to a few spins taking on abnormally large values of the
order E'. We 'now show this possibility is not real by
means of a calculation of the correlation between two
spins.

The correlation C,~ between two spins t.;, e~ situated
at the jth and kth lattice sites, respectively, is defined as

N

~t7(s)=E I g I &/(s z&)

The evaluation of a function such as Ii, j, as lV becomes
very large is described in Appendix B. We may write
that

1 1 (' fP;q(s)= + I

) ) d(g)dgggdggg

N(s —3) (2x)»
0

cos(x'(g&/aP y'(g g/a+ z'(g g/a)
X (35)

S—(COS(o)(+COS(o) g+ COS(d g)

C'= &g g~)/&g')'(g")'* (31) We now see that for T)T„

Since the spherical condition, Eq. (10), requires (g; )= 1
for all j, C,&= &g;g), ) In ter. ms of the variables fy, ),

so that

( N

ho=1 p (t=l

C;) =Z l';, I'), t(y,yt)
s, S

cos(x'(g&/a+ y'tg g/a+ z'a»/a)
X (36)

COSG0 l COS(02 COSA) 3

Note that C;;=&e )=1 and from the above equation,
However, (yyt) =0 unless s=t because of the symmetry putting xt =yt = st =0,
of the model. Thus,

s=l
(32)

(4E) ' dCOl8+2d ~3
17

(2gr) oj o) o) Zz (Cos(o) y+ COS(o)g+ Costo) g)
0

It is clear from Eq. (22) that

Pzzp+t oO

(y ')
2m' ~

ds(z ,'7,) ~eN«—z)—-

Iz + ooooO

2x'i a zgo —g (o

Consequently,

dzL4E(s ——,'Xo)]—'(s—-', X()
—ze"«z). (33)

because this is the equation determining s„.
It is also apparent that as (x', y', s') increase, C;),

decreases so that the correlation monotonically ap-
proaches zero as the distance between spins increases.

For T& T, a closer examination is required because
the 6rst term in F;g(s) is a pole at's=3. However, since
the integral part converges at s= 3, this part is the same
as Eq. (36) with s, =3. A straightforward evaluation
yields

ds(s —-,'Xg)—leN«*)
pgp +$ (6

&~a
2gri ~ zo ooo- tzo+i ~

2' ~„; dz[N(s 3)] '(z 3) &eN—g(*)-—-

(4E)—& Izzo+o' z

dsF;)(z)(s —-', Xt)
—leN«*) (34)

(E E.) &-
eNg(z) (37)

2mÃ
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We consequently 6nd that

T (4K) '—+,I

I d(d

idled

2d(0 3

T, (2) 0Ja
0

cos(x Mi/o+p Q)2/o+s Ma/a)
X (38)

3—(coscoi+cos(om+cos(d3)

pZO+f +&

&s~')- .
2s i Jzo —i ao

3 1
t

~+'"
ds(s —3)-&e «*&=

i ds
&6Z2 2~i ~„;.

X Q V P(s—2X,) ' (s—3)—&e~«*& (41)
s 1

because the average of odd powers of the y's vanishes.
Then

This result demonstrates that below the transition
temperature an extended correlation exists of magnitude
1 T/T,—. Superimposed on the correlation extending
over the whole lattice is a correlation monotonically
decreasing with increasing distance.

As a check on this result we note that

However,

Z I".(s—2~) '=
s 1 X(s—3)

However, we have defined E, so that

dC01dQ)2dC03

4E.-='
(2s.)' J J J 3—(cos&vi+cos&v2+cosa»)

0

T (4K) i

t
t' d4'id&2d&a

C"=1——+
(2.) J J J 3—(cos(oi+cosGu2+cosM3)

0

dC01dC02dM31
(42)

(2s-)' J J J s—(cos&oipcosco~+cosa&3)
0

N

Z I'~.'(s.—2li.) '=4K (43)

for the simple three-dimensional lattice.
When T)T„(K(K,), a normal saddle point exists

and we may use

Hence,
C,;= 1—T/T, +4K,/4K= 1. Consequently (e )=3 for T)T,. (44)

The integrals are readily evaluated in the case of the
one-dimensional lattice. We have then for all 1,

Below the transition temperature the integral in Kq.
(42) is finite and we may use

This gives
8,—COSar1

(4K)-' ~" cos(x'~, /u)
devi

21f 0

1V

P V, , (s—P,)-'=

It is then found that

+4E,. —
1V (s—3)

(45)

C;p ——Ls, —(s.' —1)']*"/4K(s,2—1)'
—[s (s 2 1)k]~'/~ (39)

since 4K(s,2—1)'*=1.Thus the correlation falls off with
distance exponentially.

The connection between the spherical and Gaussian
models is rather transparent. In the spherical model. , if
we ask for the distribution of a 6nite number of spins,
that is, a number independent of S for large S, then
this distribution is Gaussian, at least above the transi-
tion temperature. The spherical condition forces a
cooperation among the spins which does not exist in the
Gaussian model. Therefore, deviations from a Gaussian
distribution are obtained when the cooperation sets in,
that is, below the transition temperature. We can see
this by means of a calculation of (e ).

A Gaussian distribution of e, with (e,)=0, (ej)=1,
yields (a )=3. In the spherical model,

(e,')=3—2(1—T/T. )' for T&Tc. (46)

1 r

kT 2 (21r)" ~
dM1' ' d(de

4

XL~(T)-G(T) Z-;], (4'I)
j 1

Note that at T=O, (e,')=1, which is as it should be
because all the spins are lined up. Equation (46), by
showing that (e,') is finite, proves (along with the
correlation) that configurations in which a small number
of spins have moments of the order Ã' are not respon-
sible for the behavior of the spherical model.

In concluding this section we wish to point out that
we may write the limiting free energy per particle for
the spherical model in the form

-4
(&')= Z I'.7

s=l
where F= ssG, G=4Ee' '~" and n is the dimensionality
of the simple lattice.

The analogy with the Ising model solutions is close.+ ~ " " y' y' )' Furthermore, we have noted that the structure of the
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cosine terms in the integrand is simply determined from
the cyclized interaction energy matrix of the Boltzmann
factor. If we consider a two-dimensional hexagonal lattice
with six nearest neighbors, then we easily find that, with
ii=2, the cosine terms [cospii+coscop] for the square
lattice are replaced by [cosppi+cosp~p+cos(p» —pii)].

These same cosine terms were found by Onsager in
his solution of the corresponding Ising model. It may
then be conjectured that the solution of the three-
dimensional simple cubic Ising model is of the form

J ~
dp&iiEMpkdp

kT 2 (2pr)P
0

Xln[E(T) —G(T)(cospii+cosp~p+cosp»)], (48)

~h~~~ F(T), G(T) are the appropriate functions of
temperature.

THE SPHERICAL MODEL IN AN HOMOGENEOUS
MAGNETIC FIELD

so that

x = T.*/[~*(T—T.*)], (56)

where T,* is the transition temperature and o,* is a
parameter controlling the strength of the local field.
(a* is chosen to enable the theory to 6t the experi-
mental data. )

Putting Eq. (55) in a form similar to that of Eq. (56),
we find that, with v=3,

(p) =pp3f/[2K(s e)]=Hpp'/[2 J(s..—n) ], (54)

and we have the magnetic equation of state for the
model through Eqs. (51), (52), and (54). The magnetic
susceptibility per particle is

x=( )/H= w'/[2J(s. —~)1 (55)

The high temperature and saturation behavior of (p),
p, is precisely as expected. In fact, this model provides a
mechanism for and essentially the formulas of the Curie-
Weiss phenomenological theory of ferromagnetism.

In the Curie-Weiss theory,

Let us assume that the lattice is in an homogeneous
magnetic field of strength H and that the direction of
the spins is in the direction of the magnetic field. Then
the additional energy of the system is

where
x =T./~[k(T) T T.], —

a= 6J/pp', k(T) = T,s,/3T.

(57)

—Hpp Q p, = iV&Hppyi— (49)
The quantity 0. is to be identified with u*. According

to the Curie-Weiss theory, T,*=6J/k. The present
model yields T,~6J/1.5k. If we set T,*=pT., then

This then yields for the partition function

1 p~o+z 00

QNH(~) =
2&1 rxo —z po

Xexp —P (s KX;)y,'+2Ã—'3fyi, (50)

Ã4V 8(yi)=, =8" (—0-/kT)
2K(s,—-', Xi) BEE

(53)

with M= ppH/2kT.
The integration of y1 introduces a new factor

exp[JVM'/(s —KXi)]. This then gives

P„(H)/kT= ——,
' —ip ln—4K+2Kz,

pf-(s.)+~'—/2K(s. p7 i), (51)—
where the saddle point s,(K, H) is given by

4K= [df„(s)/ds]z=z, +3P/[K(s, —-', Xi)']. (52)

We see immediately that for 3f&0, a normal saddle
point always exists because the M dependent term
approaches 00 as s, approaches ~X1=e.This means that
a magnetic field destroys the transition to a spontane-
ously magnetized state for the three-dimensional lattice.

The mean magnetic moment per particle is (p)
=ppS (yi). Since a normal saddle point always exists,
we easily find that

x= T,*/n[yk(T) T—T,.*]. (58)

We find that for T, ~& T( pp, 3/2~& yk(T) &~ 1, so that
the spherical model yields a slightly modified Curie-
Weiss formula for the case of zero magnetic field
strength. Equation (57) holds for all field strengths
when s, is determined by Eq. (52).

DISCUSSION

The virtue of the spherical model of a ferromagnet is
that its properties can be rather extensively discussed
and that a three-dimensional lattice has ferromagnetic
properties. It is of further interest that the model pro-
vides a classical mechanism for the Weiss phenomeno-
logical theory.

With respect to the physical ferromagnet, the model
has nothing to say positively. We may brieQy consider,
however, the bearing of our results on the nature of
the transition.

The Bloch spin wave theory, which is valid near
saturation or low temperature, has the result that a
two-dimensional net is nonferromagnetic and a three-
dimensional lattice is ferromagnetic. The spherical
model yields the same result. On the other hand, the
two-dimensional Ising model is ferromagnetic.

A recent paper by Herring and Kittel4 illuminates the
Ising model transition. These authors discussed a phe-
nomenological theory based on the spin-wave treatment

4 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
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C1 C2 C3 ' ' ' CN—1 CN

CN Cl. C2 ' ' ' CN—2 CN—1

CN—1 cN ci ' ' ' cN 3 cN 2
(A1)~,

, C2 C3 C4 ' ' CN C1

We wish to find the characteristic values and vectors

and they demonstrate that ferromagnetism may be
induced in a two-dimensional lattice by the presence
of anisotropic interactions. This they suggest, lies be-
hind the Ising transition. The spherical model weakens
the anisotropy of the Ising model, and, in fact, has
destroyed the transition in the two-dimensional lattice.

One might now infer that although the three-dimen-
sional Ising model certainly will provide a transition,
this transition may still. be more descriptive of the
anisotropy of the Ising model rather than descriptive
of the transition in an ideal isotropic ferromagnet. It is
more likely that the spherical model transition is closer
to the actual transition behavior.

There is a further feature of the spherical model which
is probably of significance. The point in question is also
shown by the Gaussian model. Comparing, say, Eq. (8)
with (11), note that the Gaussian model (and the
spherical model) have a minus sign before the integral
representation, whereas the Ising model has a plus sign.
Although the minus sign can be converted into a plus
sign by an appropriate transformation, it is true that
the conversion is not unique. We cannot throw any
light on this point, but it may be indicative of an essen-
tial difference between the transition mechanisms of the
two models (spherical and Ising).

The authors wish to express their sincere appreciation
to Professors G. E. Uhlenbeck and E. %. Montroll for
their several helpful discussions. One of us (T. H. B.)
wishes to thank Professor L P. Smith for extending to
him the hospitality of the Physics Department of
Cornell University for the summer of 1948.

APPENDIX A. ON THE QUADRATIC FORM Q;, e;ei

It will be convenient to set down here properties
associated with the quadratic form describing the inter-
action energy which will be useful in the body of the
paper. The properties are all connected with the di-
agonalization of the quadratic form. Since the form is
symmetric, its diagonalization is always possible by
means of an orthogonal transformation.

It is also particularly convenient to make the matrix
of the coeQicients of the form cyclic. Cyclization is
achieved by postulating an appropriate periodicity.
In a one-dimensional lattice, the chain is bent into
a ring so that the Eth site is a nearest neighbor of
the 1st si,te. In two dimensions, the simple lattice is
constructed on a torus. These are the obvious geo-
metrical representations.

Consider first the cyclic matrix M(ci, ck, , cN).

associated with M, that is

3IV=) V. (A2)

r1 f2
f12 2

~ ~ fN
~ ~ ~ fN &0.

flN 1 r2N —1 . . fNN

We next form the product
l
M

l
A=—

l P, k l
. Now

P;k ——Q M;,rk

But 3f;,=CN;+1+» where we dehne cN+, —=c,. Hence, if
we de6ne

f(rk) =g c,rk' (A5)

then

&,k=2 cN ;+i+.rk' '=rk-' 'f(rk) (A6)

It is apparent that

l~kl=A IIf(rk),

so that

(A7)

This immediately yields the result that

&k= f(rk)

Let V~, denote the sth component of the character-
istic vector belonging to Xk. Then, from (A2),

2 cN-i+i~. &k.=%&kg.. (A9)

If we set V~, =nfl' ', then

~ Z cN i+1+ark —~~krk
a=1

Since the left sum is rk& 'f(rk) =rk&' 9,k, we h'ave deter-

5 G. Kowaleski, Determinuntentheorie (Chelsea Publishing Com-
pany, ¹wYork, i948), 3rd edition, p. 105.

For the characteristic values we must solve the equation

l M(ci—pk~, cN) l
=O. (A3)

Following Kowaleski, ' let r1, r2, ~ ~, rN denote the Z
roots of unity and we shall choose

rk =expL2s i(k—1)/lV j.
Construct the determinant

1 ~ ~ ~
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4=& ~.rl' '=Z ~w .+2r~ '=Z ~~r~" '+',

4=+ ~,r~ I+u '=-l n I.+2.
u—1

(A11)

Consequently, the characteristic values of a symmetric,
cyclic matrix are twofold except for X~, and ) A~+~ if
S is even.

The corresponding real, orthogonal characteristic
vectors, normalized. to unity, are given by

2%

V„,=S-& cos—(k—1)(s—1)

. 2K
+sin—(k—1)(s—1) . (A12)

Now consider the quadratic forms of immediate
interest.

Let ~ denote the column matrix with components

e;e;=c'Me,

with M symmetric and cyclic. %'e make an orthogonal
transformation e = Vy with Jacobian unity. Thus

N N N
e'Me=+ X„y,' and g e„'=g y,'. (A13)

The elements of V, Vi.„are given by (A12).

One-dimensional lattice:

mined the characteristic vector up to a multiplicative
constant.

Now suppose that the matrix 3f is aho symmetric.
This requires that M;q=3f~; or c~;+j+q=c~ ~j+,.
Setting j=i,

(A10)

This implies that ) ~=Xp ~2, because

We then choose

and all other c's=0. Then,

(A16)

2g 2'7l S$
ll„=2 cos—(p —1)+2 cos (p —1). (A17)S

c2= cny+1 = cnyn2+I =c~-n jn2+1
=c~ ni+ I=c~ 1,-(A19)——

and all other c's=O. Then,

2Ã 2vrn1
li„=2 cos—(p—1)+2 cos (p—1)

E
27ps jÃ2

+2 cos — (p—1). (A20)

APPENDIX 3. ON THE Lim N i g 111 [I—2K'~]
pj~ oo

Consider the general sum

S(f)= limni —' Q f(ll„/2).
X-+no y=],

The largest characteristic value occurs for p=1. We
will thcll asslllllc tllat tllc fllIlctloll f(s) ls I'cglllar wllcI1
s&lil/2. Consequently, if we write

N ' Q f(X„/2)=$ If(XI/O)+N' ' Q f(ll„/2),

Three-dimensional lattice:

We shall take a lattice with e~ sites in a row, e2 rows
in a plane, and es planes so that the total number of
sites Ã=ngN2e3. The ith site may be represented by the
number triple (p, q, s) and by the space coordinates
(x, y, s). If a is the spacing, we set

x= (P—1)u, y= qe, s= su, I =P+qrsl+snie2, (A18)

where

=i 2 ~ m ' ~=O i ~ e —i s=O i ~ I —ir r ~ & 0 r & 2 ~
& p p & ~

We choose

c2=c~= i. All other c's=O.

X„=2 cos(2ir/X) (p—1).

Two-dimensional lattice:

(A14)

S(f)= limN-I Q f(X~/2),
N-+oo y=2

We shall take a rectangular lattice with eg sites in a
row, n. rows, so that X=e~m2. The ith site may be
represented by the number pair (p, q) and by the space
coordinates (x, y). If a is the spacing, we set

If f(lil/2) is finite. This point is mentioned because the
signi6cant singularity of the functions to be considered
depends on Xy.

One-dimensional lattice:

where

x= (p —1)a, y= qu,

i=p+ 0+4

=i 2 . -, e~, q=O i e2—i.)

(A15)
From Kq. (A14), we have

)y 2K—= cos—(p —1).
2 g
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Subdivide the interval 0—2x into X equal intervals
ot length 2o/1V=~co~, Then set co~ ——(p—1)boo~. Con-
sequently,

11'
—' Q f(X„/2) =—Q f(coscog)Aa)g, (82)

%=2 2x col =+tel

2~ —d,oo1

S(f)= hm —Q f(cosooy)kcoj
DC01 ~2g Idol =AGPI

Since a&o always ranges between 0 and 2s, orq/eq vanishes
in the limit thy. %e then may write, as s2~~,

(~po+p1'oo+& ) '+o

dooof,
&o ( 2 )

2m'

X cos—Pi+cos&oo (, (810)
)eg

~2m'

f(cosrog)d(oi (8.3) 11t' g f i
i-+ i da)of(1+cos&oo)

2x' &2)

It then follows that for f{Au/2) =in[1—4&(&o/2) j,

»m &- Z»[1—2&4J

gg '+& I Iso +
f 2K

dhoof I
cos—p&+cosaro (. (811)

2gXP1=I ~0 eg

2 II p2%

~(f)= ~, duydooof(cos&oi+cosaro) (812).
(2~)'~o -oTwo-dimensional lattice:

The summation over pq leads to a second independent
I' „()

mtegr 1. Lettmg2 =2 /e, =(2 /e)p, the
8+y 1QL1—4E cosG)yJ.

2X 0

For this lattice,

2x 2'rsvp—= cos—(p —1)+cos (p —1),
2 E

with E=ege..
Let us write

p —1=po+pi~o,
(86)

pg=0 1 . Ng 1p—o=0 1 n2 1. —
s

In the case that f(X„/2) =in[1—4K(1%. /2)],
N 2m' ~2m

hm X-~ P in[1—2@X„j=
o-i (2m-)'"o ~o

X in[1—4K(cos&o&+cos&oo)j. (813)

Three-dimensional lattice:

For this lattice

2Ã
(p 1)=

E

2X' 2g 2K'@i 2Ã

p+—p (p —1)=—p+2 p,
nge2 eg S2

X„2x 2g'sj 2Ãele2—=cos—(p —1)+cos (p —1)+cos (p —1)
2 X S S

with E=ngs2n3,
There is no need to repeat the analysis, as it follows

the two-dimensional analysis closely. The result is that
Xo ( 2m. 2~ ) f2o'—=cosj p +—p )+cos( —p ), (B7)
2 &n,e, N~ ) I no )

slllce py 1s an Integer.
Hence,

X-' P f(X„/2)=X-' P f(Xpgyi/2)

]%I

SN= '

! 8&oy4(do%do
(2or)o a 0 J

Xf(cosa»+cos~o+cosooo). (814)

If f(4/2) =in[1—4K(~n!2)j, then

et —1 ns —1

+~- 2 2 0f- .+- +/)2

AMo = 2'/so, (oo = (27K'/so) po.

hm 1V ' Q in[1—2EX~j= ~' ' dcoldcoga&o
(88) (2~)'~ »

Xin[1—4K(cosa&~+coscoo+cosooo) j. (815)

Consider Qow a function

X@2+pyn2+ i (coo 2'
=cos ——

y cosh)2.
(n, e, ) ~~'(f)= 2 I!.I'o.f(4/2),



2x .
V,„V,,=N- cos—(j-k)(P-1)

e1, e2, e3 become large,

2mr 2'
Xy/2 =cos +cos +cosbl s.

S2

~3 2~ —2~/~s Ss
A&Os~

q =1 2~ 2~/N3 2m ~0(gl) lt (gy)
F,'(f) =N-'fl I+—N ' ~ fl —

IE2) ~s &2)

. 2K. Furthermore,
+sin—(j+k—2)(P—1) .

S /83

2Ã 2+
gg p Sl'+2

X a»—(j-~)(p-1)+»n—(j+~-2)(p-» G,„(f)=
'

d., g f(X,/2)E & - . 2~@ a, p0
Therefore, let us consider

2x'
G.,(f)=N-l p f(X /2) exp sn,—(p—1) (81/)

y=2 'E
where e;I, is an integer depending linearly on j and k,
that is,

with A 8 C as integers.
From before,

X 2 2%%] 2ÃS]N2—=cos—(p—1)+cos (p—1)+cos (p —1),
2 E Ã - S

(2trr &as )
)&exp sn;3( +

(nlns e,es

Now let

r=tnl+U, t=O, 1, , el—1; U=O, 1, , ns —1.

X„(2stt 2stst
~ ( 2srst q—= cosj —+ i+cos( 2trt+ I+coscos.

2 En, nests( ns/

Let A(us=2'/ns, cps= (23-/ns) U. Then

a1itg —1 m1 —1 ma —1

Z =Z
S=N1n2n3, where we are supposing the three-dimen-
sional lattice.

Let us now write

n1-1 ~2 2~ —2 /n& S
~»~ Z —

~

t =0 27/' 0 t=o 2~40

p 1=res+/; r=O) 1~ ' ' '~ nlns 1; tj=O, 1, ' ' '
p

'ns 1 ~ Then cos(2'rt+2ÃU/ns) =cos(ds, and

X&/2 =COS(21tt/nl)+COS'Gts+COS333,

nye2-1 N3 —1

G;„(f)=N ' P P f(X /2)

nsns I' "~ l (Xy)
G,,(f)

(2sr)sN" » -0 &2)

(2&t Ns cps
)&exp sn;3) +—+

En, n nn&
( 2str 2m'g

Xexp sn 3~ + ~, Now set 6&3=2%'/nl, &dl=2%rt/nl. Hellce,
4 nlns nlnsns)

X„(2srr 2srq ) (2srr 2srq $
cos

2 (nlns nltlsns) . E ns nsn3 )
( 2stg)

+cos~ 2srr+
ns i

a&os ——Zst/ns, o)s= (2sr/ns)g.

Since r is an integer, cos(2srr+2srq/es) =cosaus. Also as

(Xq
Gp, (f): '

I dssld(usda)sf~ —
~

(2sr)3 a J a &2J

Q2 6)3
Xexpl sets~ ~3+ +

~
(111g)

e, nlns]
'

With X/2 =COSMl+COSsss+COSM3.

The numbers j, k denote lattice sites, and these
numbers will change as Ã changes. Ke must now use
the one invariant property of the lattice site—its dis-
tance from a fixed origin. Let j=pl+glnl+slnlns as
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defined in Appendix A, Eq. (A18). Then xi= (Pi—1)a,
y~=q~a, z~=s~u. Thus, we write

. 2K
lim S—' Q f(l1„/2) sin—(j+k—2)(P—1)
N-+re @=2 E

n;2 =A+B(pi+glnl+slnln2)
+C(p2+$2S1+$2SIS2)

n;2 (——A+Bpi+ Cpp)+ (Bgi+Cgp) ni

+(Bsi+Csp)nlnp,

where only e~, n2, g3 change as X changes.
Consequently,

(319)
tdidpt pdpppf{y/2)

(2~)2~ J J
0

(SIPII QIPt2 Simp )
Xsin~ + +Eaaa)

where it is understood that xg, yj, zg are multiples of a.
Hence, we have

S,p(ptl+~2/SI+(dp/SIS2) = (3+Bpi+Cpp)~I
+(Bgl+Ctlp)niptl+ (Bsl+C$2)SIS2(01

+(Bttl+Cg2)td2+ (Bsi+C$2)nln2td2

+(B$1+Csp) ppp.

We now note that

(BIti+Cqp)ni(dl = (Bql+Cqp)2trf;

(Bsi+Cso)SIS2pt1 = {Bs1+C$2)S22 tf'3;

(Bsl+C$2)SIS2&2 (Bsl+C$2)S12trv

that is, these quantities are integral multiples of 2x, and
they can be neglected in the exponential. Thus,

( Alp Idp

St'2l ptl+ —+ ~
=(~+Bpi+Cpp)tdl

S, SSJ
+(By+Cd)pt +(Bsi+Cs )pt

f(3)
F;2(f)= + ~

~'
~

dppidpp2dkopf~ Q cospt;
~S (22r)2 j ~ ~ (t=l )

(&IPII JIPI2 SIPP2)
Xcosi + + i, (822)

a a a)'
because the integral having the sine in the integrand is
zero since X is an even function of ~~, ~2, cv3.

APPENDIX C. THE EVALUATION OF THE PARTITION
FUNCTION OF THE SPHERICAI. MODEL

QIp(5) =Alp —'j" ~dpi dp~ expLE Q' p, p,] (C1.)
st7

N
Z eg~=N
j 1

We may a/so write

(2:I $ (2'2
A+B/ —+1 f+CJ —+1

f
pti

(u & (a

$1 $2) S1 S2

+ B +C Idp+ B +—C p—tp —=0. (8—20) —or
8 8 9 8

Xexp[E P' p,p,]8($—Q pt2)
t7

Finally, QIp(S) =A2t
—' dpi dp~

tt
$

f%

g~p('f) = I dpttidpppdpppf(l1/2) cxpLpe]t (821)
(22r)2 J J

with 0 de6ned in Eq. (320).
If we assume that one of the spins is located at the

origin, it is very easy to see that

2x .
lim 1V

—' P f(ll /2) cos—(j—&)(P—1)
Q-woo @=2

tts+tCO

Xexp[E Q' p,p;] — ds
2m~ ~;„

XexpL$(& —Z )] (C2)
7=1

For our next step, we wish to interchange the integra-
tloll ovcl'. fhc (6t') wltll tlic Intcgrstlon ovei' $. Tllls csn
not be done because the form EP;, 2;2; is not nega, tive
de6nite. However, we may write

E Q' p, p; =Sctp Snp+E Q' p, p. —
dMIdpppdCd tf (l1/2)

(2tr)2 ~
st7 st7

=XCIp 12p p 6t' +Ep Et'pt't

Xcos( + -+
( a a a because of the spherical condition. Sy choosing 0,0 real,
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positive, and suSciently large, the form can be made
negative definite. Then we have

g ~—1 p~o+j ao

Q~(S) = ds exp[)Vs], de& de~
2m' ~

Xexp[—s P &A+K P' e;r;7, (C3)

Evaluating the complex integral by the method of
steepest descent,

2g ~X/2~ —$N ln2E;+Kg (zs)

Q-(S)=-. . . , (C9)
~~(z,——,'),)&[2~A'(a'g/az ).,]~

where the saddle point s, is determined by

(Bg/Bz) z, ——0, and (8'g/Bz') s,)0. (C10)

If the saddle point exists, then, with
where s=0,0 is a line to the right of the singularities of
the integrand. as a function of s.

Making use of the orthogonal transformation of the
variables (e,}discussed in Appendix A, the integration
over the (~,}may be written or

=2s.""Ã&&v "/I'(V/2)

P/kT= —lim Ã—' lnQN(S) = —-', —-', ln4K+g(z, ),

P/kT=———,
' ——,

' ln4K+2Kz, .'f(z,).——(C11)
N

dye' 'dye exp[ —s P y&~+K g Xjyj ]J i

= "'[rr(-KV]-"

%'e now proceed to investigate the existence of a
saddle point.

If we let n denote the dimensionality of the simple
lattices, let us denote f(z) by f~(z). From Appendix B
we have

1 n

=s-"~'exp[ —-' P ln(s —KX )] (C4) f (z) =
i

' ' ' d~~' ' 'd~ »[z—Z cos~~] (C12)
(2~)" J j=l

—l~N/2 ~sxo+j oo

Qn (S)=
2%1 ~0 —g 00

Then

Bg 18f„ 1 1—=2K———= 2K——.
Bz 2 r'lz 2 (2s)" J

f

dory

' ' ' dco

Xexp[Ãs ——', P ln(s —KX~)]. (C5)

It is clear that we require no) K~ X„,,„~.
It is somewhat convenient to let s= 2'. Then

1 p~+' "
Q (S)=A 's""2Ke &"'"'x- dz

27l $ gQ —g 00

Xexp[&V2Kz ——,
' Q ln(z —g'X,)], (C6)

X [z—Q cosco,]-', (C13)

8'g„18'f„1 1

J
dcog' 'd(oq

Bz2 2 Bz2 2 (2s')" "
- —2

X z—Q cosco; . (C14)

where zo) -',
~
X„,„~ = -2X&.

Since we are interested in the limit )V~~, let

f(z)= lim At
—' g ln(z ——,'X,), (C7)

The equation for the saddle point is

~ d(og . d(v.[z.—P cos(o;] '. (C15)
(2 )"" j~l

0

Therefore,

g(z) = 2Kz —U(z).

2xi

pSQ+$ Co

X dz(z ——,'X&)-&s+'v«*&. (CS)

Q~(S)—g -ls.x/22K~-$N In2z

The only possible value for s, is real and positive. If s„
exists, then Eq. (C14) shows that (8'gn/Bz')z, )0

If T is very large, E is very small. Therefore, s, must
be large, and in 6rst approximation 4Fs, = j.. As I
decreases, s, decreases.

I.et us consider the one-dimensional lattice.
The saddle point equation is

p2X

4K=—
i

dry„[z, —cos(or] '= (z,2—1) &, (C16)
2' 0
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The singularity of f3(s) occurs at s =3.As T decreases,
z, decreases and approaches the value 3. It is easy to
show that for z, =3 the integral converges. In fact, the
integral has been evaluated by Watson~ with the
result that

and
s, = [l+(4E) ']&.

Furthermore,

~2@

fi(s,)=— d(ui ln[s, —cosca&]
2K 0 x, 1= lil-,'[s„+(s,'—1)t]. (C17)

Hence, '
(2),JJJ

0—A/&T= —i+ i'[1+(4E)']'
—

~ jni2{1+[1+(4E)2]&). (C18)

In this case, as T—4, K—+~ so that z,~1. The
singularity of fi(s), s= 1, is never reached. The steepest
descent technique improves in accuracy insofar as
(Pgi/Bs')i, approaches ~ as s, approaches 1. The con-
clusion is that fi is a regular function of T in the range
0&T&.

Continuing with the two-dimensional lattice, the
saddle point equation is

1
4E= ' dc' d(o [s,—cosru —cosco ] '. (C19)

(2~)' »

)([3—cos(ai —cos(u2 —cosmos] '= 0 50546. (C24)

This means that a saddle point exists down to a critical
temperature T,= (3.9568)I/O. Therefore, we have:

T& T,(E&E,)
—$3/kT= ——,

' —(-,') In(4E)+2Ez, —(-', )f3(s„), (C25)

where s, is defined through Eq. (C23).
Since the partition function is defined for all positive

T, we must investigate the range T& T,;. This requires
consideration of the complex integral in the neighbor-
hood of the branch point, s=3, of fa(z). The integral
to consider is

This equation may be written

4E= (2/s.z,)E(2/z, ),
with E(u) the complete elliptic integral

E(u)= l d&[(1-P)(1-I'P)]-».

(C20)

(C21)

2%4 @)—s 00

ds(s —3)-&e+"g3'*&. (C26)

If we cut the z-plane from z=3 to z= —.~ along the
real axis, then the integrand is analytic in the cut plane.
Since f3(s) is analytic in the cut plane, we shall con-
sider the behavior of fd/ 3zdin the neighborhood of s=3
and obtain f3(s) by integration. Now

As T decreases, z, decreases and approaches the
singularity s= 2 of fi(s). In the neighborhood of s= 2 we
can use the expansion6

p2~ 1 I'(-', +n) '
p 4 q"

El -I=—&
ks) 2s e-0 e! ( s'I

4y t'1 1 1q
X in( 1——

l

—4in2+l —-+" ——
[

. (C22)
zm i E1 2 2n)

Consequently, we see that E(2/s, ) approaches infinity
as z,—+2, and so z, will exist for all allowed E. The
singularity is not reached for a finite temperature. For
this lattice, $2 is again a regular function of T in the
range 0&T& 00.

Finally, we take up the three-dimensional lattice for
which the saddle point equation is

1 I'pr4E=,', da)iku2dios
(2s)s J 0 J

X [zg coscoi costdm cos(dg] ~ (C23)

' E. T. %hittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, England, 1927), fourth edition,
p. 299.

I'Jl l'd. ,d.,d.,
dz (2s.)'~ J ~

X[z—cos(v i—cos(a) 2
—cosco37

1 t' 2 f2)
deus Et —i, (C2-7)

~0 g kiI)

where q=s —cos~~. Using the expansion for E(2/q)
given in Eq. (C22), it is found by analytic continua-
tion that

df, /dz=4E. (2e) &(z 3)—&+O(z-3)—, (C28)—
and, therefore,

f3(s)=f3(3)+4E.(z—3)
—(2'/3 )( —3)'+o([z—3]') (C29)

We then have

g~(s) =g3(3)+2(E—E.) (z—3)
+(2-t/3~)(z —3)~+O([s—3]2). (C30)

Consequently, the integrand always has a saddle point

7 G. N. Watson, Quart. J. Math. 10, 266 (1939).



at z=3 if E)E, (T&T,).8 The path of steepest descent
has a cusp at a=3 and the path is shown in Fig. 3.

Evaluating the complex integral, we 6nd that

dz(z —3) le+~"t*&

~/$2~(K E,)j—le+~"t'l. (C31)

Hence, for T&T,(E)E,) I'rG. 3. Path of steepest descent for T& T,.

d'f, /dz' (2 &/—z) (—z 3)—
d'f/d '=(2 "'/ )( 3) '— (C35)4K= dfs(z)/dz,

$3/kT—= ——,
' —(-,') 1n(4E)+6E—(-',)fa(3). (C32)

In the neighborhood of the branch point z=3, we have
The discontinuity that is involved can. also be seen

irotn Kq. C29
from the following consideration. Dropping the sub-
script s, the saddle point is the solution of the equation

which defines 8 as a function of E. From this equation,
it follows that for T& T„

(C33)

ds
lim = 1irn {—z 2""(z—3)l}=0,
z3dK z3

d'z
I

dz q 'd'f3 d'f3

dK' j dE) «' dz'
(C34)

lim =64m'.
~3 dE2

Qn the other hand, for T&T„s=constant, so that
'The mathematical reason for the transition in the three- dz/dK=d2z/dK-=0. The discontinuity occurs in the

dimensional lattice is the "sticking" of the saddle point. This same se nd derj ati e and this c uses a discontinuit jn
phenomenon has been found by Kramers. LH. A. Kramers, Com-
mun. Kamerlinglt Ontms Lab. , Leijlen, Suppl. No. 83 (1936).j slope of the specific heat zs temperature curve at T,,


