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tering amplitudes used were

fN=0.94&' fog=0 99. )" and fn 0——38"
The three (hkl) rejections (111), (211), and (221) are
decisive in eliminating the ordered structure, for which
calculated Ii values are presented in column 4, based on
the same set of parameters. The disagreements are so
great that no reasonable variation of the parameters
can resolve them.

A by-product of the work is evidence that the earlier
value of fN, 0.85,'" is incorrect and that a scattering
amplitude for hydrogen of 0.38" is to be preferred to
the earlier value of 0.40."The (100) reflection which is
quite sensitive to the hydrogen amplitude and little
affected by the temperature and structure parameters
is most significant in this respect.

DISCUSSION

The data presented establish clearly that the room
temperature structure of NH4C1 involves a disorder in
the orientation of the ammonium ions. This is in agree-

'6 Hughes, Burgy, and Ringo, Phys. Rev. ?7, 291 (1950).

ment with less direct evidence. ' Since the low tempera-
ture structure of ammonium chloride is clearly an
ordered one, the lambda-transition is of the order-
disorder type. The N —H distance of 1.03.&0.02A
found for both the hydrogen and deuterium compound
is closely equal to that found in ND48r, ' ' 1.03+0.02 A
by neutron diGraction, and in good agreement with
values obtained by nuclear magnetic resonance" 1.025
and - 1.039A, respectively. The thermal motion of
hydrogen as indicated by both 8 and n appears to be
somewhat greater than that of deuterium, in accord
with expectation.

Since ND4C1 patterns at —180'C and —78'C showed
rio essential differences, the line width transition at
about —140'C in NH4CI observed in nuclear magnetic
resonance experiments" may be reasonably presumed
to involve no appreciable change in atomic positions.

'7 The smaller value quoted in reference 3 is revised upward
when the new value of fN is used.

&' Gutowsky, Kistiakowsky, Pake, and Purcell, J. Chem. Phys.
17, 972 (1949)."H. S. Gutowsky and G, E. Pake, J. Chem. Phys. 16, 1164
(1948).
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The problem of the change in electrical conductivity in metals upon cold-working is treated by the
method of Koehler in which the scattering of electrons by pairs of parallel edge-type dislocations is assumed
to be the major effect. A comparison is made between the electronic shielding assumed in the scattering
potential used by Koehler and the shielding assumed by Landauer in a somewhat different treatment. The
large effect of the discontinuity in the ionic displacement across the plane connecting the dislocation axes
is shown to cancel that of a previously neglected term in the scattering potential. The scattering matrix
element is evaluated, and the change in resistivity is computed by the perturbation method of Mackenzie
and Sondheimer. Finally, the anisotropy in the resistivity is discussed, and it is shown that the slip direction
is the direction of low resistivity.

I. INTRODUCTION

EVERAI. recent publications' ' have treated theo-
'

~ ~

retically the problem of the change in electrical
conductivity of metg, ls upon cold-working. In all of
this work it is assumed that the change is primarily
because of the scattering of electrons from edge-type
dislocations, and the possible effects of associated
clusters of vacancies, or of screw-type dislocations, are
ignored. The calculations dier mainly in the type of

*Research supported by the ONR.
' J.S. Koehler, Phys. Rev. 75, 106 (1949), to be referred to as K.
' J. K. Mackenzie and E. H. Sondheimer, Phys. Rev. 77, 264

(1950), to be referred to as MS.
' Rolf Landauer, Phys. Rev. 82, 520 (1951), to be referred to

as L.
D. L. Dexter, Phys. Rev. 85, 936 (1952), to be referred to

as D.

scattering potential employed, Koehler' (K) and
Mackenzie and Sondheimer (MS) using in their poten-
tials the ionic displacements around a pair of disloca-
tions, and Landauer' (L) and Dexter4 (D) making use
of only the density change. These two potentials take
account of the shielding of the positive charge by the
electrons in somewhat diGerent ways. In Sec. II a
general comparison is made among these methods and
Bardeen's self-consistent method', it is shown that a11

three approaches agree in the limit of slowly varying
potentials, i.e., perfect shielding.

One of the characteristic features of an edge-type
dislocation is that there is a discontinuity in the ionic
displacement across the missing plane of atoms. In the

5 J. Bardeen, Phys. Rev. 52, 688 (1937}.
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treatments of K and MS, in which the scattering poten-
tial depended on the displacements, this discontinuity
gave rise to a large amount of fictitious scattering;
attempts were made to get rid of this eGect by changing
the expression for the ionic displacements as obtained
from elastic theory. Section III contains an alternative
procedure for taking account of the discontinuity, and
examines the results of the approximations in K and
MS, particularly as regards the anisotropy in resistivity.

II. ELECTRONIC SHIELDING

It is well known that the "free" electrons in a metal
distribute themselves around any charge in such a way
as to shield the potential from that charge; the shielded
potential caused. by a point charge, Ze, for example, can
easily be found' by the Thomas-Fermi method to be

v(r) = (Ze/r) exp( —qr),
where

q' = (4m*e'/k') (3r40/~) '*. (2)

Here no is the density of free electrons, and the other
symbols have their usual meanings. For most good
metals q turns out to be -10' cm '.

One possible method for taking account of the
shielding of extended charge distributions is by the
deformation potential method, sketched below in sim-
plified form. The width of the filled portion of the
conduction band can easily be found by free-electron
theory to be

E(r) = (k'/2444*) [3m'r4(r) jt,
where 44(r) is the density of electrons at position r.
Since in equilibrium the Fermi level is constant, the
bottom of the conduction band varies as —K Assuming
that the scattering potential V follows the bottom of
the conduction band and that the electron density
closely follows the positive charge density, we obtain,

. for small density changes,

V(r) = —'.(Eo/e'~o) ~p+(r), (4)

where bp+(r) is the change in positive charge density
at the position r, and Eo is the width of the filled part
of the conduction band in the perfect crystal. This is
the scattering potential used in L and D, where 5p+(r)
was calculated' for a single edge-type dislocation from
the elastic theory of a continuous, isotropic medium.

Another method' ' is to use as a potential the diGer-
ence between the sums of the shielded ionic potentials
[Eq. (1)] for the distorted and perfect lattices,

V(r) =2,'(I r—(R,+u, ) I ) —2 '(I r—R
I ) (5)

where the R; are ionic positions in the perfect lattice,
and the u, are the ionic displacements associated with

N. F. Mott and H. Jones, The Theory of the Properties of
Metals aed Alloys (Oxford University Press, London, England,
1936), pp. 88, 294.

7 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950), and
references contained therein.

J. S. Koehler, Phys, Rev. 60, 398 (1941).

(V' —q') V(r) = —44rh p+(r). (7)

We shall later make use of the fact that this equation
has the solution,

V(r) = (1/Ze) v(I r—r'I)bp+(r')dr'.

Let us now expand V(r) and bp+(r) in Eq. (7) into
lattice waves, and obtain

V(r) =44r P[pxe4K'~/(K2+q2) j (9)

Thus when the charge density may be expressed in
terms of waves of wavelength large compared with 10 '
cm (q'»K2), the potential becomes

(10)

By using Eqs. (2) and (3) we see that this is equal to
the expression in Eq. (4); thus the two methods are
equivalent for slowly varying potentials.

Equation (9) can be compared with the results of
Bardeen's self-consistent solutions for the potential by
making use of Eqs. (30) and (32) in reference 5, from
which we obtain, changing the notation in reference 5
to agree with ours,

pxgsK r

V(r) =44rP, (11)
x K'+q'(1 P/3 —$4/15 — —)

if $= IC/2ko is less tha—n unity, where ko is the wave
number of an electron at the surface of the Fermi
distribution. If $ «1, this agrees with Eq. (9), but a
more significant comparison can be made in the form

p giK r

V(r)=-4~ P
x q'+K'(1 —q'/12ko')

(12)

If we take q~2 2Xi0s cm —i and &0~~.4XiPs cm for
copper, the denominator becomes q'+ K'(1—0.21).

the distorted lattice; this is the procedure followed in
K and MS. Landauer' has criticized this approach as
not properly taking into account the redistribution of
electrons around a distortion, and has suggested instead
the use of the potential in Eq. (4). It will be seen that
Eq. (5) leads to results equivalent to those obtained by
use of Eq. (4) in the region where the latter is valid
(perfect shielding) and is a better approximation than
Eq. (4) in the region of imperfect shielding.

In order to compare Eqs. (4) and (5), it will be con-
venient to make use of the operator V' —q'. It can be
seen from Eq. (1) that (V' —q')w(r) = —44rZe5(r), where
8(r) is the Dirac delta-function; by use of this operator
we obtain from Eq. (5)

(v' —q')V(r)= 4xZ—eg, {b(r R, —u;) —b(r —R;)}-,
(6)
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III. EVALUATION OF THE SCATTERING
MATRIX ELEMENT

The scattering of an electron between two plane
wave states k and k' is governed by the matrix element

(k'( —ev~k)=- JI exp( —~x r')V(r')dr', (13)

where x—=k' —1r, and r is the volume of the metal; thus
it is this matrix element that will be required for the
calculation of the change in resistivity associated with
the presence of scattering centers. Let us examine in
detail the potential in a metal lattice containing one or
more edge-type dislocations, i.e., a lattice from which
part of the material has been removed. Quite generally,
we may write the perturbing potential in the lattice at
the point r' as

V(r') =P v(r' —R;—u, )—g, v(r' —R,)
u; g,v(r' R~) —Pi"—v(r' —Ri), (14)

where the prime after the summation symbol reminds us
that we are not to sum over the missing atoms, and the
double prime indicates summation over only the missing
material. The subscript j on the nabla operator indi-
cates diGerentiation with respect to the coordinates of
R;. Replacing the summations by integrations, we
obtain

V(r') =6 'J~u(r) Vv(r' —r)dr 6'J~v(r' —r")dr"—

= Vi(")+V2(r'), (14')

where 5 is the atomic volume. Because the rearranged
lattice is approximately in register over the region of
the missing material, the first term Ui(r') is evaluated
over the entire volume of the metal; it is this term
Vi(r') that was used as a scattering potential in K and
MS. In the second term V&(r') the integration extends
over just the region of missing atoms; in the same
approximation that we have made in connection with
V~, the term V~ may be replaced by the surface integral
—(7t/5) J'v(r' s")dS", whe—re li is the unit crystal-
lographic slip distance.

Now the displacement u has a discontinuity across
the missing material, corresponding to putting the
lattice back in register; this discontinuity makes a large
contribution to the term V~. It will now be shown that
V2(r') cancels the contribution to Vi from the discon-
tinuity. By use of the vector identity for the divergence

Since q'/k02 varies as 1/iso&, the correction term in the
coefIIIcient of E' is larger in absolute magnitude for
metals with a lower electron density, as is to be
expected; similarly, the shielding of the positive charge
is less effective in the poorer metals, and the potential
is greater.

of a product vu, the first term in Kq. (14') becomes

+6 'Jt v (vu)dr, (15)

Vi(r') =(Ze) ' ~v(r' r)bp+—(r)dr

+& ' v(r' —s")u(s") ndS", (16)

where the second integral is over the surface of the
deleted section, and n is the outward normal to the
surface. Since u(s") n is equal to )i/2, the second term
on the right of Kq. (16) just cancels V2(r'), and Eq.
(14') becomes

V(r') = (1/Ze) v(r' —r) 8p+(r)dr,

as found [Kq. (8)] and discussed in the last section.
Following K and MS, let us consider the scattering

of electrons from a positive-negative dislocation pair,
the positive edge-type dislocation at x=0, y= R/2, and
the negative at x=0, y= —R/2. The corresponding
displacements have been evaluated by Koehler,

y —R/2 y+R/2
u =A tan ' —tan '

y —R/2 y+R/2
+2j3x

x'+ (y —R/2)' x'+ (y+R/2)' I

x'+(y —R/2)' '
uy= —C log

x'+ (y+R/2) '

I

x'+ (y—R/2)' x'+ (y+R/2)'

(17)

C= (l%,/4v) (1—2v)/(1 —v),

where v is Poisson's ratio. The matrix element Eq. (13)

where we have made use of the relation

bp+= —(Zv/6) V u.

Now let us remove an infinitesimal slice along the plane
of missing atoms; with the exception of this deleted
volume, the function vu is continuous, and the diver-
gence theorem may be applied to the second term in
Eq. (15).The exponential dependence in v prevents any
contribution from the outer surface, and we are left
with the result



can be evaluated by elementary methods, and we 6nd change in resistivity in the x (slip) direction,

(k'i —eVik)=—
32m Ze sin(g r&/2) sin(g„R/2)

rA(~'+ q') K,x,'

3oroz'e'm*'Ãyo (1—2v) '
kokooq46'roo 4 1—v )

X (A «,'/Ir„+ (28—C)@—A z, '/ir„}, (18)

where we have made use of Eqs. (14') and (17). In this
expression oo=k' —k, ~,'=lr, '+Ir„' and r' is the length
of the cubic metal specimen. The last term in the curly
brackets is the contribution from Vo(r'). Squaring, and
setting the interference factor sin'(a„R/2) equal to -',

for the reasons given in K, we obtain

512rr4Z'e4 sin'(Ir, r~/2) (28—C—A)'ir, '

6' 'q4(1+r, '/q')'Ir, 'Ir, ' (19)

Note that except for the factor (1+jr'/q') ', which is
associated with the dif'fcrence in electronic shielding in
the two potentials, this is just twice the square of the
matrix clement found ln D~ Rs corresponds to thc scat"
tering from two dislocations instead of one. Also note
that the scattering is small for x. primarily along the
slip direction. This can best be understood from a con-
sideration of the variation in positive charge (which
around a single dislocation goes as y/I x'+y']).

This expression difkrs from the corresponding results
in K LKq. (K26)$ and MS LKq. (MS19)] primarily
in the angular dependence. Mackenzie and Sondheimer
neglected the potential term V2 and attempted to take
account of the discontinuity in displacement by re-
placing y by its absolute value in the arctangent terms
111 'tile cxpl'cssloll for I LKq. (16)j between y= —~/2
and y=R/2. The resulting displacement is, of course,
not in accord with the equations of elasticity, and in
fact corresponds to replacing and smearing out the
atoms previously removed to create the dislocation, The
result is an increase in the resistance in the slip direction
and a decrease in the y direction (since the positive
charge density, and 1Mncc, scat tel lng potcntlal al c
smoothed out for an electron traveling in the y direc-
tion). Similarly omitting the contribution from Vo,

Koehler replaced x by its absolute value in the arc-
tangent terms in Eq. (17) for all values of y. This
procedure is also not in accord with the elastic equa-
tions, and corresponds to the introduction of a discon-
tinuity in charge density along the missing plane of
atoms, and thus to a large increase in resistance along
the slip direction. .

Making use of Eq. (19), we now evaluate the resis-

tivity by the method' described in MS, and And for the

X (a cot—'a+a'/(u'+1) }, (20)

where a—=q/2ko and X is —', the number of dislocations
per cm'. hp, is of course zero, and the ratio hp, /Ap„
is equal to 3. Values for this ratio of about 8 and 2 were
obtained in K and MS, respectively. That the slip
direction is the direction of low resistance can be seen
qualitatively in the following ways. First, the potential
changes are less abrupt for an electron traveling in the
slip direction, and so the scattering will be less, than
for an electron traveling in the y direction. Secondly,
although the (approximately) 1/a, ' dependence in the
square of the matrix element indicates that small angle
scattering is of importance (which would strongly
weight the resistance in the x direction), the additions, l

dependence on x, in the transport equation overcomes
this factox, and in fact it is large angle scattering that
contributes most to the resistance, particularly in the
y direction. Now-for a current traveling in the g direc-
tion the possible electronic momentum changes avail-
able in phase space are also, on the avexage, primarily
in the x direction. But we have already seen that the
Inatrix element is small for the case in which the
momentum change is primarily in the x direction. Hence,
the electrical resistance in this direction is relatively
small.

This expression for the resistivity change can be
obtained from Eq. (MS34) by setting equal to zero in
MS in term in Ao, and replacing the quantity (28—C)'
by or(28 —C—A)' csee Eqs. (19) and (MS19)j. The
average value of the resistivity change for a poly-
crystalline specimen, equal to 4/3 times hp, above,
differs by a factor (28—C—A)'/2LA'+ (28—C)'$ from
the average change calculated in MS. For copper
(v=0.34) this factor has the value 0.092.

By use of Eqs. (2) and (3), we may write the average
change in resistivity in the form

m9. 'koEo' f1-21) '

27m'koe'moo(noh)' & 1—p )

X (a cot—'a+a'/(u'+1) }X (m*/re)'Z'X. (21)

Making use of speciic heat data" for copper, we set
Eo=4.78, */ =1 47, k =1.37X10' ' q=2.19
&10' cm ', and a=0.80; taking X=2,55&10 ' cm,
v=0.34, and assuming one free electron per atom (so
that noh=1 and no=0.85X10" cm '), we obtain

(hp/p)A, =2.46X 10—"Z'S,

' Equation (4) for the collision operator in reference 2, and the
resulting expressions, should be multiplied by the factor j'.

"F.Seitz, Modere Theory of SoHds (McGram-Hill Book Com-
pany, Inc. , New York, 1940), Chapter IV.



where we have used the thermal resistivity at 20'C,
p=1.89&IO "Gaussian units, i,e., 1.69&10 ' ohm cm.
The observed fractional change in heavily cold-worked
copper is about 2 percent, which corresponds to Ã 8
X10'2 pairs of dislocations per cm', if the cGective
atomic number Z is unity. Koehlcr' has estimated that
E 3XII.O" pairs per cm' on the basis of energy storage
measurements. Kith a diferent set of values for ko and
eo, MS obtained E SX10" dislocation pairs/cm'.
Correcting this result by the factor 2L&'+(2&—C)'j/
(28—C—A)', we would obtain S 6X10"/cm. '. How-
cvc1', this VRlue 1s pl'obRbly too high, since 1t has
RssUmcd thc normal clcctI'onlc IDRss and a densltf of
1.4 electrons per atom in the evaluation Lsee Eq.
(MS40)]. Koehler quotes a result cV-7X10"/cm'.
(See, however, MS, p. 269.)

We may also compare Eq. (21) with the results ob-
tained by the deformation potential method, Eq. (D3).
The resistivity change per dislocation calculated here is
equaltothatinD timesafactor ~~t scot 'a+a'/(a'+1) j.
For u large in comparison with unity this factor reduces
to 1, but in this case neither approximation is a good
one Lsee Eq (12)j.. For copper a=0.80 and the factor
becomes 0.55. Since the deformation potential is
somewhat larger than the potential used here Lcompare
Eqs. (4), (9), and (10)j, one would indeed expect to
calculate a larger resistivity by the use of the deforma-
tion potential, and according to Eq. (12), in fact, one
would expect to bracket the correct answer by the two
methods. The CGect of the Gctitious singularity in the
Rssumed densi ty chRngc ' on the dislocation axis was
estimated in D to give too large a resistance change by
a factor of about 2, Rnd since it is only in the region
close to the singularity that the two potentials dier
appreciably, this factor is in quRHtative agreement with
the result obtained just above.

The estimate made here for the number of dislocation
pairs, 8&IO'2 per em', should perhaps be modi6ed in
the following way, making use of a calculation similar
to Bardeen's' for the thermal part of the resistance in

monovalent metals. The electrical resistivity p arising
from collisions of the electrons with lattice vibrations
can be calculated by the model used here, i.e., a model
which neglects CGects associated with the particular
ionic potentials near the nuclei and considers just the
caskets resulting from changes in density; this value for
p can then be compared with the experimental value,
thus giving some idea of the accuracy of the results of
this model. From reference 5 we find p to be propor-
tional to (C/i')', which for the present model is given
by Eqs. (51), (49), and (47) of reference 5 with
V(r,)+E&=0 and f(N) = 1. Inserting the experimental
values given above for copper (so that Bardeen's
parameter P becomes 1.31), we find that numericaHy
(C/f')' is equal to 0.460. The experimental value is 1.74,
so that the resistance calculated according to this model
is about 4 that observed. Now the calculation for
phonons makes use of the same matrix elements as were
used for the dislocation calculation, and both calcula-
tions required sUmInat1ons ovcl thc dlstI'lbutlon of
electron propagation vectors and the Fourier expan-
sions of the lattice irregularities. Although these
expansions are not the same in the two problems, the
error incurred by use of this general approach should
be of the same order of magnitude in. the two cases;
we thus eorreet Ã by the above factor, and obtain
E 2&10"per cm'.

The conclusion of the writer is that the best estimate,
based on this simple theory, for the density of disloca-
tions is about an order of magnitude higher than the
estimate obtained from the energy storage measure-
ments. If the latter is fairly accurate, closer agreement
must be sought in an interpretation of the CGects of
clustered vacancies, screwtype dislocations, half-dis-
locations, and anisotropy in the elastic constants.
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