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Angular Correlation of First and Third Gamma-Rays
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In a nuclear cascade involving three or more gamma-rays it is both desirable and feasible to measure the
angular correlation of nonconsecutive gammas either to con6rm the results of correlating consecutive
radiations or to resolve possible ambiguities. The angular'correlation functions for the observation of the
first and third gammas in a triple cascade have been calculated with, the use of Racah functions for cases of
physical interest. While the anisotropies tend to be somewhat less than those from the correlation of con-
secutive gamma-rays, they are easily detectable by present experimental techniques.

"
N investigations of nuclear decay schemes one fre-

~ ~ quently finds three or more gamma-rays in cascade.
The angular correlation of any two consecutive gammas
has been developed in detail' ' and has proven a
valuable experimental tool in determining multipolarity
of the radiation and angular momenta of the nuclear
levels. In the case of three gamma-rays in cascade it is,
in general, possible to measure the angular correlation
of the first and third as easily as the correlation of the
first and second or second and third. If the order of
emission of the gamma-rays is not known from other
evidence and the radiations can be distinguished by
their energies, it is clearly possible to measure three
correlations by taking the gamma-rays in pairs. A
comparison of the measurement with the calculated
results will then serve to establish the order of emission.
If evidence whereby the order of emission may be
established is available, then the one-three correlation
will serve as a useful check on the correlation experi-
ments involving consecutive gamma-rays, and in some
instances it will make possible the resolution of am-
biguities in the interpretation of the correlation of con-
secutive gammas. Two such cases are given below. The
numerical results for this one-three correlation form
the subject of this paper.

The theory of the correlation of three (or more)
radiations has been discussed in some detail in a
previous paper. ' It was shown that when the second of
three radiations was not observed, all interference
terms were removed by taking the s axis along either
the 6rst or the third gamma. The angular correlation
function for the emission of pure multipoles can then
be written in the form

w(0) = P (j pLpmpa1~j pmp)'(j pLpm~pI j,mi)'
tngMgM1

X (jiLimiMi
~
jpmp) Fr.i (0). (1)

Here and in the remainder of this paper jo will be used
to denote the ground state (or final state) of the cascade

*This document is based on work performed for the AEC.' D. R. Hamilton, Phys. Rev. 58, 122 (1940).' D. L. Falko8 and G. K. Uhlenbeck, Phys. Rev. 79, 323 (1950).' S. P. Lloyd, Phys. Rev, . 83, 716 (1951).
4 Biedenharn, Arfken, and Rose, Phys. Rev. 83, 586 (1951).

while j&, j2, and j3 denote the excited states in order of
increasing energy. - The m's and M's give the projection
of the j's and L's, respectively, on the quantization axis.
As the vector addition coeKcients indicate, a 2~' pole
quantum is emitted in the transition j,—+j; &. The
I"r,~(8) is the relative angular distribution function as
defined by Falko6 and Uhlenbeck. ' The summation
over these magnetic quantum numbers may be carried
out as in Appendix I of reference 4. Dropping irrelevant
scale factors the result is

w(8) =Q„(LiLi1—1
f
v0) (LpLp1 —1

f v0)

XWj(jl1LIL1', Vjp)W(jjljlj22', VLp)

XW( j&j&LpL&, vjp)P„(cos6). (2)

The summation index v is restricted to even non-negative
integers and may not exceed the smallest of 2L&, 2L3,
2j& and 2j2. It is not limited by L2, the angular mo-
mentum of the unobserved intermediate gamma-ray.
The three lV functions are Racah functions; their
properties have been given by Racah. ' ' It will be noted
that w(i1) is invariant under the transformation Li~Lp,
jo+-+j3, j&&-+j2 corresponding to the Hermitian character
of the matrix elements. This ambiguity, which also
characterizes the correlation of the consecutive radia-
tions, could be eliminated if one j, the ground-state
spin, say, were known.

For conciseness define a set of 6's by

j'=&'+j; i,

and let L,=1 when 6;=0, +1 and L,=2 when 6,= %2.
Higher values of ~h,

~

are not considered here. This
limits consideration to cascades involving no multipoles
higher than quadrupoles and assumes that in a given
transition the lowest multipole possible participates
which latter is the practical case. The restriction to
dipoles and quadrupoles may be relaxed as discussed
in reference 7, Sec. V-e.'

%ith these restrictions and with the normalization
(w(8))A, =1 (averaged over all directions), the ratios
of Racah functions needed are given in Table I.

~ G. Racah, Phys. Rev. 62, 438 (1942).
6L. C. Biedenharn, Tables of Racah Functions, oak Ridge

National Laboratory Report No. 1098.
7 Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952).
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ANGULAR CORRELATION OF F I RST AND TH I RD y —RAYS

relation functions are tabulated for the various possible
values of the ground-state spin, jo. The results are
exhibited in Figs. 1, 2, 3, and 4. Cascades in which
quadrupoles would always be competing with crossover
dipole radiation have not been included since the com-
petition is generally so unfavorable to the cascade
transition. An example of this is the case j—+j+2—+j
+1—+j+3 or the inverse transition scheme (6&, 5&,
63=2, —1, 2 or —2, 1, —2).

When L,= ~h, t
and the j's are monotonic, the coef-

ficients a2 and a4 are independent of jo. A similar situ-
ation exists for two p-rays in consecutive cascade as
has been pointed out by Lloyd. ' That this holds for the
one-three correlation may be verified using Table I.

For convenience the values of a2 and a4 have been
plotted against jo for all the sets of 2's. These curves
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FrG. 4. The coefFicient e2 for quadrupole-quadrupole-dipole
(Q-Q—D and D—Q—Q) transitions. The coefFicients u2 and u4 for
quadrupole-dipole-quadrupole (Q—D—Q) and quadrupole-quad-
rupole-quadrupole (Q~Q) transitions.
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FIG. 3. The coefBcient e2 for dipole-dipole-quadrupole (D-D—Q
and Q

—D—D) transitions.

show all possibilities subject to the three restrictions
(1) L,&~2, (2) L,=1 when 6,=0, &1, and (3) no cross-
over dipole gamma-rays competing with quadrupoles.

'Of course the curves have physical meaning only for
integral and half-integral. values of jo.

It is perhaps of interest to note that in at least two
cases the one-three gamma-gamma angular correlation

can give new information that cannot be obtained from
the correlation of consecutive gammas. An example
is the pair of level schemes 0—1—1—2 and 0—2—1—1 where
the numbers designate j-values. In each case the coef-
ficient of P2(cos6) for the first two gammas is —0.2500.
In each case the coefficient u2 for' the last two gamrnas
is —0.0250. It is impossible even with infinite resolution
to distinguish the two decay schemes by correlating
consecutive gamma-rays. However, if one correlates
the first and third gammas the results for a2 are —0.0250
and 0.1250 for the respective level schemes. The two
cases may be easily distinguished. The pair of level
schemes -,'—',——,

'—5/2 and —,
'—5/2 —,'—,' show the same am-

biguity under the correlation of consecutive gamma-rays
and may also be resolved by the one-three correlations.
These cases are, of course, rather exceptional. In
general, with the increased number of parameters in
the one-three correlation (3L's, 4j's) it may be expected
to yield more ambiguities than the consecutive gamma-
correlation. The extent of the ambiguities may be
estimated from the graphs.


