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Theory of the Production of Secondary Electrons in Solids~

A. J. DZKKZR AND A. VAN DZR HEI
Department of Etectrica/ Engineering, University of Minnesota, Jrj/Iinneepolis, Minnesota

(Received January 29, 1952}

On the assumption of a simple Coulomb interaction between a primary and a lattice electron, a general
formulation of the problem of the production of secondary electrons is given. The basic features of the
existing theories of secondary emission are presented and discussed as different approximations of this
formulation. Special attention is given to the process of production of secondaries and to, the energy losses
suffered by the bombarding primaries. Finally, the ratio is estimated of the number of secondary electrons
emitted due to processes considered by Wooldridge and those investigated by Baroody.

I. INTRODUCTION conduction electrons together with the positive ion
cores as a "plasma, " thus taking into account the
rather organized behavior of the system. ' For insulators
one should take into account the polarization of the
medium, thus reducing (1) by a factor equal to the
e6ective dielectric constant. In the latter case the
essentials of the theory would not be affected. Not-
withstanding the possible criticism with regard to the
validity of (1), it will be assumed to hold in the present
paper. It is our intention to present the theories referred
to above as diferent approximations of a general
formulation of the problem, focusing attention mainly
on the production of secondaries and the energy losses
suGered by the primary beam. Also, a comparison
between the diferent approximations will be given, as
well as an estimation of their relative importance to
the theory of secondary emission.

q ROM the theoretical point of view the emission of
electrons by a substance bombarded by a beam of

primary electrons may be divided into two parts: the
production of secondaries and the mechanism of their
escape. In dealing with the process of production one

may, at least for high primary energies, introduce
approximations based on the assumption that the wave
vector of the primary particle is large compared with
the wave vector of a lattice electron. The wave vector
of a secondary electron is usually not large enough to
deal with the escape mechanism on a similar basis.
This is one of the reasons why the quantitative aspect
of the theory of secondary emission is rather incomplete.
The first author to give a wave mechanical treatment
of secondary emission was Frohlich. ' More recently his
work was improved by %ooldridge. ' According to
these authors the free electron model of metals cannot
lead to secondary emission when the primary beam is
incident perpendicularly to the surface of the metal.
The laws of conservation of momentum and energy
would make it impossible for the lattice electrons to
gain momentum in the direction towards the surface.
Their theories are thus based entirely on the so-called
Peierls' "Umklapp-Prozesse. "

Rudberg and Slater' discussed the discrete energy
losses suQered by inelastically reflected primaries on
the basis of quantum mechanics. Recently Baroody4
investigated the possibility of explaining some of the
characteristic features of secondary emission on the
basis of a free electron model, assuming that the escape
of excited lattice electrons is caused by single or
multiple scattering.

In all papers just referred to the interaction energy
V between a primary electron with radius vector. R
and a lattice electron with radius vector r is assumed
to be given by

II. THE FUNDAMENTAL PROCESS

Consider a primary electron with wave vector K
moving in a crystal of unit volume. The energy of the
primary particle is assumed to be large enough to
consider it as free, so that its energy is O'E'/2m and its
wave function exp[i(K r)j. The wave function of a
lattice electron with wave vector k is represented by
Ps(r) and is assumed to be normalized per unit volume.
If there were no interaction between the two particles,
the wave function of the system would be

es ——e'&x'"'fs(r) exP( i'/h), — (2)

where the total eneigy

E=E(k)+O'E'/2m.

V=e'//R —r/. (&)

The validity of (1) may well be.questioned. For metals,
for example, a better approach may be to consider the

* Work supported by U. S. Signal Corps.' H. Frohlich, Ann. Phys. 13, 229 (1932).' D. E. Wooldridge, Phys. Rev. 86, 562 (1939).' Z. Rudberg and J. C. Slater, Phys. Rev. 50, 150 (1936).' E. M. Baroody, Phys. Rev. 78, 780 (1950).
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Because of the interaction, however, transitions are
possible such that the lattice electron goes from state

to k' and the primary from I to K'. The basic
problem then consists of calculating the number of
transitions per unit time p(Kk~K'k')dQ' for which the
primary electron is scattered into a solid angle dQ'

around the vector K' and the lattice electron is excited
into k'. Following the usual procedure, the wave

5 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864
(1949); D. Bohm and D. Pines, SO, 903 (1950); 82, 625 (1951);
D. Pines and D. Bohm, Phys. Rev. S5, 338 (1952); D. Pines,
Phys. Rev. 85, 931 (1952).
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where
E' =E(k')+ h'E"/2m. (5)

Assuming the interaction is given by (1) and com-
mences at t=0, one 6nds

«, ~,(t) —
~~

e4(K—K'i R

&&" p 4r &. R
P,(r)P'*(r)

Xexp L
—i(E E') t/—h jdrd Rdt, (6)

function representing the two electrons under consider-
ation at a time t, may be expanded as follows,

u(t) =P P az.K (t)e'&x'a&f~ (r) exp( —iE't/h), (4)

similar to those obtained by Wooldridge. The "tightly
bound" approximation is in accordance with the dis-
cussion by Rudberg and Slater and, as far as energy
losses are concerned, corresponds to the theory of
Bethe. The first two approximations will be discussed
in the next section, the third one in Sec. IV.

fs(r) = e4&"'&up(r), (12)

where uk(r), a function with the same periodicity as
the lattice, may be expanded in a Fourier series,

III. WEAKLY .BOUND LATTICE ELECTRONS

Describing the lattice electrons by Bloch functions,
we may write,

where the integrations over dr and dR extend over the
volume of the crystal. According to Bethe'

with

uk(r) = P c„(k) expLi(n r)j,
ntn2m3 =0

4me2
&i(K—K') Rd R &i(q r) (&)

I
R-rf q'

g2

with q—=K—K'. Substitution into (6) leads for the
transition probability to

with

16 e4r4 2(1—cos(E'—E)t/h)
I « '(t) I

'= (g)
(E' E)sq4

I—= ~e"'0~(r)0~ *(r)« (9)

For large values of t expression (8) has a strong maxi-
mum for E'—E=O, i.e., for processes in which energy
is conserved. According to standard procedure one has
to integrate over a large number of final states for
which the primary particle has a value in the neighbor-
hood of K'. Expression (8) should therefore be multi-
plied by the number of states with a wave vector of
magnitude between E' and E'+dE' within a solid
angle dQ' around K', i.e., by K"dK'dQ'= mK'dE'dQ'~k'
and integrated over dE'. The time derivative of the
resulting expression then gives the rate P(Kk—+K'k') dQ'

at which these transitions occur. Thus,

p(Kk~K'k')dQ'= (44ue4K'/h'g ) I
I I'dQ'. (10)

In what follows it is convenient to consider a beam of
primary particles of density m/hE, so that one particle
crosses unit area per unit time. The rate of the transi-
tions defined above then becomes

E(Kk~K'k')dQ' = (4m'e4E'/h4cJ'E)
I
I

I
'dQ'. (11)

The various theories referred to in the introduction
differ essentially only in the manner in which the
integral I, given by (9), is evaluated. Assuming the
lattice electrons to be free, the theory of production of
secondaries should become identical with Baroody's
theory. The "nearly free" approximation yields results

4 H. Bethe, Ann. Phys. 5, 325 (i930).

(13)

Here, n/2' is a vector denoting one of the points in the
reciprocal lattice. For cubic crystals with a lattice
constant u, an/2s represents a vector with integral
components. For body-centered cubic crystals those
coefFicients are zero for which the sum of the compo-
nents of an/2s is odd. Because the absolute value of
the coefFicients c decreases with increasing values of e,
the most important terms that do not vanish for a
b.c.c. lattice are cppp, c~~p, etc. ; c2pp, etc. . We should
note, however, that if k is equal or nearly equal to n, c„
is not small compared with cppp. For a face centered
cubic lattice only those coefficients do not vanish for
which all components of un/2s. are odd or even. In
this case then, the coeKcients not equal to zero are, in
order of decreasing magnitude, cppp, c~~~, etc. ; c2pp, etc.

. For a given n the coefficients c„(k) also increase
with increasing values of k, though slowly as long as k
is appreciably smaller than e. It will be assumed in
what follows that the lattice electrons excited by the
primary beam into states denoted by k' may be con-
sidered as completely free, i.e., cpgp(k )= 1 and c,(k') =0
for n/0.

On the basis of this assumption, substitution of (12)
and (13) into (9) leads for the matrix element to

I=+,c,(k)~" expLi(q+k —k'+n) rjdr. (14)

The integral is unity if

q+k —k'+n=0 or K+k+n—= C„=k'+K', (15)

and has a negligible value otherwise. (15) expresses the
law of conservation of momentum of the system. For
a particular value of n the contribution toexpression
(11) is given by

E„(Kk-+K'k')dQ'=
I
c,(k) I

'(4m'e4K'/h4q'K)dQ'. (16)

Obviously, large values of I', only occur for small
values of g. According to the energy conservation law,
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which is very small for high primary energies. The
approximation holds if E&)k. For transitions defined

by n/0, it thus follows from (15) and (16) that only
those are allowed for which the excited state of the
lattice electrons is determined by

k' k+n for n&0, (18)

i.e., for which the reduced wave vector does not change.
For transitions defined by n= 0, (18) does not hold and
(15) reduces to the "classical" momentum law

K+1=K'+I' for n=o. (18a)

Each of these types of transitions will now be discussed
separately.

a. Transitions De6ned. by n&0

The number of transitions P„(k, k') taking place per
unit time from an initial state defined by K, k, and n
may now be calculated from (16). The final state of
the lattice electron is given immediately by (18), so
that E(k') —E(k), and hence, also K', is fixed. Intro-
ducing in momentum space a polar coordinate system
with K as 2'-axis and 0 and p as polar angles defining
the orientation of K', one may thus write

or

It follows that

q'= K'+K" 2KK' cos0, —

qdq = —KK'd(cosg).

(19)

(20)

d0' = (qdq/KK') dp. (»)
Substituting (21) into (16) and integrating over q
from q; =E—E' to q, =E))q;„one obtains

with
Z.(k, k')=l c.(k) l'4~e'/E, ,',

E pi g =—E(k') —E(k) . (22)

It should be observed that the number of these processes
is independent of the energy of the primary particle,
although it should be kept in mind that the derivation
is based on the assumption that E))k. As a consequence
of the occurrence of Ei, i,

' in the denominator and
lc,(k) l' in the numerator, the number of processes
under consideration decreases with increasing values of
m. Except for a factor that is practically equal to unity,
(22) is identical with Wooldridge's formula (32) in the
paper referred to above.

Each transition of the kind just discussed leads to a
secondary electron in a state k'=k+n. Therefore, Eq.
(22) describes the production of secondaries when
multiplied by the number of lattice electrons initially
in state k. It may be noted that an electron with a wave
vector 2tr/a, where a~3A has an energy of about 20 ev.

the minimum value of q is equal to

2m E(k') —E(k) m E(k') —E(k)
(17)

k' K+K' k' K

As k is usually appreciably smaller than e, the second-
aries produced have momenta strongly determined by
the direction of n.

The influence of the direction of k relative to n on
the magnitude of expression (22) may be estimated by
making use of the approximation

In that case

E(k) k'k'/2m. (24)

In this expression v„denotes the number of vectors n
that have the same absolute value e. The coe%cient

(l c„(k)l')«represents a suitable average to take into
account the fact that not all lattice electrons in the
group N(Ett)dE» have the same coeScient c (k).
Clearly, (lc„(k) l')«depends on k„and therefore on
E», though not strongly. For a "Fermi sphere" with
maximum wave vector k, the number of electrons
in the group dk„defined above would be equal to
(k '—k ')dk /4m'. Hence, only for k„«k would
X(E» ) be nearly constant.

The total energy loss of the primary beam caused by
transitions defined by a specific value of e may be
roughly estimated by observing that the value of E»
given by (25) averaged over all electrons with the same
initial value of k is equal to k'n'/2m=ED, and hence,
independent of k. Together with (26) this leads to the
following contribution to the energy loss of the primary
beam per unit path

pdE„y 8 me'Ere

(dx). ~-(lc-(k)l')"
k2S2

4xe4S
w„(l c„(k) l

')„„. (27)

This expression is again independent of the energy of
the primary particles. It should be noted, however,

Ett = (k'/215) (e'+2k n) = (k'/2') (N'/2k„tt) (25)

where k„ is the component of k along the direction n.
For a given vector n and a given value of k the transition
probability is a maximum when k has the opposite
direction of n and a minimum for k and n parallel.

According to (25) the energy lost by the primary
particle because of a transition of the lattice electron
from k to k+n only depends on n' and on k„. Thus,
for a given vector n all those lattice electrons for which
the component of k along n has a value between k„
and k„+dk„will gain energy between E» and Ett
+dE» where Ett is given by (25). Denoting the
number in this group by X(E» )dE», the distribution
of energy losses is given by

f n total(E»')dE»'

4xe4
=v„(lc„(k)l')«1V(E»)dE». (26)

~kk'



A. J. DEKKER AND A. UAN DER ZI EL

that by using the average value Eo, the higher proba-
bility of small energy losses has not been taken into
account, so that (27) is only a rough approximation.
Similarly, the production of secondaries as determined
by (22) may be approximated by

P.(k') (4ore4N/Ep')o„(~c„(k) ~')4„. (22a)

k'dk'(2 cos8) k'dk'
—d( osg)=

K' &C, K') KK"
(29)

b. Transitions De6ned by n=0
This case corresponds to transitions of completely

free electrons, i.e., to a Sommerfeld model of a metal.
Because of the momentum law (18a) and the energy
conservation law, the lattice electrons mainly gain
momentum in a direction perpendicular to the wave
vector K of the primary particle. In other words,
when K is directed perpendicularly away from the
surface, the lattice electrons mainly gain momentum
parallel to the surface. This led Frohlich and Wool-
dridge to believe that transitions of this type are unim-
portant. for the process of secondary emission. However,
as assumed by Saroody, electrons that have gained
momentum parallel to the surface may still be able to
escape by scattering processes. The scattering may be
caused by impurities or by lattice vibrations. In both
cases, the periodicity of the lattice is disturbed, but in
the latter case the cross section for scattering is temper-
ature dependent. Besides, of course, the excited lattice
electrons will interact with the other free electrons,
thus leading to absorption of the secondaries during
their escape. Also, the primary electrons, even though
they may impinge perpendicularly on the surface, will
be subject to Rutherford scattering inside the metal
and their path will be curved rather than linear. This
is born out by experiments with high primary energies,
whereby an appreciable percentage of primaries has
been observed to leave the metal again at the surface
of incidence after having lost a certain amount of
energy. Therefore, even without scattering of the
secondaries it should be possible to obtain secondary
emission with a free electron model. A priori it is not
at all obvious that the case n=O should not enter into
a discussion of secondary emission.

To discuss these transitions Eq. (16) will again be
used as a starting point, but with a transformation of
dQ' different from (21) as used for nWO. Suppose the
wave vectors of the primary electron and a lattice
electron are given. Then the momentum law requires
K+k—= Cp ——K'+k'. Because of the energy law, (K"
+k") is also determined by the initial state. Introducing
a polar coordinate system with Cp as s-axis and the
angles 8 and p to de6ne the direction of K' one may
thus write

k"=K"+Coo—2CoK' cos8,

and by diGerentiation of both sides

so that dQ' may be expressed in the variables k' and P,
dQ' (k'dk'/KK')dP. (30)

The approximation is valid as long as IC&)k. Substi-
tution of (30) into (16) thus leads for the number of
transitions per unit time whereby the lattice electron,
initially in state k, is scattered into a state between k'

and k'+dk' to
4m'eok'dk' p'~ d@

Pp(k') dk'=
k'K' &o (k' —k('

(the coefficient co(k) has been put equal to unity). In
case k'))k, the integral is simply 2'/k". This condition
is equivalent to the assumption L=O, used by Baroody
to calculate the momentum transferred from the pri-
mary to the lattice electron. For E free electrons per
unit volume, this assumption leads for the total number
of lattice electrons scattered into states between k' and
k'+dk', per unit time, to

Po «4»(k') dk' = (gor4r4oe4N/&4K') dk'/k"
= (ore4N/E„)dEo /Eo ', (31a)

(31)

there E„represents the primary energy and EJ, the
en.ergy loss involved in any one of these transitions.

In general, however, the assumption k'&&k is not
allowed because transitions for which

~

k' —k~ is small
are more frequent than those for which this quantity
is large. More accurate results are therefore obtained
as follows: multiply (31) by the number of lattice
electrons that may be scattered into states k' by an
increase of momentum 5~ k' —k ~. If 44. is the angle be-
tween k and k', this number is equal to k'dk sincodco/2n'.

Integration of the resulting expression over n and p
then yields

Pp 4 p »(k4)dk
k'dk

k'dk' ~, (32)
~54K' ~ (k"—k')'

This expression reduces to (31a) by making a series
expansion in terms of k /k' and retaining only the
terms of lowest order in this variable, and anally
putting k '=3m'E.

The distribution of energy losses may be obtained
from (32) by introducing E&z.——5'(k"—k')/2m as vari-
able instead of k', and integrating over k. Thus

m'e N dEoo~
for Eool)E'~, (33a)Po «4 4(Eoo )dEoo'=

+y +kk'

( Eoo'l ~ dEoo

E„) E„'
xe4S

jV
for Eoo (E . (33b)

where the upper limit k corresponds to the wave vector
of an electron at the top of the Fermi distribution.
Integration over k gives

Po 4o4 4(k')dk'

2me4 k„1 (k'+k„q-
k'dk' -- — i«~ )

. (31b)7rh'E„k"—k ' 2k' (k' kJ—
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The diGerence between these two expressions is caused
. by the fact that in -the later case only those lattice
electrons can contribute for which

k (1—El,g/E )'&k&k,
because k' must be larger than k in view of the
exclusion principle. For Eq4 ((E Eq. (33b) varies as
1/E4~'

The total energy loss per unit primary path length is
obtained by multiplying (33a) and (33b) by EI,I; and
integrating from zero to E„.This yields

(dE„/dx—)„0
= («'&/E. )Lg/3 —log4+»g(E. /E-) j (34)

To compare this result with that obtained in the next
section for strongly bound electrons, it is convenient to
write it as

(dE„/—dx). 4 (xe='E——/E, ) log(2E„/E, ), (34a)

with E;=SE e 8~'=0.55E .
IV. THE APPROXIMATION OF STRONGLY

BOUND ELECTRONS

For strongly bound electrons the wave functions are
nearly identical with the atomic wave functions. In
other words, the wave function of an electron strongly
bound to an atom located at a lattice point de6ned by
a vector r;, has appreciable value only in the vicinity
Ir—r;I of the order of the atomic radius. Also, according
to (11) only transitions for which q is closely equal to
q;„have appreciable probability of occurrence. For
usual primary energies of some hundreds of volts, q,„
is small compared with the reciprocal interatomic dis-
tance. Thus, the factor e'«'& appearing in the integral
I given by (9) may be written in good approximation as

e'«" = L1+iq (r—r,)]e'«" (33)

Making use of the orthogonality of P~(r) and f~ (r),
this leads to

(q (r—r')}A(r)0''(r)« =e'll-- I' (36)

where IL» I' is the optical transition probability. It
is zero unless the reduced wave vector before and after
the transition is the same, i.e., the selection rule is the
same here as for the weakly bound approximation in
Sec. IIIa.

The number of transitions P(kk') of a lattice electron
from an initial state k to a 6nal state k', per unit time,
may then be found by substituting (36) into (11);
introducing q and qb as new variables by means of the
transformation (21) and integrating over q and p one
obtains

4xme' /max
r(kk')= Iz,„I

1 g—.
h2E~ (min

The limits are the same as before, i.e., q;„=E—E'

=tBE44~/k K alld $~4„=K.Tllus,

4sme4 2E„2«4 fqq 2E„
~(kk )=

I
L»' I' log = log, (37)

~ Ey Exa' Ey Eaa

2m
f~~ = Eaa IL» I'.

h2

Expression (37) governs the production of secondaries
into states with a prescribed wave vector k'. For the
distribution of energy losses suGered by the primary
particles it follows immediately that

&(E44 )dE4g = const.f».&(E44 )d&,a /%4, (39)

where X(Eq4 )dEqq. represents the number of transitions
that give rise to an energy loss in the defined range.

The energy loss per unit primary path length caused
by the interaction with a single lattice electron making
transitions from k to k' is given by expression (37)
multiplied by EI,I, . The total energy loss per unit path
caused by a single atom is thus obtained by summation
over all initial states k and all final states k'. If there
are X atoms per unit volume the total energy loss of
the primary beam per unit path is thus given by

(dE„p 2s e' 2E„
&.ZZf- »g

Edxi E,
an expression identical with Bethe's formula (66) in
the paper referred to above. Now, for an atom the
oscillator strength summed over all initial and 6nal
states is equal to the number of electrons Z. When
the primary energy is larger than the binding energy
of an electron in the E-shell all electrons take part in
the absorption process. For smaller primary energies,
less than Z, say Z' electrons contribute to the loss of
energy of the primaries. Introducing an average energy
E dered by

Z'logE4' ——gg Qg f» logE4, p, (41)

wherein the summation over k includes all initial states
taking part in the absorption process, (40) may be
written as,

(dE„/dx) = (2xe4—/E, )X&' log(2E, /E ). (40a)

From what has been said above it follows that E is a
slowly varying function of E„.

V. CONCLUDING REMARKS

Each particular one of the approximations dealt with
above should apply to those energy bands for which the
approximation is most fitting. However, a certain
amount of overlapping of the cases n=o and n/0 on
the one hand and, of n/0 and the tightly bound
electron approximation on the other, can hardly be
avoided. The approximation of completely free electrons
would be expected to hold reasonably well for the
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valence electrons of the alkali metals, whereas for the
valence electrons of other metals a combination of n=0
and n~0, i.e., of Baroody's and %ooldridge's theories,
is probably more suitable. The contribution of the
innermost electronic shells to the production of second-
aries and to the energy losses suGered by the primaries
is probably best described by the strongly bound
approximation.

It is interesting to note that both the free electron
model and the strongly bound approximation lead for
the energy losses of the primaries per unit path to the
same dependence on E„, vis. , E„'logE„. The only
difference between (34a) and (40a) is the occurrence of
a factor 2 in the latter. That this factor does not occur
lil (34a) is a consequence of the free electron approxi-
mation. r Formula (27) for the case n/0, although a
rough approximation, shows that the energy loss per
unit path is independent of the primary energy, so
that the range of the primaries would be proportional
to E„.The only case where this has been observed in
the literature, to the knowledge of the authors, is in
experiments by Copeland' on the maximum depth of
origin of the secondaries in platinum films on aluminum.
Copeland found the maximum depth to be proportional
to E„below 500 ev and reports this to be in agreement
with Kooldridge's theory. Above 500 ev the depth of
origin of the secondaries increased more rapidly,
indicating a decrease of dE~/dg with increasing values
of Ep.

The distribution of energy losses, expressed by
formulas (26), (33a, b), and (39) for the three approxi-
mations will be discussed with reference to experi-
mental results in a forthcoming paper by one of us
(A.v.d.Z.).

As an application to secondary emission, a rough
comparison will now be made between the relative
importance of the cases n=0 and n&0 when applied
to the valence electrons of copper. As no quantitative
theory of the escape mechanism exists as yet, the
following simplifying assumptions will be made:

(a) The secondaries are distributed isotropically when
leaving the metal. This implies a polycrystalline target
or a process of scattering for a single crystal target.

(b) The absorption of secondaries affects both cases
-in the same manner, so that in a comparison it may be
neglected.

(c) Production of tertiaries by secondary electrons is
neglected. On the basis of these assumptions, the
secondary emission current is

j P(k') g(k')dk', (42)

where g(k') is the probability of escape of a secondary
electron with wave vector k' and P(k')dk' is the number

7 See also N. F. Mott and H. S. W. Massey, Atomic Collisions
(Oxford University Press, London, England, 1949), second edition,
p. 252.

8 P. L. Copeland, Phys. Rev. 58, 604 (1940).

of secondaries produced per unit time per unit volume
in a given range. P(k')dk' is different for the two cases,
but g(k') is the same. Assuming ki is the minimum
component of k' perpendicular to the metal surface
required to escape, one may write,

g(k') =-', (1—ki/k') for k') ki, (43)

whereas g(k') =0 for k'(ki.
For transitions defined by n=0, Po(k')dk' is given by

expression (31b). Upon substitution into (42) and
replacement of the upper limit E by ~, integration
leads to

~e'X - p3q'f E q p3y't E ~'
1+I —

I I
—I+I —

I I I

6E,E, I5& LE, ) &7) EE, )
3)2 E 3

where Ei ——k'ki2/2m. For transitions defined by a given
value of e, the production of secondaries is given
approximately by (22a). As each of the secondaries has
an energy Eo= k'n'/2m, (42) becomes for n/0

I„=v (I c (k) I') „(2xe'S/E, ')(1—(E,/E, )&}. (45)

Inasmuch as the latter expression is independent of the
primary energy, the relative importance of the two
cases may be estimated by calculating the value of E„
for which (44) and (45) become equal. For energies
below this value (44) is predominant, for higher energies
(45) is predominant. Taking Cu as an example, with
the following values as given by Wooldridge: e =8
(f.c.c. lattice), E = 7 ev, Ei——12 ev, Eo= 35 ev,
(c»&)'~0.01, one finds that (44) and (45) become equal
for E~~300 ev.

The energy loss of the primary electrons per unit
path may also be compared for the two cases, by making
use of (34a) and (27). For Cu these expressions become
equal for 8~~600 ev. This is appreciably larger than
the primary energy for which the secondary emission
currents are equal, as calculated above. The reason for
this di6erence is apparently that the secondaries pro-
duced by transitions of the type n=0 have less energy
than those produced by transitions n/0. Consequently,
the probability of escape of the former is smaller and
although the value of dE~/Ch for E~=300 ev is larger
for the free electron case, I~&I„.

From what has' been said above it seems justi6ed to
conclude that for metals bombarded by primaries of
several hundred volts, a combination of the theories of
Baroody and Wooldridge is necessary. The range of
predominance of each of these approximations will

depend on the particular target under consideration.
It would be interesting to investigate experimentally
the angular distribution of the secondaries emitted by
single crystals. In this way, some more pertinent
information about the scattering process during the
escape might be obtained.


