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By a consistent use of the concepts of mass and charge renormal-
ization Dyson has demonstrated the possibility of constructing
a divergence-free S-matrix for scattering problems in spinor-
electrodynamics, valid to all orders in the fine-structure constant.
In this paper a proof is given of the possibility of renormalizing
theories of charged scalar {or pseudoscalar) particles in the
presence of the electromagnetic field. It is found that in addition
to the renormalization of mass and charge, an infinite constant of

direct interaction Q has to be introduced in a term BXqb*2@~ added
to the Hamiltonian, in order to cancel consistently all divergences
arising from the Mdller scattering of one spinless particle by
another. This, combined with the fact that theories of charged
scalar and pseudoscalar mesons in scalar interaction with the
nucleons can be renormalized with the same additional term in
the Hamiltonian, seems to be of some significance.

1. IN TRODUCTION

Y establishing the equivalence of Tomonaga-
Schwinger formalism for spinor electrodynamics

with that of Feynman, Dyson' has formulated an
5-matrix theory for scattering problems in spinor
electrodynamics. In this theory any real process taking
place with specific virtual processes can be represented

by a graph, the contribution to the matrix element for
this process being an integral in the writing of which

each line and each vertex of the aforementioned graph
contributes a single factor. By analyzing the divergences
in these integrals and giving precise rules for separating
divergent parts from the (physically significant) con-

vergent parts of these integrals, Dyson has further
demonstrated that all divergences in the theory can be
absorbed in the unobservable mass and charge renormal-

ization of the theory.
For scalar electrodynamics it has been possible' to

develop corresponding graphical methods and thus to
analyze the possible divergences of the theory. It is the
purpose of this paper to consider the adequacy of the
concepts of renormalization for dealing with these
divergences.

If 4(x) and A„(x) represent the meson and electro-i
magnetic fields, respectively, the interaction Hamil-
tonian for mesons interacting with the electromagnetic
field is

ie 8$ BqP(x)a, (x) =—A„(x) 4*(x)— 4(x)
AC 8XP OX'

—
i
—

i
4*(x)4 (x)6„„A„(x)A„(x)

E hc3

A, (x) creates and annihilates photons, while 4*(x) and
4 (x) are interpreted as creation and annihilation charge
operators, so that ignoring the surface-dependent terms
in the Hamiltonian, we have effectively'

(
84 (x) BP*(y) 8'

I' - =-,'hc 6 (x—y).
~~@ ~gv 0

In Feynman graphs, the terms in the Hamiltonian
linear in A„(x) lead to B-vertices, with 2 meson lines
and 1. photon line incident, while the term bilinear in

A„(x) leads to 4-vertices, with 2 meson and 2 photon
lines incident.

The contribution of this graph to the matrix' element
appears as an integral in momentum space; in the
integrand there appear4

(i) constant factors 4*(p), 4(p), or A„(p), corre-
sponding to each external line of the graph.

(ii) a factor b„.(2m)'D p(p) for e. ach internal photon
line.

(iii) a factor hc(2~) 'Ap(p) for each internal meson
line.

(iv) a factor ie(hc) '(2x)'(p+p')„b(p p'+q) for-
each 3-vertex. The suKx p gives the polarization of
the photon line.

(v) a factor ie(hc)'(2a)—'8„.5(p p'+q q') —for each—
4-vertex, where p is the momentum vector of the
incoming meson, p' that of the meson leaving the
4-vertex, and q, q' refer to the photon lines incident at
the 4-vertex.

(vi) the whole integral is multiplied by the number
of diGerent ways the operators can be paired oG by
interchanging the roles of photon operators A„(x) and
A„(x) at the 4-vertices.

Thus, in general, it is possible to make a formal
distinction between the factors 0„,and 5,„for a 4-vertex.
If this distinction is not made, the integral obtained by
following rules (i) to (v) must be multiplied by a
"weight factor" 2 for each 4-vertex. Some exceptions

$e)'—
)
—

~
4*(x)4 (x)LA„(x)e„]'. (1)

&hc)
*Now at Government College, Lahore, Pakistan.' F. J. Dyson, Phys. Rev. 75, 1736 (1949), hereafter referred to

as D II.
~P. T. Matthews, Phys. Rev. 80, 282 (1950); F. Rohrlich,

Phys. Rev. 80, 666 (1950). The author is indebted to P. T
Matthews for sending him a copy of F. Rohrlich's work prior t
publication.

' P. T. Matthews, Phys. Rev. 76, 1657 (1949).
o 4 These rules were already implicit in Feynman's work I R. P.

Feynman, Phys. Rev. 76, 769 (1949lg.
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occur, however, when the meight factor is not 2, and
these have been discussed in detail by Rohrlich. ~ For
theoretical considerations, however, we shall always
distinguish (if possibie) between factors 1»„„and 8„„for
4-vertices and no weight factor mill be used.

The genuine primitive divergents' are of the same
type as ln splno1' electrodynamics, namely, meson and
photon self-energies and vertex parts (parts with 2
external meson lines and I external photon line), with
the addition of logarithmically divergent graphs with
two external photon and meson lines (C parts), and
four external meson lines (3E parts). The self-energy
(8) and vertex (V) parts modify the factors from single
lines or single 3-vertices, while the divergent C parts
can be regarded as modi6cations of 4-vertices. De6ne
+4I (P) as the function arising from adding together
all integrals corresponding to proper~ meson self-energy
parts, II*(P) the corresponding sum for photon self-
energy parts, A„(P, P') the function arising from adding
the integrals corresponding to proper V parts, 8„,(P, P', q)
as the sum arising from adding integrals corresponding
to pl'opcI' C parts» and

DI '= DP+DPII*DF'
&ii'= &I +&S+III*~I'

I'.{P P') = (P+P').+~.(P P')

~"(P P' e)=op+e"(P O' V)
'

Every graph 6, other than a primitive divergent
graph, has a uniquely de6ned "skeleton" which is the
graph obtained by omitting all self-energy parts from
the lines, vertex parts from the 3-vertices, and C parts
from the 4-vertices. A graph which is its omn' skeleton
mill be called "irreducible, "and a graph not containing
M parts inside it "simple. "Kith the foregoing de6nition
of irreducibility, an irreducible graph may still contain
divergent 3f parts.

For simple irreducible primitive divergent graphs,
the forms of the functions +4I*, II*, A.„, and H„„are
given as follows by invariance consideration:

Z~'(P) = ~+&(P'+")+~.(P) (P'+"),
II*(P)=CP'+D. (P)P',

~.(P P') = l (P+P').+~"(P, P'),

e"(P P' v)=~4+f):.(P P' v)

where the suKx c stands for the convergent parts of
the functions on the left-hand side of the equations.

A, 8, C, L,, and E are divergent constants, while the
de6nitions of the convergent parts are such that

6,(PO) =0

' The external lines of any proper part contain no self-energy
insertions. In general a proper part is one which cannot be divided
into two pieces joined by a single line.

6 The factor for a 4-vertex is —e'8», For 8„„asdefined here
we obtain the e-factor (—1)"e'"e' where r is the number of
4-vertices and 2s that of 3-vertices, and then divide by —e'.
This gives C„, (to replace 8„„)as =8„„+8».

and
D,(0)=0

A„,(P, P') can be written in the formI

~"(P P') =~(P+P').(P'+~+P"+")+I".(P P') (2a)

where

Pp= BPIp/Bpp= BFp/Bpp =0 fol' P=P =P4
and in general we can write H„„as

0".(P, P', c)=&(P+P').(P+P') +F"(P,P' ~) (2b)

with
~..(Po Po 0)=0

%'e notice tha, t M is 6nite and, furthermore, that
with the foregoing (unique) de6nition, Ap. (PO, Po)=—0
Similarly, S in (2b) is a finite constant. The precise
signi6cance of these particular separations mill be-
come clear in Sec. III when we establish relations
betweell Qlr, App alld happ.

It is possible to obtain a divergence free 5-matrix if
me can show:

(a) That all infinities associated with self-energy of a
free-field meson can be canceled. by bringing into the
interaction Hamiltonian by means of a unitary trans-
formation, ' the mass renormalization term —54'&*IP.

The free meson 6eld now propagates with the term
II'It ~ItI in the "free" Hamiltonian (11=me/f4 where m is
the observed meson mass).

(b) That a11 M divergences occurring anywhere in
the theory can be consistently compensated by suitably
choosing a constant hX in a term Q,Q*'It' which is added
to the interaction Hamiltonian. ' After the additions

(a) and (b) the Hamiltonian is

H (x) =Ho(x) 8II'III*ItI+ b—)II'*'Itp'. (3)

The a,dditional terms give rise to new graphs conta, ining
2- and 4-vertices, with 2 and 4 meson lines incident,
respectively. Graphs containing no such 2- or 4-vertices
mill be called. "origina, l."

Unlike, splllol electrodynaIQlcs HII($) coll'tmlls 'two

constants, e and e", with e=e'. The graphs arising
entirely from e-vertices (3-vertices) contain 5 diver-
gences and V divergences; those from e' vertices
(4-vertices) contain 8 divergences and C divergences.
It would be possible to absorb these divergences in the
renormalization of charge if we could show {c).

{c) That by a suitable choice of constants Z,

Dlp ZSDIpl (el)
6I '= Z2AI I'(el) ' (4)

Fp —ZI FIpl(el) alld Cpp Z4 Cppl(el)

where the renormalized (and the observed) charge of
the meson

eg ——Zg
—'ZRZ3&e= Z4

—&Z2&Z3&e'.

VThis separation into convergent and divergent parts was
glVCI1 by DPSO11 (P11VRtC COIIIIOIIIIICRt1011).

SF. J. Dyson, Phys. Rev. 75, 486 (1949); P. T. Matthews,
Phil. Mag. 185, XLI (1950).

The necessity of this condition was pointed out by P. T.
Matthews (reference 2).
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(d) If Po(x) is gauge-invariant, so that e=e', it has
to be shown that the Z's defined satisfy a further
condition,

Z4 —Z2Z] o

D p', 6p', I'„, C„„are the functions already defined,
except that they now include the graphs with the new
2- and 4-vertices, as well as the original graphs. C„,~
= b„,+8„„where 0„., is the function arising by adding
together the (absolutely) convergent parts of each
integral corresponding to each "original" C part. I'„~,
d~~', Dpj' are defined in a similar manner from sums
of convergent parts of the original integrals concerned.
The procedure for obtaining the (absolutely) convergent
part of an integral will be presently explained. It is to
be noticed that the "convergent functions, " on the
right-hand side of the relations (4) appear to be ex-
pressed as functions of the renormalized charge ei.

The general procedure for isolating divergences" from
an n-fold integral was given in reference 2 in Sec. III. In
this procedure the concept of true divergence plays an
important part. In general if we subtract from any
divergent integral over the variables ti . .t„, the true
divergence over t, subintegration D(t&)X the reduced
integral (R) over t2t3 3„+ the true divergence over
tmX the reduced integral over ti/3 t„+ + the true
divergence over f~t2X the reduced integral over t~. t„
+ + + + finally the true divergence over
tIt2 .t, the remainder is an integral which is abso-
lutely convergent and is the convergent part of the
n-fold divergent integral we started with. Each reduced
integral corresponds to a graph obtained from the
graph under consideration by omitting that part of the
graph whose true divergence multiplies this particular
reduced integral. If a subintegration is "superficially
convergent, " its true divergence is zero; while the true
divergence over a subintegration t t~ 5; .t;t„
tq ~ t„~ 3, where (t, ~ ~ tq), (t;. t,), (f~ ~ t,) ~ ~ are k

groups. of variables belonging to nonoverlapping parts
of the graph, equals (—i)" ' times the product of the
true divergences over each of the k groups, (t, t~),
(t, 3;), (R"emark b, I, Sec. IIP'). It is in terms of
the convergent parts of the integrals defined as above
that the functions C„„~, I'„~, etc. are defined. The true
divergence of a subintegration corresponding to a
meson self-energy graph is characterized by two diver-

"The proof given by Rohrlich for the possibility of renormal-
ization (reference 2} for scalar electrodynamics is invalidated
because the general procedure for isolating. divergences was not
available. A "hierarchy" of divergences was somewhat arbitraxily
de6ned and a prescription given according to which a divergence
higher in the hierachy should be removed 6rst. This procedure
is not equivalent to the one given above and when overlaps occur,
does not leave behind an absolutely convergent integral after the
proposed subtractions. In a note added in proof (reference 2}
Rohrlich has observed that the problem of "b-divergences"
(overlaps} has not received proper treatment in his paper. The
present paper deals with these difhculties."Abdus Salam, Phys. Rev. 82, 217 (1951),hexeafter refexred to
as I.

gent constants A, 8; while all other true divergences
are characterized by one divergent constant. The
factors multiplying these constants L(p'+~'), for ex-
ample, which occur multiplying 8 in the meson self-
energy casej are absorbed in the reduced integral.

Considering the "original" graphs, the finite and
physically significant expressions C„„&, I'» are de-
fined, as already stated, in the first place by an appar-
ently arbitrary dropping (subtracting off) of the in6nite
terms (true divergences X the reduced integrals) from
the infinite expressions C„„, I'„, etc. Some of the
divergent terms thus subtracted can be interpreted
under (a) and (b) as direct cancellations with terms
from bf~.

" and bX arising in graphs which are not original
so that, as we shall show, both these divergences as
well as the "iion-original" graphs need never be con-
sidered. The establishment of (c) and (d) shows that
the remaining divergent terms isolated can equally well
be interpreted as the extraction of infinite constant
multiplicative factors Z, from C„„,I'„, , so that each
of these functions, instead of appearing as a sum of
infinite (DXR)+finite terms, now appears, as in Eq. (4),
as a product of a (divergent) constant (Z) multiplying
finite and physically significant terms. After this is
accomplished, these Z factors can be completely ab-
sorbed in renormalizing the charge, so that all infinities
occurring in the theory can be eliminated.

The main diKculty of the proof lies in establishing
(e). In each of Eqs. (4) the functions appearing on the
left-hand side are completely known, while so are the
finite parts of these functions C„,~, I'„», . I.et us
assume that the relations (4) hold, with the fa,ctors Z
for the present unknown. Consider an irreducible C
graph, Typal, for example, such that in its lines and
vertices, self-energy, vertex, and C parts can be inserted
without any one of these insertions overlapping with
any other insertion. Each insertion is thus completely
localizable and does not simultaneously modify more
than one vertex or line. The result of these insertions
analyticaHy is that we replace in the integral for the
irreducible graph hp by Ap', Dp by Dp', (P+P')„by
I'„and 8„„byC„„.It was shown (Remark c, I, Sec. III),
that if, for example, a meson line p has a self-energy
insertion with associated momenta t t~ t~, and if
this self-energy insertion defioes no overlap with any
other part of the graph, then we can arrange our general
subtraction procedure so that we isolate divergences
corresponding to the subintegrations t, t tb, etc. ,
first. After the true divergence corresponding to
t,tb t~, itself is removed, the integration over this
set is left absolutely convergent and it can be performed
unambiguously so that the variables t, tb, t~ no
longer need be considered explicitly from this stage
onward. Since this procedure of removing divergent
terms corresponding to this self-energy insertion is
precisely the one we would adopt for obtaining Ap~'

from b, p', and, since we have assumed that, in the
latter case (Kq. (4)), the divergent terms separated are
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grals from thc entire. class of graphs T„„, "derived"
(uniquely) from the one graph Tr~a by insertions. This
form for T„„will be referred to as the fundamental form.
It is to be emphasized that the content of T„„is not
altered in the fundamental form by expressing it thus
in terms of the reliormalizqd charge; and that the
equality of both sides is exact considered up to any
order in eq and e (expressed in terms of e&).

If it were possible to make unambiguous nonover-
lapping insertions in all the irreducible C parts, this
procedure would have given us all the reducible and
irreducible C parts. Analytically from each TJgg we
would have obtained T„, in the form (5) so that
summing over. all C parts and addmg 8„, for the
4-vertex itself we mould obtain

C„„=8„„+Z4 '(ff gb„,+8„„(eg)).
But if Eqs. (4) hold, C„„ought to equal Z4

—'C„.~. Thus

Z4-'C„, g
——Z4 '(8„„+8„„.(eg)).

This gives us an equation with just one unknown, Z4,
which coukl then be determined (and so the consistency
of the relations (4) established.

However, as soon as overlaps occur the mhole idea of

completely interpreted as the extraction of the divergent
factor Zm in Ap =Z2kpy (8g), we can make this same
replacement for h~' for this internal line p in the C
graph under consideration. It is emphasized again that
this is true if and only if no overlap occurs.

Going back to consider Tying, by inserting all 5, V,
and C parts in its lines and vertices we obtain an entire
class of C parts T» "derived" from Tying. Analytically
we replace in the integral for Trig, 6p by Z2hpr'(eq),
Dp by Z3Dpy (sy), (p+p )p by Zy I py) and bye by
Z4 'C„„j.

A .C part of order e28+2r ' with s 4-vertices and 2r 3-
vertices contains 2r+s —1 meson and r+s—1 photon
lines. The foregoing replacements give an e factor

Pr+2s —2g —ag —2' 2r+a —1g r+s—1 g —1~ 2a+2r —2
4 1 2 4 1

hg~', Dpi', ' are themselves powcl" scllcs ln t, y and
their behavior for large p is precisely the same as that
of 6p, DI, etc (D I.I Sec. VII), so that the new integral
for T„„ is again logarithmically divergent. Making a
separation of the finite and. the infinite part,

2;.=«-'(2'. ( )~,.+&:.( )). (5)

Equation (5) gives in a compact form the sum of inte-

an unambiguous insertion in a line or a vertex loses
validity. The reduction of a reducible graph cannot be
de6ned unambiguously and, conversely, the replace-
ment of all vertex and line factors of irreducible parts
by C„„,I'„, etc., leads to the counting of certain graphs
more than once. LThis is a de6nite redundance, quite
apart from the "weight factors" occurring under rule
(vi).] Thus, a proof on the aforementioned lines can
no longer be given.

For C parts it is always possible to make unambiguous
insertions in. all the lines and 3-vertices. However there
are certain classes of C parts in which a C part inserted
in one 4-vertex appears simultaneously as a C part
inserted at some other vertex.

For vertex parts the complexity of overlaps iricreases
greatly and C—V overlaps can occur. For self-energies,
besides these overlaps, vertex parts overlap with vertex
parts. Also, if any meson (or photon) line is opened in
a self-energy graph, this leads to parts mith four
external lines which (except for photon-photon scat-
tering graphs) always diverge. M parts, which have
not been considered so far, can complicate .the picture
still further by producing simultaneously 3f—3f,
M —C, or M—5 overlaps.

A great simpli6cation can be CGected by applying a
powerful technique first introduced by Ward" in spinor
electrodynamics. Ward's technique can be extended to
reduce the complexity of the overlaps to be considered.
However, if a primitive divergent is logarithmically
divergent aIid still suGers from overlaps, this technique
in general fails. The general procedure to be followed
then for obtaining a proof of (4) and for the construction
of the relevant functions is that of categorization, as
developed in I, Sec. IV. By analyzing the overlaps,
such catcgoI'lcs of lcduc1blc gI'aphs alc dered ln %'hlch

certain insertions of S, V, and C pa.rts cause no overlap,
so that the substitutions C„„,F„,etc., can be made in a
de6ned may. By considering the implications of the
subtraction rules, I, Sec. III, it is then possible to
derive recurrence relations for such graphs in terms of
graphs of lower order in the same category and their
true divergences. The required values for the Z's are
obtained by substituting Eqs. (4) into these recurrence
relations and demanding that they lead back to the
fundamental form for the type of part under consider-
ation. These various techniques are illustrated in Secs.
2, 3, and 4 and in Appendix I where it is assumed that
condition (b) can be satisfied. A proof of this is given
ln Scc. 5.

2. C PARTS

The most general C part consists of an open polygon
formed by the meson line entering (and leaving) the
graph, this line (the base line of the graph) being joined
by photon lines to one or more (possibly interconnected)

~ J. C. Ward, Proc. Phys. Soc. I,'London} 64, 54 (j.95I). The
author is deeply indebted to J. C. Ward for sending him a copy
of his work prior to publication.
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closed loops of meson lines with a structure inside them.
If the external photon lines (with polarization vectors
y and v) belong to the base line, the graph will be
called a base-line graph. For base-line C parts it is
possible to distinguish between 8„, and 8„„.For such
graphs 8„,(p, p', q) is de6ned such that p occurs
topologically "before" u and carries momentum q.

In order to construct the function C,„(and the
corresponding convergent function C„,r) it is possible
as explained in Sec. I, to take irreducible C parts and
to make unambiguous insertions in their lines and
3-vertices, replacing in the corresponding integrals Ag

by zkz', Dz by Dz', and. (p+ p')„by I'„. Furthermore,
it is possible to replace the factor b„. by C„„ for the
4-vertices of all irreducible C parts except for the
4-vertices in the graphs I'zzrs and Qzzrzr shown in Fig. 1.
(There is another class of graphs R which are defined
in Appendix II and in the 4-vertices of which the
foregoing insertion is also not valid. ) Taking all other
irreducible C parts and making the foregoing insertions
gives all reducible C parts "derived" from them. If T„,
denotes the sum of corresponding integrals, by counting
the number of lines and vertices in the irreducible C
parts in which insertions are being made, we have

T„.=Z4-'[Ts(er)8„.+T„„,( )e]r, (6)

where T~(e&) is the sum of the true divergences from
all such graphs.

In this section the graphs Plug and a linear chain of
graphs "derived" from them (the whole class being
called P) will be treated in detail. For Q and R we
assume the result in Appendix II, namely, that with a
proper choice of Z4 the corresponding functions Q„
and E„„canalso be expressed in the fundamental form
of Eq. (6). In fact, at this stage T„,will be understood
to contain Q„„and R„„.

Consider the graph in Fig. 2, of order e.7 We can
obtain (2'—1) other topologically distinct graphs from it.

by shrinking 1—+1, 2—+2, 3—+3, 4—&4, 5—+5 in all possible
ways. If 4—+4, for example, the resulting 4-vertex will
be (uniquely) numbered 4. In Fig. 2 the letters u, b,
give the polarization of the photon. The order of the
numbers 1, 2, 3 ~ and the letters a, b c are
important. If 2 is a 4-vertex, it could be denoted
equally well by 8,& or by b&, so that the number of
formally di6erent graphs obtained from the graph in
Fig. 2 by joining 1—+1, 2~2, ~ is 3'—1, when the
graphs with factors 5 ~ and 8~, are treated as diferent.

Let E'„„stand for the graphs obtained by drawing
chain graphs of the type illustrated in Fig. 2 in a11

orders in the powers of e, and also the graphs obtained
by joining 1~1, 2—+2, , in all possible ways.

Let Crz] stand for such graphs (3" in number) of
order e'", Ctrl 1] stand for all graphs [e] such that the
6rst vertex is necessarily a 4-vertex. These are 3" in
number. Similarly, let [el i, j] stand for all graphs(3" '
in number) which have their ith and jth vertices
necessarily 8„, and 8„, 4-vertices (the order of photon

/
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Consider, for example, the graphs in Fig. 3. It is obvious that
the double integral over $1t~ corresponding to Fig. 3(a) is the prod-
uct of two single integrals over t1 and t2, so that symbolically
(u) = (b) &((c).In the sequel we shall further specialize this splitting
off of graphs. A split will be made for a Lf, vertex but it will never
be made for a bf, 4-vertex.

LN) is an a-fold integral over variables t, t2 t„, each one of
the subintegrations being logarithmically divergent. If ij ~ q is
a group of indices from the set 123 ~ e (where ij ~ ~ run con-
secutively) then isolating the divergence over the subintegration
t;t; ~ t~ gives P(, ;+o)&the corresponding reduced integral. This
reduced integral contains a 4-vertex of the type with a factor 8 p

(and not bf„) corresponding to the divergence which has been
separated and this immediately splits the chain (if, of course,
this 4-vertex is not one of the two possible end 4-vertices).

To obtain the coefBcient of (Pq)~ in (7), consider all subsets of
indices 123 ~ e, such that each subset divides naturally into
f groups, the indices in each group running consecutively, the
diferent groups being such that if k is the first and i the last
index of two consecutive groups, then k—i &~ 1.The true divergence
for a subintegration corresponding to these subsets consists of
(—I)& rI' Pe (f factors), (I, Remark b, Sec.III) corresponding
to the number (f) of nonoverlapping graphs, the true divergences
of which are in fact thus being simultaneously removed. The
reduced integral itself necessarily contains f 4-vertices' (again of
the type 5 & and not 8& ), which may split the graph acc'ording
to the scheme XI'f ', Yf ', Ff 'Z, or XYj' 'Z. By considering
all possible subsets and the groups in them of the type mentioned
we readily establish the lemma.

polarization-vectors p, q and r, s is to be noted), irre-
spective of the character of the other vertices, and so
on for [eli, j, ].Let X„,stand for all those graphs
of all orders (and the sum of corresponding integrals)
from among the I' graphs which have their last end
vertex a b,„4-vertex, irrespective of the character of
other vertices, F„„stand for all graphs with the Grst
and the last end-vertices, 8„, and b„vertices, and Z„,
for those with the first end-vertex a 4-vertex B„„again
irrespective of the character of the other vertices. Thus,
I', for example, equals

[1I1,2]+[2I1,3]+"+" +[~11 ~+1]+" .
With the foregoing definitions we prove Lemma 1.

Lemma 1

I'„„=I'g(o„,+X„,) (b, p
I' sY,p-

+&s'I'.p' — ) (bn.+Zn.)+&s- (&)

Here I'q is the sum of the true divergences from the
graphs I'. In particular if P„stands for the sum of the
true divergences from [e], then I'e= I'r+I's+Ps+

For the proof we make use of the property of a 4-vertex occur-
ring in this type of linear chain of graphs P to split the chain into
two parts.
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We can show this by considering, as an example, the coefBcient
of Pj' in (7) in detail. Only graphs up to [N7 are considered. In
our symbolic notation [1I1,27)&[1-1I17 would be equal to
[a I 1, 27. We consider all. subsets of indices which fall into two
nonoverlapping groups. If the first of these two groups starts
with index I, we have the following terms to separate g

—Pi[1 I 1, 27X
Py[e —3I17+Ps[e—4 17+Pa[N —5 17+ ~ ~ +P

+Pr[N —4 17+Pr[e—5 17+ ~ ~ +P . s

+P~[N 517+—~ ~ +P 4

+» I t + t ~ ~

++1 .(8)-P.L111,27&&

Pg[n 4
I
17—+Pr[N 517+— +P~ r

+~1L~—S ~j+" +& 4

+ 0 ~ » + 4 ~ ~

+I'1
» 0 \ »

—P~,[1 I 1, 27Pg

The terms (8) sum up to
=—Psl ill, 27Ps(1+[1117+[2I17+[3I17+"+[a—3117)

Pg'[I
I 1, —27(s»„+z»„)

if the equality of both sides is supposed to hold to the order g".
Also, there are terms such as

—P,L2 I1,37 P,[rr —4I17+P,[N —5 17+ +P,
+E1Ln—5 1(+~ ~ ~ +I'

+ t ~ e + ~ ~ ~

+~1
—Ps[2 I1, 37[ Pr[n 5

I 17+ — .7

ss

'I
Ii.I

&»v»
Q»

s »»
»

g ~

(b)

FIG. 3.

sa

I
» s

»

which sum up to —Pss[2 f1, 37(B»„+Z»„) We sim. ilarly obtain—Pss[3 1, 47(8»,+Z»,) and so on, concluding with PP[N 2 I— —
1, a-17. The sum of all these terms is Ps'Y»»(8»„+Z»,—).

If we consider the two groups of indices such that the 6rst
group does not contain the index 1, it may be easily veri6ed that
the sum of corresponding contributions is —I'PX„,F,p(hp„+Zp„)
so that the entire sum is P(P(Bpz+Xp2) P'pp(Bp1, +Zp ) Precisely
as in (7).

We Bow notice an important property of these graphs
I'. Whereas the insertion of any graph I'

q for 8~g leads
only to a graph already belonging to I', an insertion of
I'q for 8g, gives a new graph unambiguously.

In order to obtain all reducible graphs "derived"
from the graphs in Fig. 1. We proceed as follows:

(i) Draw all graphs P of all orders in e .
(ii) insert at all 4-vertices 8;;, all reducible and irre-

ducible C parts including I'*;;; a.nalytically, replace 8;;
in the integrals by C;;.

rsTo verify that a term like —Pq[1I1, 27P8[N —5I17, for
example, takes account of all the 3"+' graphs in [e7, one can
make a check as follows: [rr —5

I 17 contains 3" s graphs, Ps is the
true divergence of 3'+' graphs in [37, [1I1,27 accounts for 3s
and I'1 for 3' graphs. Thus, the foregoing term expresses the
sum of relevant contributions from all the 3"+' graphs in [n7.

(iii) Insert at all 4-vertices 8;;, the graphs 2'@, i.e.,
replace 8;, by 3,,+T;;. In the lines and the 3-vertices,
aH self-energy and vertex parts are inserted. The result
after these insertions is I'„„*.

It is easy to verify that no graph occurs more than
once provided we adhere to the convention of distin-
guishing between Bg and 5;; and further that aB graphs
"derived" from the graphs Zygo do appear in the forego-
ing scheme of categorization, so that

Since all the insertions (i) to (iii) are unambiguous and
localizable, we can replace d p by ~p'=Z2~p&', Dp by
Dz'=Zsozr'(cr), (p+p')» by Zr'I'»r(&r) 3~' by I-v
=Z4 C;;r(er) whtie 3;; ls replaced by

8;;+7;;= 8@+Z,—(T„by+ T,;,(e,))
=Z4 [(2's+Z4 —1)~'+4+2'v. (sr)]
=Z4 '[S~v+Ser(sr)].

(definition of S)
The eGect of these substitutions is to give Z4 ' times
the correct number of Z factors to renormalize the
cha, rge while all integrals now appear explicitly as
functions of e~. %hile at each 5;; vertex, 8,; has been
replaced by C;;&, each 8;;vertex gives rise to two terms,
one in which the integral corresponding to the graph
is merely multiplied by 5, the other in which Bg is
replaced by S;,&(s&).

Denote by I'„„&the sum of integrals corresponding
to all graphs thus formed, for whose 4-vertices appear
the factors 5;;~ or C;;~ while for the lines and 3-vertices
Apj, Dp~, F„~ appear. X„„denotes the corresponding
sum for all graphs in which only the last end-vertex is
an unchanged 4-vertex 5„while all other 4-vertices are
replaced by factors Sgg or C;;g. F„,~ similarly denotes
the sum of integrals for all graphs with only the first
and the last end. -vertices unchanged 4-vertices, and
Z„„+the sum for graphs with only the 6rst end-vertex
an unchanged 4-vertex.

With these de6nitions we prove the following lemma.

I'».*=Z4 '[S(b»,+X»,x) (8,»+SY,»x

+S'I „'+~ ~ )(8»„+Z„")—So»„+P»„]. (10)

Defining [e l l, re]x, etc., to represent all graphs [e l l, es]
for the liney and vertices of which replacements A~j',
Dpi', I"„i, C;;» or S;;~ have been made, except at the
lth and mth 4-vertices where the factors 8„~ and 8„,
remain unchanged, the proof of the lemma follows by
noticing that

I: ]'=L ]"+s(L I1]'+L I2]"+ ")
+S'([ l1, 2] +[el1,3] +"
+[els, l]x+ ~ )+S'([el1, 2, 3]"+ ~ ~

+[els, l k]x+. . .)+.. .+
yS-+ [el1 2 3 " e+1]x (11)



Sy splitting the graphs and arranging the sumations
as in Lemma 1, the result (10) is established.

Since 8 p~', DI:~', etc., have the same behavior for
large values of p, as the corresponding functions 51P, Dr
(DII, Sec. VII), an immediate consequence of Lemma 1

ls LeIQIDa 3.

X P„X(g +g X)(g 'P~XP' X

+~. 'F —")(~ +Z ")+& ..". (»)
Ke have now reached the stage in our inductive

argument, when we can establish the consistency of our
procedure by an explicit choice of the unknown con-
stant Z4. We desire to choose Z4 such that

C"=4.+7'"+~"*=Z4 'C"1
=Z4-'(8„„+T„„,+P„„,"). (13)

From (6), (11), and (12), however,

b„„+7„„+I'„.*=8„,+Z4 '[(&—&~)&„
+I'., +7'„.]+Z4 '(~"+X"')9'/(1 ~F")

+& x/(1+& xI'x)l(~ +Z ") (14)

Let g+P~x —Z4+7 ~+PP 1 —0 then P'/(1 gy' )
+PP/(1 —8~xI"x)]—=0 and simultaneously Kq. (13)
ls satis6ed.

Thus, with the choice Zi=i —Tg—I'g& we 6nally
establish that we can express C„„=Z4 'C„„I(eI). Fur-
thermore, by thus expressing Z4 in terms of the true
divergences of all original C parts, we have also ex-
pressed I'„„~in Lemma 2 in the fundamental form

P„„=Z4 '[Pp(SI)8„„+P„„,"(41)]. (15)

3. VERTEX PARTS AND MESON
SELF-ENERGY GRAPHS

We now desire to show that it is possible to choose
the constants Zj. and Z2 such that 5p =Z25py' an(3,

I'„=Zg 'F„g and furthermore that Z4 '= Z2Zg '. The
proof can be made to depend on that in Sec. II for C
parts, by employing a technique due to Ward. It will

be found that at least for 8 p~', it is not even necessary
to obtain its value by evaluating the absolutely con-
vergent parts of all self-energy integrals. For this
purpose we utilize the following di6'erential identities, "

~.(P P) = —(1/2 )(~/~P.)Z* (16)

(~/~P+~/~P'). ~.(P P') =~"(P P' P' —P)
+0"(P p' o) (17)

To prove these identities, we notice the differential
relation,

—(1/2~~)(~/~P. )~r(P) =~~(f )2P.~~(P),
'4 Abdus Salam, Phys. Rev. 79, 910 (1950), These (or similar}

identities were derived independently by I". J. Dyson (private
communication), P. Rohrlich (reference 2). Rohrlich's derivation
of the relations between divergent constants from them was,
however, incomplete because difhculties connected with overlaps
were not noticed.

which correctly describes the insertion of an external
photon line (with its energy-momentum set equal to
zero) in a meson line with momentum p. A second.
differentiation with respect to v describes not only the
insertion of another photon 3-vertex on the same Ineson
line, but also the complication of the 6rst 3-vertex into
a 4-vertex, with the proper weight factor.

To prove (16}we notice fIrst that the sum of the
contributions to A„(p, p) from all (reducible or irre-
ducible) non-base-line vertex parts vanishes identically.
Let the momentum p be always associated with the
base line. If t; represent the momentum variables
associated with closed meson loops (connected to the
base line and to each other), then the sum of the
contributions to A„(p, p) from non-base-line vertex
parts is

+~ (a/a&;)[I'„(p, r.)3d&.

which vanishes identically because Ii„ is uniformly
small for large values of momenta t,.

Similarly, for a C part, if the photon v has its energy-
momentum zero, and does not belong to the base line,
the sum of the contributions for such graphs to
e„„(p,p', p' —p) and 8„„(p,p', 0) identically vanishes.

Thus, (a) the only vertex parts giving a contribution
to A„(p, p) are the base-line vertex parts,

(b) The only C parts contributing to 8„„(p,p', p' —p)
+8„„(p,p', 0) are those for which 1 belongs to the base
line.

If now we associate p with the base line for meson
self-energy graphs, a diGerentiation gives precisely all
the base-line vertex parts and no photon line is di8er-
entiated. This establishes (16).

Similarly on associating p, p with the base line in
vcl'tcx pRrts, tile opcI'atol' [8/Op+8/Bp g wollld glvc
all the C parts with v belonging to the base line and
these are the only ones contributing to the right-hand
side of (17), as shown. If p itself does not belong to the
base line, but to one of the closed meson loops, some
photon line joining this loop to the base line must
carry momentum (p P'+1 ), whi—le a part of the loop
itself may have momentum variables (p —p'+3~). The
operator [47/&p+ 8/Bp'] insures that neither this
photon line, nor any part of the dosed loop is diGer-
entiated. This establishes (17).

The foregoing proofs depend on a very particular
cllolcc of 1110111cnta; p, 'p lllust bcassoclatcdwltll tile
base line. This choice can sometimes lead to difhculties
in isolating divergences. This question will be examined
further in Sec. V, when we deal with M parts.

We now show by an inductive applicati. on of the
identities (16) and (J.7) that these differential relations
give rise to relations between true divergences and also
hold for the convergent parts of the functions concerned
as well. These convergent parts are the same parts of
the divergent integrals as are obtained by our sub-
traction procedure.
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apt"c tI'cRt t4c case of vcrtcx parts 1Q detail. It 18

obvious that the C parts produced by applying the
operator 8/8p+8/8p' to an irreducible vertex part are
themselves irreducible. (An extra external line always
improves the chances of irreducibility Rnd reduces
overlaps )T.hus, from (2), for irreducible graphs,

21&..+{8/81+8/8P') A"(P P')
=2m„,+8„,.(p, P', P' P)+—&...(P, P', 0) (»)

Setting p= p'= p& shows that J.=R and also that the
differential relation holds for convergent parts as well.

Consider Qow R reducible vcltcx part. T1M integral
corresponding to lt ls Ap=A~c+thc true dlv. crgcncc
constant LX (P+P')„+true divergent constants DX the
reduced integrals, where each reduced integral repre-
sents R vcx'tcx pRrt Of R lower order. TheI'cf olc
(8/8p+ 8/8p'), A.~= {8/8p+ 8/8 p'),A„,+divergent con-
stants DX(8/8p+8/8p'). applied to the reduced inte-
grals. ,

Consider now the C parts pxoduced by this operator
from the giveQ vertex part. %C can show that for such
gl'aplls Hpy+ 8yp =gyy~+ 8pyg+ 25gpX tile tl'llc divergence
constant A+the same true divergence constants D as
above/precisely such C parts as Rre obtained by

applying the difterentiation operator to the afore-
mentioned reduced vertex graphs.

A term by term comparison would thus allow us to
write an equation of type (18), from which the equality
of I.Rod E Rnd R differential relation between A„, and
8p» g CRQ bc dcduccd.

Thc px'oof of this proeccds lnductlvcly. Since the
di6'ereDtiation operator affects only the base line in the
glvcQ vcI'tcx part V, thc tI'Uc dlvcI'gcDccs fol those pRx'ts

of this graph which do Dot contain portions of the base
linc are the same as the true divergences for the relevant
C parts obtained by differentiating V, while the reduced
integrals in the two cases are themselves connected by
thc dBclcQtlal 1clRtlon. Thus lt 18 only foI' those
subintegrations which extend over a part of the graph
containing portions of the base line that a proof is
needed. If, in the vertex part under coQsideration, such
subintegrations correspond to inserted self-energy,
vertex part or C part divergences, the de'ereDtiation
operator converts them into, respectively, vertex part,
or C part divergences, while the last type of divergence
becomes superkciaHy convergent. To bring out the
points involved we consider, as an example, the case of
a vertex part V, with its base line containing as Rn

insertion the irreducible self-energy graph 5 (subinte-
gration t„) in Fig. 4.

Disregarding thc Inass rcnormalizing coIlstRDt A fx'om

this self-energy graph 5, the relevant. divergent term is
8'XV~, q where 8' is charge-renormaliring constant
from 8, and Va, q is obtained from V by removing this
self-energy insertion from the base line altogether.

Let us now suppose that the number of vertices on
the base line of V is I, of which k are 3-vertices. The
dlBcrcntlatlon opcx'Rtol px'oduecs fI'0ID thc gx'Rph V»

precisely (I—1+2k) C parts. Of these 5 are such that
they x'epresent the replacing of 5 in the base line of V,
by the 5 (irreducible) vertex parts which a differenti-
ation of 5 yields, while in the remaining (II—6+2k) C
parts, the insertion 5 remains unchanged in the base
line. Therefore the divergence separated corresponding
to the subintegration 3, from this class of (e—1+2k)
C parts is =8'XCn.a'+1.'XCa.a". Ca.a' are the
(s—6+2k) reduced C pal'ts obtained by ollllttlllg 8
altogether from the base line, I.' is the sum of the true
divergent constRIlts fl'oIQ thc 5-vcltcx pRrts obtg, lncd
by difkrcntiating 5» whllc C~eg 18 thc x'cduccd C pax't
(just one graph) obtained by omitting any of the
5-vertcx parts, and replacing it by a 3-vertex. Two of
the gxaphs Ca,d' are identical with the graph CR,~",
i.e., the reduced graphs from those two C graphs
obtained by lnscltlng thc external photoIl linc p, just
"before»» and just "after" 5, on the base line of V.

Now from Eq. (2) and (16), 8'= I.' (all gr—aphs
concerned in this relation are irreducible and the factor
1/2mi is absorbed in the definition of the reduced
integral C&.a"); consequently, the term separated
corresponding to the subintegration t'„ is =8'&Ca, q

where Ca, a represents {I+2k—7) (different) C graphs;
but these are precisely the graphs which we obtain by
applying the differentiation operator (8/8p+8/8p') to
the graph Va, q, as can be checked by noticing that V~,q

has n —2 vertices on the base line, of which k—2 are
3-vex'tices and therefore the number of C parts obtained
by differentiating Va, a is e—3+2(k—2) =n+2k —7.

The proof is thus arranged, by considering each of
the true divcrgencegthe reduced integral separated
from the vertex part V. It is shown that for the corre-
sponding C parts, the true divergencesgreduced inte-
grals can be grouped such that the true divergences are
equal by an inductive application of (16) and (17), and,
furthermore, that the reduced integrals from C parts
are precisely those which can be obtained by applying
the di8erentiation operator to the xeduced graphs.
Slnec the RlguIDcnt plocccds by consldcllng. all sub-
1Qtcglatlons, ovcx'laps arc automatically taken caI'c of.

The proof, therefore, of the required relations for a
vertex part of order e'"+' depends on establishing rela-
tions bctwccn trUc divclgcDt constaDts of correspond1ng
5, V, and C parts up to order e'". As the induction
starts with irreducible graphs for which such relations
are obviously true from the very de6nitions» the fore-
going result follows. Thus, 6nally (putting p= p= po),
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we have

(~/~p+~/~p) A (P P)
=S„..(p, p', p'-p)+S, „.(p, p', 0). (19)

We shall now show that Z» can be chosen such that

This leads us to infer the required result, namely, that
I"„=Z4-'I'„, (ei) .

Knowing the value of 6„„,we cannot obtain that of
A„,(p, p') from Eq. (21), but that of A„,(p, p) can be
readily found by a simple integration. Since

I'„=(p+ p')„yA„(p, p') =Z L(p+p')„+ 1„.(p, p', e,)] i
g.*(P)= —2as dX(P —Po)„A„.(P", P") (24)

where by definition A„,(pp po) =0. Let

e"(P P' P' P)+—~"(P P' o)=2G"(P'+P p' —P) where p"=PX+po(1 —)), it is not needful for the
derivation of P,*(p) to consider the meson self-energy
graphs any longer. The proof that hr'=Z46ri'(ei)
follows from Eq. (16) in a similar manner to (23); in
this case +sr (po) is canceled by combining it with the
contribution to the self-energy arising from the mass-
renormalization term —b~'p*@ in the Hamiltonian.
We have also incidentally shown that Z» ——Z2=Z4,
which satisfies condition (d) of the introduction.

Then defining

r"= (p+ p') X+2po(1 —X), s"= (p' —p)X

we rewrite (17) as

(8/Br„")A„(r",s') =G„„(r",s')
but

(8/BX)A„(r", s")= (p+ p' 2po) „G„—„(r~, s")

+ (p' —p) „BA.„/Bsg; 4. THE FUNCTION Dg'
consequently,

A.(p P') A.(po Po—)
For photon self-energy graphs, we extend a formal

technique introduced by Ward and de6ne the functions,
h„(p) and C „„(p),by equations,1

=)t dh(p+p' 2po)„G„„(r—", s")
0

1

+ ~ dX(p' —p)„BA„/8 „". (20)
Also, let

-1/2ir(8/Bp„) II*=h„(p) (25)

(26)(~/~p. )~.(P) =C'"(P).

II'.(p) =29.+~.(p)

X„„(p)= 2ib„„+C„„(p).

(27)Also, from (19),

A..(p, P') = d~(p+P' 2Po).G.-(r"-, s")
J,

We have already shown, however, that Z4 can be
chosen such that

The bar in b„„distinguishes it from the 8„„for a 4
C-vertex These. functions W„(p), and X„„stand in
analogy to I'„and C„.while h„and C„„are analogous
to A.p, and |Yes.

By integration we obtain from the foregoing

|l„„(p,p, q) =~„„(Z; 1)+Z; S„„(p-,p, &, .,).
Therefore, (20) can be rewritten as

~1

(P+P').+A.(p P') dl (P' P—) ~/» "(r."+A—.)
~o

a„(p)-~ D,C„„()p)p,
0

~1
11*(p)= —2~ d7,~„(~p)p„.

(29)

(30)

—
t (2P,)„+A„(P„P,)j=Z,-' (P+P')„

pl
+ "d~(p+p 2P.).G... -Z-L-(2p.).~ (22)

"o

Since by definition, I'„i=(p+p')„+A„,(p, p', ei), we

have, from (22) using (21)

1.(p, p')- dl(p' p).~I./~,"-
0

1

=«-' I'„,(P, P') — d7 (P' P)„ar„,/as„~ . (23)—

Thus, in order to obtain II*(p) we only need con-
struct the function C„„(p) which is logarithmically
divergent. Dropping its divergent terms, the integra-
tions in (29) and (30) give the desired convergent part
of II*. In actual fact II* is not a scalar but a tensor"
and its correct form (for the case of a simple irreducible
photon self-energy' part) is given by

II,.*=(S,.p' p,p.)(C+D,(p )). —

The terms —p,pi a're omitted on account of charge
conservation. "

'I' Julian Schwinger, Phys. Rev. 76, 790 (1949), Appendix."R.P. I"eynman, Phys. Rev. 76, 781 (1949).
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'7 The choice of a convention is arbitrary but it is absolutely
essential that once a convention is adopted it must be consistently
followed.

Thus, the function C„„is in fact of the form,

C'p, p =IX+D (P')3L~4 8p ~»8- ~p 8 I j
+(8"P' P.P )(—8'/8P. 8P.)D.(P').

However, if the terms —8»8„„—8,„8„„and —P,p„are
dropped after the evaluation of C„„,„,we have

C „„,,„=28„„b„„(C+D,(p') )
+~..(8'/8P~8P. )D (P') =8~ @u'

In order to evaluate the function C„„we must
examine the implications of our forrnal differentiation
8/BP In gen.eral a photon self-energy graph may have
both its external photon lines, p, and v, belonging either
to the same meson loop or to two distinct interconnected
meson loops. In the latter case the momentum P must
run along some photon lines joining the two distinct
loops. The differentiation 8/8p which applied to a
meson line carrying momentum P graphically signifies
insertion of an external photon line (with energy-
momentum zero), when applied to a photon line gives
a new type of "vertex, " illustrated in Fig. 5 with the
vertex factor 2ip„sicen( —1/2mi(8/BP„)D~ Dr 2iP„. ——
D~j. Thus to obtain the graphs corresponding to 4 „„we
first adopt some convention for the path of the variable

p through the photon self-energy graphs. After "differ-
entiating" all the photon self-energy graphs twice, we
obtain the graphs corresponding to C„„which contain
vertices of the type in Fig. 5(a) and (b). The number
and complexion of these graphs is governed by the
convention" we adopt for the path of P but as the
integrations (29) and (30) show, the choice of a con-
vention does not matter as far as the evaluation of
II*(P) is concerned. After drawing all graphs C„„we
select the irreducible C„„,the criterion for irreducibility
being the same as in Sec. 1, with the obvious extension
that if a photon self-energy graph inside an internal
photon. line is diGerentiated, in order to obtain the
irreducible skeleton, this is replaced by either of the
vertices in Fig. 5 as the case may be. The advantage,
as we shall see, in considering the function C„„rather

than II~ itself is that the overlaps occurring for C„„are
relatively simple and it is easier to categorize the graphs
corresponding to C„„rather than II*.It may be empha-
sized that h„and C„„are "fictitious" primitive diver-
gents, being entirely defined by Eqs. (25) and (26) and
have no real place in the theory. The convention for
the path of P adopted here is illustrated in Fig. 6.
Single arrows give the direction of charge, while double
arrows follow P. In Fig. 6(a), P runs along the edge of
the diagram; in (b) the path of p is "complementary, "
in the sense that if in (a), a portion of a closed loop is
"differentiated, " (b) insures the "difFerentiation" of the
remaining portion of this same closed loop. Thus

(—1/2~) 8/8P pL(~)+ (&)j=2~.(P).

To illustrate the possible types of errors, let us
notice that the graph in Fig. 7 is not reducible, because
what appears as a C part with external photon lines p
and p, is not in fact a C part comprised in the functions
Cp, p so that this graph cannot be treated as reducible.
YVhen selecting the irreducible graphs for C„„from the
totality of graphs obtained, the following consideration
is helpful. We have shown in Sec. 2, that 8»(P, P', 0)

FIG. 7.

=8»'(P, P', 0), where 8»~ denotes the sum of the
integrals corresponding to C parts with the photon line
p (with energy-momentum zero) necessarily belonging
to the base line. Thus, if in a set of reducible C„„,only
base-line C parts 9»' appear, the irreducible skeleton
for such C„„contains the factor 8» and to obtain C„„
this factor can be replaced by C» (the function for all
and not merely base-line C parts) without incurring
any error. The foregoing choice of "complementary"
convention for p was designed, such that if a portion of
a closed meson loop acts as the base line for graphs Oyp

(say) contained in a set of graphs C„„, the convention
should insure (by difkrentiating the entire loop) that
all relevant base line 8»' do appear. The entire set
8» can then be replaced by a 4-vertex 8» and a
(unique) skeleton thus defined. "

By categorizing the relevant graphs and using our
inductive procedure, we shall establish the following
equations (which are completely analogous to the set

"In this section (and subsequent sections) the distinction of
8;; and 8;; will be understood and the arguments will proceed in
terms of 4-vertices, invoking the "weight factors" if necessary.
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of Eqs. (4)):
Xpv ZS Xgvl(el)
W„=Z3

—'W„i(ei) ~

DI ' Z,D pi'——(e,) . .
(31)

5. M PAR,TS

In this section the problem of M parts is dealt with.
We show that with a correct choice of bX in a term
5) @*'p' in the Hamiltonian, we cannot only consistently
cancel all M divergences in the theory (whether they
arise inside the graphs representing other primitive
divergents or from what would otherwise be non-
divergent graphs), we can also arrange that the graphs
with 4-M vertices introduced into the theory by this
term introduce no new inanities. It is easy to verify
that if the 6) term constituted the only interaction
term the number of primitive divergents in the theory
would be precisely two; namely, the graphs with two
external meson lines (meson self-energy graphs) and
those with four external meson lines (M parts).

The choice of SX is made in three steps.
(1) Consider all irreducible simple M parts. If Mq

represents the sum of their true divergences, a choice
of 8X such that Q,+M~ ——0 cancels all divergences
arising from these graphs.

(2) For the case of irreducible nonsimple M parts,
unlike scalar meson-nucleon theories, joining two simple

Except for the graphs in Fig. 8, it is possible to make
unambiguous insertions (4) and (31) in all the lines and
vertices of the irreducible C„„(the vertices now in-
cluding those in Fig. 5), so as to obtain all derived.

graphs and their corresponding integrals.
For the graphs in Fig. 8, however, insertion of certain

types of C parts causes overlaps. Barring these, and
considering all other irreducible graphs for 4 „„,we can
express the sum of their integrals and of the reducible
graphs derived from them in the fundamental form.

In Appendix I we will show, by a procedure of
categorization, that the sum of the integrals from the
graphs in Fig. 8 and all graphs derived from them can
also be given in the fundamental form. Adding together
the contribution from these and 2ib„„ for the 4-vertex
in-Fig. 5(b), we obtain

X„„=2i8„„+Z&'52iC(ei)8„„+4„„,(ei)]

At this stage a choice of Zq ——1—C(ei) establishes the
relation, X„„=Z~ 'X„„i(ei). From this and (29) and
(30) we prove as in Sec. 2 that Dg'=ZBDi i'(ei).

I
I I
t I
I

II ' II
I
1 I
I I
I I

(b)

FxG. 9.

r
I
I
I
I
I
I
I

I
I
I

M parts may lead to an M—M overlap. An example is
shown in Fig. 9. However, whether or not these over-
laps occur, our subtraction procedure gives the result
that the correct choice of P is once again given
by 8k+M&= 0, where D, is the sum of true divergences
arising from all irreducible M parts, whether simple or
otherwise. In spite of the overlap, the manner of proof
is exactly similar to that given in detail in I, Sec. A,
and is not repeated.

(3) To obtain all the original M parts from irre-
ducible M parts, we make the usual insertions in all
the lines and the vertices. Assuming (a) that the
relations (3) hold and (b) that an insertion does not
cause a further overlap, we immediately see by counting
up the number of lines and vertices (including M
vertices) that the correct final value for B, is given by
Z2 'Me(ei)+P, =O where Mq(ei) is the sum of the true
divergences from all M parts. Condition (b) is satisfied
for all except the three irreducible graphs in Fig. 10.

In these graphs, insertion of certain types of C parts
causes C—M overlaps. By a procedure of categorization
it is not dificult to prove that the contribution made

by such graphs to bX is also found as —Z2 'Mz, where
M~ is the sum of their true divergences.

To prove (a) we remark that the foregoing proof for
the cancellation of M-divergences extends to the case
when M parts are contained inside other graphs. In
particular for photon self-energy graphs or C parts
there exist other graphs in, the theory derived by
replacing the contained M parts by M vertices in all

possible ways. These graphs combine to cancel the M
divergences .times the corresponding "reduced inte-
grals" so that neither need be considered at any stage
of our inductive procedure for the formation of the
functions II* or C„„.

Since our procedure for deriving relations for oper-
ators Q* and A.„ is not to follow the relevant graphs
but to obtain these analytically from 8„, we have to
show that the explicit neglect of M divergences. and of
the corresponding graphs wi.th 4-M vertices in O„„does
not a8ect the proof of the identities (16) and (17); in
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other words that this neglect is justified for both sides
of the equations represented in (16) and (17).

Thc proof would bc tr1vlal 1f, fo1 cxRIQplc, the dlfter-
entiation 8/Bp which, from the graphs corresponding
to g*(p), produces all graphs relevant to A„(p, p) (in
the manner of the proof in Sec. 3), also took all compen-
satory self-energy graphs with M vertices to corre-
sponding compensatory vertex graphs. Since the proof
of equality of —(1/2rri)(8/Bp)P* with A„(p, p), for
example, must depend on letting p run along the base
linc wc have to show that R choice of bRsic momentum
vectors which allows the path of p to lie along the base
line also allows us to iso1ate M divergences.

The entire problem is closely linked with the problem
of the general possibility of a "correct' choice of basic
variables. This was discussed in detail in a previous
paper" and only the results will be given here. For
vertex parts situations arise when the number of
divergences exceeds the number of subintegrations. In
such cases, however, the extra divergences are 3f
divergences which prove to be "final, " and need not be
separated. This happens, however, on1y on account of
the gaugc-invariance of the theory.

For meson self-energy graphs there is (as in the
meson-nucleon case) another class of iV divergences

Pro. jo.

which werc also called "final"" io Sec. 8, I. The
reduced integral corresponding to such "6nal" diver-
gences is, by de6nition, independent of the external
momentum p. Their effect is to leave just one type of
graph with a 4-M vertex (illustrated in Fig. 6, I) and
those derived from it by insertions in the meson line,
as "odd" graphs which do not act as compensatory
graphs like all other graphs with 4-M vertices, and so
have to be considered separately. Here, as in the meson-
nucleon case, these graphs only contribute to the mass
renormalization constant, making it an explicit function
of BX; a fact Gnding analytic expression in that a
differentiation 8/Bp for such graphs gives the result
zero.

Similar considerations apply for D, 6„,and C „„.The
proof of the finiteness of the S matrix now follows
precisely as in D II Sec. VII.

5. CONCLUSION

The only new feature arising for the renormalization
of spin zero Bose particles interacting with the electro-

"Abdus Salam, Phys. Rev. 83, 426 I,'1951).
'00pening any one photon linc in a meson self-energy graph

(or a meson line in a photon self-energy graphs) gives a C part
vrith a corresponding "anal" C divergence. Their e8ect is precisely
similar to that of "final" 3f divergences.

magnetic field is the introduction into the Hamiltonian
of the (infinite) direct interaction term hap*'qP. . In a
sense it is satisfactory that this same term can remove
the M divergences associated with the scattering of a
meson by a meson when these particles interact through
an exchange of virtual nucleons. The de6nition adopted
in Sec. V of the divergent part of an M integral,
however, makes 3E,(ps, ps, ps) =0, so that no graph of
any order higher than the second in t,', can contribute
to the scattering amplitude of two mesons of equal
initial and final momenta. Theoretically it is possible
to proceed slightly difterently and to introduce into
the Hamiltonian, besides the compensatory 8X& sos,
another "real" dire. ct-interaction term XP*'Ps. The
graphs involving 4-vcrtlccs with 8X Rs COCKcicnt arc
di6'crentiated from those with X as coeKcient, the
de6nition of original graphs being extended to include,
besides the graphs involving 3-e- and 4-e'-vertices, also
the graphs containing 4-X-vertices. The renormalization
of the theory (not presented here. in detail) proceeds as
before, except that the Z factors now appear as func-
tions of both sr and Xr (the renormalized value of X)
while the graphs with bX-vertices compensate the
additional M divergences introduced by the graphs
containing these new X-vertices as well. Thus Q is to
:be chosen as oX+Zs 3ffg(8r, Xi)=0 wliile Xt=Zs 9 ~

The entire theory, after renorrnalization, appears in
terms of two constants )» and e». The retention of the
condition M, (pe, Po, Ps) =0 has the desirable feature,
however, that even with this iiew term, the additional
contribution to the Mffller scattering amplitude, for
mesons of equal initial and anal momenta, is not given
as a power series in X» but consists merely of X» itself.

The scheme presented here sketches what is theo-
retically possible. On account of the new feature noted,
the physical validity of our rcriormalizatioli scheme
cannot be extrapolated from the fact that a very close
agreement with experiment exists for the renormalized
theory of spinor electrodynamics. To determine whether
a constant 1% i exists (even if only to 6nd that its value
is zero) and whether the answers to any physical
problems given by the foregoing scheme approximate
to the truth, we must turn again the pages of nature.
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APPENDIX I
Here we consider the graphs in Fig. 8 and all reducible graphs

which can be derived from them and prove that their contribution
to C» can be expressed in the fundamental form.

In the 4-vertices appearing in the graphs in Fig. 8 an insertion
of those C parts which have their two external photon lines be-
longing either to the same 4-vertex (class 8}or to two consecutive
3-vertices on the same meson line (class C), causes an overlap.
These same C parts inserted at one end 4-vertex of the graphs in
Fig. 8, appear simultaneously as an insertion at the other end.
The situation is completely analogous to the insertion of vertex
parts in end-vertices of photon (or electron) self-energy graphs in
spinor electrodynamics (the "b divergences" -of D II Sec. VII).
Let the class of C parts B+C be called A, while let T denote all
C parts other than those in class A. From Sec. 2,

T,.=F4 '[Td~»+ T»c(el) )
We now categorize the graphs derived from those in Fig. 8.

The categories obtained are similar to those in Sec. IV, (I). In
graphs (1), (2), (3), u and b stand for the end 4-vertices. Graph
(1) has both its end-vertices as 4-vertices, (2} and (3) have either
the left- or the right-hand vertex (as drawn here) as a 4-vertex
while (4) has no 4-vertex at all. Let the graphs (1), (2), (3), and
(4) in Fig. 8 belong to category [1j.Insert allirredecible A at the
4-vertex a~u in [1I1] and [1I2], thereby obtaining a set of
graphs belonging to category [2]. These graphs can once again
be distinguished as [2I 1], [2I2], [2I3], and [2I4], according as
their end-vertices are 3-vertices or 4-vertices. Insertion of irre-
ducible A at the 4-vertices u~q~ in [2 I 1]and [2 I 2] then gives all

graphs in category [3]and so on. o~ ~
and b~„t stand for the end

4-vertices appearing in [nl1], [nl2), and [nl3] at every stage.
Given a graph in [n]; let A,' denote the true divergent constant

arising from the irreducible A which was inserted at u~ ~~ to
obtain this particular graph in tej; A 2, the constant of true
divergence from the reducible graph A which could be inserted at
a~~ n to obtain this graph in [g]. This last graph is reducible
because it contains as an insertion the irreducible graph with
true divergence A,'. Similar definitions apply for A &', A P, A &' ~,
etc. These definitions are analogous to those of L,', L ',
Ly') LP) ~ ~ ~ in Sec. IV, I.

With these definitions we have the following lemma.

Lemma 1

[n) = [g I 1]+Lg I 2]+[g13)+[g l4]
=A,'[n —1I1]+A '[n —2I1]+A,'[g—3I1]+~ ~ ~

+A b'[n —1
I 1]+Ab'[n 2 I

1—]+A b'[n 3
I
1)+-

—[A,'A b'[n —2 I1)+A 'A bb[g —3
I
1]+~

+A, 'A b'[n 3
I 1]+—]+A,'[n —1

I 2]+A '[n —2
I 2)

+ ~ +A b'[n 1
I 3]+A—bb[g —2

I 3]+
+2.+,b„„+Z„„,. (&}A

2i5»Fd gives the true divergence of [n7, while F„., is the con-
vergent part. The proof of the lemma is given exactly on the lines
of the proof of Lemma 1 (Sec. IV, I) and is not repeated.

In any graph [n], we can insert self-energy and vertex parts
without causing any overlaps, while at all 4-vertices except u~ ~

and b~„~, all C parts can be inserted unambiguously. Correspond-
ingly, we replace d p by Ap'=Z2hp&', Dp by Z3Dp&', (p+ p')& by
Z~ 'F„~ in all the lines and 3-vertices of the graphs in these
categories; while for all 4-vertices except u~ ~ and bt ~, replace 8„„
by Z4 'C»&. For a~ ~ and b~„j, however, only the replacement of

5» by 3»+T»=Z4 '[(Z&+Td 1)5»+(a»+T„,.)] is—analyti-

cally valid.
In terms of graphs, we obtain unambiguously by the insertions

corresponding to these substitutions all graphs derived from the
irreducible graphs in Fig. 8, no graph appearing more than once.

Let Z[n]* represent the totality of graphs after these replace-
ments, [n]" represent graphs [n] with Api'(e~), Dp~'(e~), I'„&(eq),

and either C»~(e~) or 8„„+T„„.(ej} appearing for their lines and
vertices, [g] x represent all graphs with the above factors
Ap~'(e~), Dp~'(e~), etc., except at the 4-vertex a where factor b»
remains unchanged, and let similar definitions apply for [g]bx
and [g),bx. Then precisely as in Lemma 2, the entire class of
graphs Z[n]* can be expressed compactly as

Z[n]b=gb &Z([g]x+(Zq+Td —1)([n] x+[n)bx
+(Z4+Td 1)[—n), b )}. (2)A

From Lemma 1, however, by summing up

Z[g)"=A d"(Z([g) "+[n]b —
Ad [g)'b") }

+2iF&x{eI)+F~ x (3)A

A~X —A 1X+A 2X+A 3x+. . .—A ~1X+A I}2x+A~3X+

Here A ', etc. , denote the true divergences with b,p~', Dp~', etc.,
replacing Ap, Dp, etc. Fq {e~) is the sum of the true divergences
of t~gx.

We have shown in Sec, 2 that Z4=1—Tq —Aq . So substituting
{3}Ain (2)A we obtain

Z[n] =Zb '(2iFd (eg)5»+F». (e&)}

It still remains to consider the graph {5) in Fig. 8. The set
consisting of graphs (1), (2}, (3), and (4) was completely sym-
metrical regarding the classes B and C (B+C=A}but the graph
(5) contains only one 4-vertex 5„„.This vertex will be called e~&~.

Inserting irreducible B at et~~ we obtain graphs belonging to
[2I1]while insertion of irreducible C at e~&l gives [2I2]. These
(irreducible B and C) can be inserted again at eel in [2I1) to
obtain [3]=[3I1]+[3I2]and so on. The graph (5) in Fig. 8,
itself constitutes the category [il 1], there being no graph in

[1 I 2].When the divergence in such a graph [n7 is being isolated,
the "reduced" graph left after the true divergence corresponding
to the C part (which C part necessarily belongs to class C) has
been removed, will be denoted by [n I 3). A graph [n I 3] does not
itself belong to the class of graphs [n], because for [nl3), pe
must be a 4-vertex. This new 4-vertex will be called f. Similarly
let [nl4] denote the graph obtained by a simultaneous reduction
of [g] at both ends, so that in the graph [n I4] both e and f
appear as 4-vertices. Again a graph [nl4) does not itself belong
to the class of graphs I ej.

To obtain all- graphs that can be derived from the graph (5), we
construct the above categories [n] and then in their lines and ver-
tices make the replacements Ap=Z2hp~'(e~), etc., except at the 4-
vertex e where 8„, is replaced by Z4 'f(Z4+Tg —1)8»+(5„„
+T»,(e~)). If [n)", [n]" are defined as those [n] in which, in-
stead of hp, for example, appear, respectively, the factors Ap' and
dp&', while [g),x are [g I

1)xexcept that at the 4-vertex e, 8» is left
completely unchanged, then by counting lines and vertices we
obtain, as in (2)A

Z[g)e=Zb '(Z([g]"+(Z4+Td 1)[n7,")}.— (5)A

Now considering the implications of the subtraction procedure
the result corresponding to Lemma 1 for [n) is as follows.

Lemma 2

[g]= [g I 1]+[n I
2]=A' [n—1 I 17+2'[n—2

I
1]+A'[n—3 I 1]

y" +c [n-il3)+c'[n-213)+c Ln-3I3]
+ ~ ~ —(A'C'[n —2

I 4]+ A'Cb[g —3 I 4]+
+A'C'[n —3 I4]+ )+2iGd5»+G„„. (6)A.

By replacing Ap, by rip&', etc., in [n] and summing up, we
obtain from the foregoing

Z[n)"=Z(Ad"[n) "+Cd"([n)f Ad I'n] f )j
+2iGq {e~)lan»+G»P(e~). {7)A

[n)P are [nl3) with imp&', etc., replacing ibp except that the
4-vertex f is completely unchanged, and [g),rx are similarly
obtained from [gl4) except that for both e and f, the factors Be„
and 8&„are not changed. Substituting for Z[n]" in Eq. (5)A,
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and using Z4= 1- rq —A~ we obtain

ZLeg*= Z,-r(2zb»G, x(e,)+G „,x(e,))
+Z (Z'Cs ((.e]I" A—g"[n] r ))

We now prove the result:

but this =(8 jBP&BP„)j'F(p+i, i', e)dtdt' which is identically
equal to zero, as can be seen by shifting p+t~$'. Since Z4 = 1—rp—Aq~/0 the proof is complete.

On account of Lemma 3, (8)A now gives

ZLe]"=Zs 'L2Q»GP(er)+G», (eq)],

which is once again in the fundamental form. The required result
I'8) A is thus established.

APPENDIX II
Lemma 3

Z {ZCg ([njI" s"—[ g,g"&)=0— (9)A

For the proof consider the graph in Fig. 11~ Construct various
categories from it, by inserting irreducible A, successively, at the
vertex e only. The characteristic of these graphs then is that f is
necessarily a 4-vertex for all of them. After these categories are
constructed, make substitutions {4) in all lines and vertices,
except in vertex e where 8„, is replaced by Z4 'L{Z4+Ts—1)S»
+(s»+T»,)] and the 4-vertex f which is left completely un-
changed. The result is that we obtain as the sum of integrals
corresponding to all these graphs, precisely the expression,

Z@8 'Z {[e]p+(Z4+ Td —1)Leg.r") (er),

The graphs 8 mentioned in Sec. 2 are a set of chain graphs
"derived" from the 10 irreducible graphs in Fig. 12. Since C
parts have two external photon lines, a chain of meson loops
joined to each other by two photon lines can cause C—C and
C—M overlaps. The proof that all possible types of C-C overlaps
are comprised in the classes 8, Q, R is not difFicult to give from
very simple topological considerations. To show, further, that
the sum of integrals from graphs 8 can be expressed in the
fundamental form, a careful scheme of categorization needs to be
developed. The general principles on which the proof proceeds
is already illustrated in Sec. 2. The details are much more compli-
cated but, as no new principles are involved, we shall not reproduce
them here (Fig. 12).


