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By a consistent use of the concepts of mass and charge renormal-
ization Dyson has demonstrated the possibility of constructing
a divergence-free S-matrix for scattering problems in spinor-
electrodynamics, valid to all orders in the fine-structure constant.
In this paper a proof is given of the possibility of renormalizing
theories of charged scalar (or pseudoscalar) particles in the
presence of the electromagnetic field. It is found that in addition
to the renormalization of mass and charge, an infinite constant of

direct interaction &\ has to be introduced in a term §A¢*2¢? added
to the Hamiltonian, in order to cancel consistently all divergences
arising from the Mgller scattering of one spinless particle by
another. This, combined with the fact that theories of charged
scalar and pseudoscalar mesons in scalar interaction with the
nucleons can be renormalized with the same additional term in
the Hamiltonian, seems to be of some significance.

1. INTRODUCTION

Y establishing the equivalence of Tomonaga-
Schwinger formalism for spinor electrodynamics
with that of Feynman, Dyson! has formulated an
S-matrix theory for scattering problems in spinor
electrodynamics. In this theory any real process taking
place with specific virtual processes can be represented
by a graph, the contribution to the matrix element for
this process being‘an integral in the writing of which
each line and each vertex of the aforementioned graph
contributes a single factor. By analyzing the divergences
in these integrals and giving precise rules for separating
divergent parts from the (physically significant) con-
vergent parts of these integrals, Dyson has further
demonstrated that all divergences in the theory can be
absorbed in the unobservable mass and charge renormal-

ization of the theory.

For scalar electrodynamics it has been possible? to
develop corresponding graphical methods and thus to
analyze the possible divergences of the theory. It is the
purpose of this paper to consider the adequacy of the
concepts of renormalization for dealing with these
divergences.

If ¢(x) and A,(x) represent the meson and electro-;
magnetic fields, respectively, the interaction Hamil-
tonian for mesons interacting with the electromagnetic

field is
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A, (x) creates and annihilates photons, while ¢*(x) and
#(x) are interpreted as creation and annihilation charge
operators, so that ignoring the surface-dependent terms
in the Hamiltonian, we have effectively?

d¢(x) ap*(y) 0
<P > > =3$he
o0x, 0y, /¢ 0x,0Y,

Ar(x—7y).

In Feynman graphs, the terms in the Hamiltonian
linear in A4,(x) lead to 3-vertices, with 2 meson lines
and 1 photon line incident, while the term bilinear in
A,(x) leads to 4-vertices, with 2 meson and 2 photon
lines incident.

The contribution of this graph to the matrix?element
appears as an integral in momentum space; in the
integrand there appear?

(i) constant factors ¢*(p), &(p), or A.(p), corre-
sponding to each external line of the graph.

(ii) a factor 8,,(2m)—2Dr(p) for each internal photon
line.

(ili) a factor %c(2w)~*Ar(p) for each internal meson
line.

(iv) a factor 1e(hc)"2(27r)4(p+p’),,6(p p'+q) for
each 3-vertex. The suffix p gives the polarization of
the photon line.

(v) a factor —ie(fc)*(2m)40,,0(p— p'+q—¢’) for each
4-vertex, where p is the momentum vector of the
incoming meson, p’ that of the meson leaving the
4-vertex, and ¢, ¢’ refer to the photon lines incident at
the 4-vertex.

(vi) the whole integral is multiplied by the number
of different ways the operators can be paired off by
interchanging the roles of photon operators 4,(x) and
A,(x) at the 4-vertices.

Thus, in general, it is possible to make a formal
distinction between the factors §,, and §,, for a 4-vertex.
If this distinction is not made, the integral obtained by
following rules (i) to (v) must be multiplied by a
“weight factor” 2 for each 4-vertex. Some exceptions

3 P. T. Matthews, Phys. Rev. 76, 1657 (1949).
4 These rules were already implicit in Feynman’s work [R. P.
Feynman, Phys. Rev. 76, 769 (1949)7].
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732 ABDUS
occur, however, when the weight factor is not 2, and
these have been discussed in detail by Rohrlich.? For
theoretical considerations, however, we shall always
distinguish (if possible) between factors 6,, and §,, for

_ 4-vertices and no weight factor will be used.

The genuine primitive divergents? are of the same
type as in spinor electrodynamics, namely, meson and
photon self-energies and vertex parts (parts with 2
external meson lines and 1 external photon line), with
the addition of logarithmically divergent graphs with
two external photon and meson lines (C parts), and
four external meson lines (M parts). The self-energy
(S) and vertex (V) parts modify the factors from single
lines or single 3-vertices, while the divergent C parts
can be regarded as modifications of 4-vertices. Define
2 x*(p) as the function arising from adding together
all integrals corresponding to proper® meson self-energy
parts, IT*(p) the corresponding sum for photon self-
energy parts, A.(p, p) the function arising from adding
the integrals corresponding to proper V parts, 8,.,(p, ¢, q)
as the sum arising from adding integrals corresponding
to proper C parts, and

Dp'= DF-I-DFH*DF'
AF'=Ap+Ar y*AF
Fu(?: Pl) = (P+P,)n+Au(P7 P/)
Cﬂ"(?’ 'y @ ="0uwt0u(p, #', 9).°

Every graph G, other than a primitive divergent
graph, has a uniquely defined “‘skeleton’ which is the
graph obtained by omitting all self-energy parts from
the lines, vertex parts from the 3-vertices, and C parts
from the 4-vertices. A graph which is its own skeleton
will be called “irreducible,” and a graph not containing
M parts inside it “simple.” With the foregoing definition
of irreducibility, an irreducible graph may still contain
divergent M parts.

For simple irreducible primitive divergent graphs,
the forms of the functions ¥, II*, A,, and 6,, are
given as follows by invariance consideration:

2 u*(p)= A+ B(p*+ A+ A(p) (p*+ ),
IT*(p) =Cp*+ Do(p) 1,
AM(P’ P’)=L(P+P’)M+Auc(P’ Pl)y
0, (5 7’5 @) =R+ 0,(p, ', ©,

where the suffix ¢ stands for the convergent parts of

the functions on the left-hand side of the equations.
4, B, C, L, and R are divergent constants, while the

definitions of the convergent parts are such that

Ac(PO) =0

po+12=0

5 The external lines of any proper part contain no self-energy
insertions. In general a proper part is one which cannot be divided
into two pieces joined by a single line.

6 The factor for a 4-vertex is —e?3,,. For 8,, as defined here
we obtain the e-factor (—1)7¢?"¢?s where 7 is the number of
4-vertices and 2s that of 3-vertices, and then divide by —e2.
This gives Cyy (to replace 8y,) as =8up+0us.

when

SALAM

and
D.(0)=0

Au(p, p') can be written in the form?’
Auelp; 2) =M (p+ (P + "+ )+ Fu(p, 1) (2a)
where

F,=0F,/dp,=0F,/0p,’=0 for p=p'=p,

and in general we can write 0,,. as

Oue(p, 9, Q=N+ ) u(p+ )t Fu(p, ¢, Q)
with

(2b)

Fu(po, po, 0)=0.

We notice that M is finite and, furthermore, that
with the foregoing (unique) definition, A,.(po, po)=0.
Similarly, N in (2b) is a finite constant. The precise
significance of these particular separations will be-
come clear in Sec. ITI when we establish relations
between ¥, Ay, and 6,,.

It is possible to obtain a divergence free S-matrix if
we can show:

(a) That all infinities associated with self-energy of a
free-field meson can be canceled by bringing into the
interaction Hamiltonian by means of a unitary trans-
formation,® the mass renormalization term — dx®¢p*¢.
The free meson field now propagates with the term
2¢*¢p in the “free’” Hamiltonian (k=mc/h where m is
the observed meson mass).

(b) That all M divergences occurring anywhere in
the theory can be consistently compensated by suitably
choosing a constant &\ in a term 6A¢™*?¢? which is added
to the interaction Hamiltonian.® After the additions
(a) and (b) the Hamiltonian is

H ()= Ho(x) — 0*¢*p+ oM™ ¢ 3)
The additional terms give rise to new graphs containing
2- and 4-vertices, with 2 and 4 meson lines incident,
respectively. Graphs containing no such 2- or 4-vertices
will be called “original.”

Unlike spinor electrodynamics Ho(x) contains two
constants, e and ¢, with e=¢’. The graphs arising
entirely from e-vertices (3-vertices) contain S diver-
gences and V divergences; those from &* vertices
(4-vertices) contain S divergences and C divergences.
It would be possible to absorb these divergences in the
renormalization of charge if we could show (c).

(c) That by a suitable choice of constants Z,

Dy'=Z3Dri(e1)
A’ =Z,Ar(e1) 4
I‘u = Zl‘lI‘,.l(el) and C,n = Z4_lcﬂ.ﬂ1(el)

where the renormalized (and the observed) charge of
the meson

1= 21_12223§6= Z4_%Z2%Z§8'.

7 This separation into convergent and divergent parts was
given by Dyson (private communication).

8F, J. Dyson, Phys. Rev. 75, 486 (1949); P. T. Matthews,
Phil. Mag. 185, XLI (1950).

9 The necessity of this condition was pointed out by P. T.
Matthews (reference 2).
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(d) If Ho(x) is gauge-invariant, so that e=¢’, it has
to be shown that the Z’s defined satisfy a further
condition,

Z4_1=ZQZ1_-2.

Dy, AF', T, C,, are the functions already defined,
except that they now include the graphs with the new
2- and 4-vertices, as well as the original graphs. C,;:1
= 8+ 0, Where 0,,, is the function arising by adding
together the (absolutely) convergent parts of each
integral corresponding to each ‘“original” C part. Ty,
Ary, Dpy are defined in a similar manner from sums
of convergent parts of the original integrals concerned.
The procedure for obtaining the (absolutely) convergent
part of an integral will be presently explained. It is to
be noticed that the ‘“convergent functions,” on the
right-hand side of the relations (4) appear to be ex-
pressed as functions of the renormalized charge e;.

The general procedure for isolating divergences!® from
an n-fold integral was given in reference 2 in Sec. III. In
this procedure the concept of true divergence plays an
important part. In general if we subtract from any
divergent integral over the variables #- - -i,, the true
divergence over f; subintegration D(¢;)X the reduced
integral (R) over fuf3- - -1,+ the true divergence over
12X the reduced integral over tif3- - - {4 - -+ the true
divergence over #1£,X the reduced integral over t5- - -1,
+.--4---4-.-4 finally the true divergence over
bits- + - tn, the remainder is an integral which is abso-
lutely convergent and is the convergent part of the
n-fold divergent integral we started with. Each reduced
integral corresponds to a graph obtained from the
graph under consideration by omitting that part of the
graph whose true divergence multiplies this particular
reduced integral. If a subintegration is ‘“‘superficially
convergent,” its true divergence is zero; while the true
divergence over a subintegration fo- - -fpe - i+ bty -+
tge by - -1, where (fa- - -tp), (bs- - -8;), (bp - -1g) - are k
groups.of variables belonging to nonoverlapping parts
of the graph, equals (—2)*! times the product of the
true divergences over each of the % groups, ({a' - -s),
(#:+ - +t), -+ (Remark b, I, Sec. ITI1). It is in terms of
the convergent parts of the integrals defined as above
that the functions Cy,1, T4, etc. are defined. The true
divergence of a subintegration corresponding to a
meson self-energy graph is characterized by two diver-

10 The proof given by Rohrlich for the possibility of renormal-
ization (reference 2) for scalar electrodynamics is invalidated
because the general procedure for isolating divergences was not
available. A “hierarchy” of divergences was somewhat arbitrarily
defined and a prescription given according to which a divergence
higher in the hierachy should be removed first. This procedure
is not equivalent to the one given above and when overlaps occur,
does not leave behind an absolutely convergent integral after the
proposed subtractions. In a note added in proof (reference 2)
Rohrlich has observed that the problem of “b-divergences”
(overlaps) has not received proper treatment in his paper. The
present paper deals with these difficulties.

1} Abdus Salam, Phys. Rev. 82, 217 (1951), hereafter referred to
as L.

733

gent constants 4, B; while all other true divergences
are characterized by one divergent constant. The
factors multiplying these constants [(p*+«?), for ex--
ample, which occur multiplying B in the meson self-
energy case | are absorbed in the reduced integral.

Considering the ‘‘original” graphs, the finite and
physically significant expressions Cyy1, T'pi- -+ are de-
fined, as already stated, in the first place by an appar-
ently arbitrary dropping (subtracting off) of the infinite
terms (true divergences X the reduced integrals) from
the infinite expressions C,, I, etc. Some of the
divergent terms thus subtracted can be interpreted
under (a) and (b) as direct cancellations with terms
from &« and 6A arising in graphs which are not original
so that, as we shall show, both these divergences as
well as the “non-original” graphs need never be con-
sidered. The establishment of (c).and (d) shows that
the remaining divergent terms isolated can equally well
be interpreted as the extraction of infinite constant
multiplicative factors Z, from Cy,, T'y, - - -, so that each
of these functions, instead of appearing as a sum of
infinite (DX R)-+finite terms, now appears, as in Eq. (4),
as a product of a (divergent) constant (Z) multiplying
finite and physically significant terms. After this is
accomplished, these Z factors can be completely ab-
sorbed in renormalizing the charge, so that all infinities
occurring in the theory can be eliminated.

The main difficulty of the proof lies in establishing
(e). In each of Egs. (4) the functions appearing on the
left-hand side are completely known, while so are the
finite parts of these functions Cu1, Tui, +--. Let us
assume that the relations (4) hold, with the factors Z
for the present unknown. Consider an irreducible C
graph, Trgg, for example, such that in its lines and
vertices, self-energy, vertex, and C parts can be inserted
without any one of these insertions overlapping with
any other insertion. Each insertion is thus completely
localizable and does not simultaneously modify more
than one vertex or line. The result of these insertions
analytically is that we replace in the integral for the
irreducible graph Ar by Ar’, Dr by D¢, (p+4'). by
T, and §,, by C,,. It was shown (Remark c, I, Sec. III),
that if, for example, a meson line p has a self-energy
insertion with associated momenta fufp-- -8, and if
this self-energy insertion defines no overlap with any
other part of the graph, then we can arrange our general
subtraction procedure so that we isolate divergences
corresponding to the subintegrations {4, tafp-- -, etc.,
first. After the true divergence corresponding to
balp- - - tr, itself is removed, the integration over this
set is left absolutely convergent and it can be performed
unambiguously so that the variables fa, f5, - -# no
longer need be considered explicitly from this stage
onward. Since this procedure of removing divergent
terms corresponding to this self-energy insertion is
precisely the one we would adopt for obtaining Ap,
from Ar’, and, since we have assumed that, in the
latter case (Eq. (4)), the divergent terms separated are
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completely interpreted as the extraction of the divergent
factor Zy in Ap'=2Z,Ap/(e1), we can make this same
replacement for Ay’ for this internal line p in the C
graph under consideration. It is emphasized again that
this is true if and only if no overlap occurs.

Going back to consider Trgg, by inserting all S, V,
and C parts in its lines and vertices we obtain an entire
class of C parts T, “derived” from T'1zg. Analytically
we replace in the integral for Trrr, Ar by Z:Arr'(e1),
Dr by ZsDri'(er), (p+§)u by Zi Ty, and 8w by
Z 4_1C uvle

A C part of order ¢2*t?~% with s 4-vertices and 27 3-
vertices contains 2r4s—1 meson and 7+ s—1 photon
lines. The foregoing replacements give an e factor

62r+23—2Z4—sZ1—2rZ22r+s—lzs'r+s—l —_ Z4—1e12s+2r——2'

Apy, Dpy, - -+ are themselves power series in e;, and
their behavior for large p is precisely the same as that
of Ap, Dp, etc. (D II Sec. VII), so that the new integral

for T, is again logarithmically divergent. Making a -

separation of the finite and the infinite part,
Tw=Zi (T aler)dwt+Tweler)). ©)
Equation (5) gives in a compact form the sum of inte-
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grals from the entire class of graphs T, “derived”
(uniquely) from the one graph T'rrg by insertions. This
form for T, will be referred to as the fundamental form.
It is to be emphasized that the content of T',, is not
altered in the fundamental form by expressing it thus
in terms of the renormalized charge; and that the
equality of both sides is exact considered up to any
order in ¢; and e (expressed in terms of e;).

If it were possible to make unambiguous nonover-
lapping insertions in all the irreducible C parts, this
procedure would have given us all the reducible and
irreducible C parts. Analytically from each Trrr we
would have obtained T, in the form (5) so that
summing over all C parts and adding &, for the
4-vertex itself we would obtain

C,_w= 6“9+Z4—1(.Rd5”p+ ewc(&)).
But if Egs. (4) hold, C,, ought to equal Z,7'C,,,. Thus
Z4_1Cnv1=Z4_1(5uv+ 0;4”(31))-

This gives us an equation with just one unknown, Zj,
which could then be determined (and so the consistency
of the relations (4) established.

However, as soon as overlaps occur the whole idea of

SALAM

an unambiguous insertion in a line or a vertex loses
validity. The reduction of a reducible graph cannot be
defined unambiguously and, conversely, the replace-
ment of all vertex and line factors of irreducible parts
by Cu, T'y, etc., leads to the counting of certain graphs
more than once. [This is a definite redundance, quite
apart from the “weight factors” occurring under rule
(vi).] Thus, a proof on the aforementioned lines can
no longer be given.

For C parts it is always possible to make unambiguous
insertions in all the lines and 3-vertices. However there
are certain classes of C parts in which a C part inserted
in one 4-vertex appears simultaneously as a C part
inserted at some other vertex.

For vertex parts the complexity of overlaps increases
greatly and C—V overlaps can occur. For self-energies,
besides these overlaps, vertex parts overlap with vertex
parts. Also, if any meson (or photon) line is opened in
a self-energy graph, this leads to parts with four
external lines which (except for photon-photon scat-
tering graphs) always diverge. M parts, which have
not been considered so far, can complicate the picture
still - further by producing simultaneously M—M,
M—C, or M—.S overlaps.

A great simplification can be effected by applying a
powerful technique first introduced by Ward' in spinor
electrodynamics. Ward’s technique can be extended to
reduce the complexity of the overlaps to be considered.
However, if a primitive divergent is logarithmically
divergent and still suffers from overlaps, this technique
in general fails. The general procedure to be followed
then for obtaining a proof of (4) and for the construction
of the relevant functions is that of categorization, as
developed in I, Sec. IV. By analyzing the overlaps,
such categories of reducible graphs are defined in which
certain insertions of S, V, and C parts cause no overlap,
so that the substitutions C,,, Ty, etc., can be made in a
defined way. By considering the implications of the
subtraction rules, I, Sec. III, it is then possible to
derive recurrence relations for such graphs in terms of
graphs of lower order in the same category and their
true divergences. The required values for the Z’s are
obtained by substituting Egs. (4) into these recurrence
relations and demanding that they lead back to the
fundamental form for the type of part under consider-
ation. These various techniques are illustrated in Secs.
2, 3, and 4 and in Appendix I where it is assumed that
condition (b) can be satisfied. A proof of this is given
in Sec. 5.

2. C PARTS

The most general C part consists of an open polygon
formed by the meson line entering (and leaving) the
graph, this line (the base line of the graph) being joined
by photon lines to one or more (possibly interconnected)

2J. C. Ward, Proc. Phys. Soc. (London) 64, 54 (1951). The

author is deeply indebted to J. C. Ward for sending him a copy
of his work prior to publication.
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closed loops of meson lines with a structure inside them.
If the external photon lines (with polarization vectors
p and ») belong to the base line, the graph will be
called a base-line graph. For base-line C parts it is
possible to distinguish between 6,, and 6,,. For such
graphs 0,,(p, p’, ¢) is defined such that u occurs
topologically “before” » and carries momentum g.

In order to construct the function C,, (and the
corresponding convergent function C,.i) it is possible
as explained in Sec. I, to take irreducible C parts and
to make unambiguous insertions in their lines and
3-vertices, replacing in the corresponding integrals Ar
by AF', Dr by D§’, and (p+ "), by T'.. Furthermore,
it is possible to replace the factor 8., by C, for the
4-vertices of all irreducible C parts except for the
4-vertices in the graphs Prgg and Qrrr shown in Fig. 1.
(There is another class of graphs R which are defined
in Appendix IT and in the 4-vertices of which the
foregoing insertion is also not valid.) Taking all other
irreducible C parts and making the foregoing insertions
gives all reducible C parts “derived” from them. If T,
denotes the sum of corresponding integrals, by counting
the number of lines and vertices in the irreducible C
parts in which insertions are being made, we have

Tuy= Z4—1[Td(el)5#v+ T:wc(el)]; (6)

where T'4(eq) is the sum of the true divergences from
all such graphs.

In this section the graphs Prrr and a linear chain of
graphs “derived” from them (the whole class being
called P) will be treated in detail. For Q and R we
assume the result in Appendix II, namely, that with a
proper choice of Z, the corresponding functions Q.
and R,, can also be expressed in the fundamental form
of Eq. (6). In fact, at this stage T, will be understood
to contain Q,, and R,..

Consider the graph in Fig. 2, of order e.” We can
obtain (25—1) other topologically distinct graphs from it
by shrinking 1—1, 2—2, 33, 4—4, 55 in all possible
ways. If 4—4, for example, the resulting 4-vertex will
be (uniquely) numbered 4. In Fig. 2 the letters ¢, b, - - -
give the polarization of the photon. The order of the
numbers 1, 2, 3--- and the letters @, b, ¢, --- are
important. If 2 is a 4-vertex, it could be denoted
equally well by 84 or by 83 so that the number of
formally different graphs obtained from the graph in
Fig. 2 by joining 1—1, 2—2, -+ is 3*—1, when the
graphs with factors 8,5 and 83, are treated as different.

Let P,, stand for the graphs obtained by drawing
chain graphs of the type illustrated in Fig. 2 in all
orders in the powers of ¢, and also the graphs obtained
by joining 1—1, 2—2, -- - in all possible ways.

Let [#] stand for such graphs (3" in number) of
order ¢, [n|1] stand for all graphs [#] such that the
first vertex is necessarily a 4-vertex. These are 3" in
number. Similarly, let [#|1, /] stand for all graphs(3»
in number) which have their ¢th and jth vertices
necessarily 8,4 and 8§,, 4-vertices (the order of photon
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polarization-vectors p, ¢ and 7, s is to be noted), irre-
spective of the character of the other vertices, and so
on for [#|4,4, - - - 1. Let X,, stand for all those graphs
of all orders (and the sum of corresponding integrals)
from among the P graphs which have their last end
vertex a 8., 4-vertex, irrespective of the character of
other vertices, V,, stand for all graphs with the first
and the last end-vertices, 8., and 8, vertices, and Z,,
for those with the first end-vertex a 4-vertex 8,4, again
irrespective of the character of the other vertices. Thus,
Y, for example, equals

With the foregoing definitions we prove Lemma 1.

Lemma 1
Pu=Pa(8urtXur)(8:p—Pa¥ r,
+Pd2yfﬂ2_ o ')(5pv+va)+PMvc- (7)
Here P, is the sum of the true divergences from the

graphs P. In particular if P, stands for the sum of the
true divergences from [#], then Pg= P+ PotPs+t---.

For the proof we make use of the property of a 4-vertex occur-
ring in this type of linear chain of graphs P to split the chain into
two parts.

L) 13 b
- T~ ]
/’ N 4 “\ :
4 \ ll
’ \ g v
yai 2_al2 K3 4 _eya )
a1 6] 3 &5 d| 5 4
1 \ " \ ’
! AN ’ N ,
. Moo Sen L’
m ta ta
Fic. 2.

Consider, for example, the graphs in Fig. 3. It is obvious that
the double integral over #,¢: corresponding to Fig. 3(a) is the prod-
uct of two single integrals over # and ?;, so that symbolically
(@)= (b) X (c). In the sequel we shall further specialize this splitting
off of graphs. A split will be made for a 8.5 vertex but it will never
be made for a 8y, 4-vertex.

[#] is an #n-fold integral over variables fif5- - -£,, each one of
the subintegrations being logarithmically divergent. If 4---q is
a group of indices from the set 123---x (where 4--+ run con-
secutively) then isolating the divergence over the subintegration
bitie + ~tq gives P(g_iynXthe corresponding reduced integral. This
reduced integral contains a 4-vertex of the type with a factor 8,»
(and not 8ps) corresponding to the divergence which has been
separated and this immediately splits the chain (if, of course,
this 4-vertex is not one of the two possible end 4-vertices).

To obtain the coefficient of (P3)’ in (7), consider all subsets of
indices 123---#, such that each subset divides naturally into
f groups, the indices in each group running consecutively, the
different groups being such that if & is the first and ¢ the last
index of two consecutive groups, then 24— 2 1. The true divergence
for a subintegration corresponding to these subsets consists of
(=1)/"1PPg- - - (f factors), (I, Remark b, Sec. III) corresponding
to the number (f) of nonoverlapping graphs, the true divergences
of which are in fact thus being simultaneously removed. The
reduced integral itself necessarily contains f 4-vertices (again of
the type 8.5 and not 8§3a), which may split the graph according
to the scheme XV/1 Y71 V/-1Z or XV/~1Z. By considering
all possible subsets and the groups in them of the type mentioned
we readily establish the lemma.
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We can show this by considering, as an example, the coefficient
of P2 in (7) in detail. Only graphs up to [»n] are considered. In
our symbolic notation [1]1,2]X[#—1[1] would be equal to
[#]1,2]. We consider all subsets of indices which fall into two
nonoverlapping groups. If the first of these two groups starts
with index 1, we have the following terms to separate:!3

—Py[1]1,2]X
[ P[n—3|1]4Po[n—4|1]+Ps[n—5|1]+ - -+ Pz
+P1[n—4] 1]+P2[n"—'5 i 1]""‘ coot-Pps
+P1[ﬂ—5 I 1]+ . '+Pn—-4
Foeedrnn
| +Py
—Py[1]1,2]X -(8)
{ P n—4|{1]+Py[n—S5|1]+ - +Pas
+Pi[n—5[1]+-+Pn_s
R R
L +Py
_I;n_2[1 l i, ijl. . PR e e e . )

The terms (8) sum up to
=—Pa[11, 21P;(1+[1| 114+ [2[1]+3[ 1]+ - - +[#—~3[1])
= "‘szi:l [ 1; 2](5uv+zuv>
if the equality of both sides is supposed to hold to the order e?».
Also, there are terms such as
+Pi[n—5[1]4 - +Pny

NP
+P1
—Py[2]1,3]C Piln—5]1Tdveeeveens ]
M n v .
41 4 "'F T + T : - ’:’,’ ; !
(a) (b) ©
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which sum up to —Pg[2]1, 3](8y+2Z,). We similarly obtain
—P2[3|1,47(8u+Zy) and so on, concluding with —P2[n—2]|
1, n—17]. The sum of all these terms is — P2V, (8,0+Z,0).

If we consider the two groups of indices such that the first
group does not contain the index 1, it may be easily verified that
the sum of corresponding contributions is —P2X,rVr,(8p0+2Z,0)
so that the entire sum is —P(8ur+Xur) Y7 p(8pv+Z,) precisely
as in (7).

We now notice an important property of these graphs
P. Whereas the insertion of any graph P, for 8.5 leads
only to a graph already belonging to P, an insertion of
Py, for 8p, gives a new graph unambiguously.

In order to obtain all reducible graphs “derived”
from the graphs in Fig. 1. We proceed as follows:

(i) Draw all graphs P of all orders in €%

(ii) Insert at all 4-vertices 0;;, all reducible and irre-
ducible C parts including P*;;; analytically, replace §;;
in the integrals by Cj..

BTo verify that a term like —Py[1]1,2]P;[#—5|1], for
example, takes account of all the 37+ graphs in [#], one can
make a check as follows: [%#—5]1] contains 37~ graphs, P; is the
true divergence of 3%+ graphs in [3], [1|1, 2] accounts for 3¢
and P, for 3% graphs. Thus, the foregoing term expresses the
sum of relevant contributions from all the 37* graphs in [#].
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(ili) Insert at all 4-vertices 8;; the graphs T; ie.,
replace 6;; by ;4 T:;. In the lines and the 3-vertices,
all self-energy and vertex parts are inserted. The result
after these insertions is P,,*.

It is easy to verify that no graph occurs more than
once provided we adhere to the convention of distin-
guishing between 8;; and 8;; and further that all graphs
“derived” from the graphs Prrg do appear in the forego-
ing scheme of categorization, so that

Cp.v= 5/»"[' Tuv+ -Puy*- (9)

Since all the insertions (i) to (iii) are unambiguous and
localizable, we can replace Ar by Ar"=Z5Ar, Dr by
Dy¢'=2Z3Dr( (&), (p+p")u by Zi'Twler), 85 by Cy
=Z4Cjs(er) while §;; is replaced by
0ijt Toj=8i+ Zs (T abdsj+ Tije(er))
=2 [(TatZs—1)654 85+ Tije(en) ]
=Z S8+ Siiler) ].
(definition of S)

The effect of these substitutions is to give Z,! times
the correct number of Z factors to renormalize the
charge while all integrals now appear explicitly as

functions of e;. While at each §;; vertex, d;; has been

replaced by Cjs1, each §;; vertex gives rise to two terms;
one in which the integral corresponding to the graph
is merely multiplied by S, the other in which §;; is
replaced by Siji(er).

Denote by P,,X the sum of integrals corresponding
to all graphs thus formed, for whose 4-vertices appear
the factors Syj1 or Cj;; while for the lines and 3-vertices
Ary, Dpi, Ty appear. XX denotes the corresponding
sum for all graphs in which only the last end-vertex is
an unchanged 4-vertex 8., while all other 4-vertices are
replaced by factors Sij1 or Cji. VX similarly denotes
the sum of integrals for all graphs with only the first
and the last end-vertices unchanged 4-vertices, and
Z,7* the sum for graphs with only the first end-vertex
an unchanged 4-vertex.

With these definitions we prove the following lemma.

Lemma 2

P,,,,*=Z4‘1|:S(6,,,.+XMX)(pr—{—SY,px
+Szyrp><2+ v ')(anv+me)_S§lw+wa]- (10)

Defining [#|l, m]X, etc., to represent all graphs %7, 7]
for the lines and vertices of which replacements Apy’,
Dy, Ty, Cjir or Sij: have been made, except at the
Ith and mth 4-vertices where the factors §,, and 4§,
remain unchanged, the proof of the lemma follows by
noticing that

[nT*=[nP*+S([n| 1%+ 24 - )
+Sz([”l L 2]X+[n’ 1’ 3]><+ e
+[nld, P4+ )+S([nl 1, 2, 374 -
+[nli7 l: ij+ )++' *

+S5"[n]1,2,3, -, nb17X (11)



RENORMALIZED S-MATRIX FOR SCALAR ELECTRODYNAMICS

By splitting the graphs and arranging the sumations
as in Lemma 1, the result (10) is established.

Since Ay, Dpy, etc., have the same behavior for
large values of p, as the corresponding functions Ap, Dp
(DI1, Sec. VII), an immediate consequence of Lemma 1
is Lemma 3.

Lemma 3

anx= de(aur'i"Xu‘rx) (679—deyfpx
+PdX2YTPx2'— o ')(5pv+vax)+Pﬂvcx- (12)
We have now reached the stage in our inductive
argument, when we can establish the consistency of our

procedure by an explicit choice of the unknown con-
stant Z,. We desire to choose Z4 such that

Cuvzéuv+Tuv+va*=Z4—l uyl

=Z4_1(6uv+ Tnvc+Puch)- (13)
From (6), (11), and (12), however,
6uv+ Tuv+Pw*= 6uv+Z4_1[(S— Td)auv
A P+ Tupo A+ Z4 (8t X u ) [S/ (1= STYX)
+PX/(14+PXYX) (0, +2Z,).  (14)

Let S+PX=2Z+Ts+P¥—1=0, then [S/(1—SY*)
+PX/(1—PXY>)]=0 and simultaneously Eq. (13)
is satisfied.

Thus, with the choice Zy=1-—T43—Ps< we finally
establish that we can express C,,=Z;'Cpnler). Fur-
thermore, by thus expressing Z4 in terms of the true
divergences of all original C parts, we have also ex-
pressed P,,* in Lemma 2 in the fundamental form

Puv*=Z4~1[de(el)BW—‘_P“”"X(&)]'

3. VERTEX PARTS AND MESON
SELF-ENERGY GRAPHS

We now desire to show that it is possible to choose
the constants Z; and Z, such that Ap'=ZAp, and
T'y,=Z1"'T,; and furthermore that Z,'=Z,Z,"% The
proof can be made to depend on that in Sec. II for C
parts, by employing a technique due to Ward. It will
be found that at least for Ary/, it is not even necessary
to obtain its value by evaluating the absolutely con-
vergent parts of all self-energy integrals. For this
purpose we utilize the following differential identities,*

(15)

Au(p, p)=—(1/2mi)(8/0p)2*  (16)
(3/3;17"1' a/ap,)vAu(?; P,)=0MV(P7 P,7 P/—P)
+0,u(p, p',0). (17)

To prove these identities, we notice the differential
relation,

—(1/271)(8/3pu)Ar(p) = Ar(p)2puAr(p),

14 Abdus Salam, Phys. Rev. 79, 910 (1950). These (or similar)
identities were derived independently by F. J. Dyson (private
communication), F. Rohrlich (reference 2). Rohrlich’s derivation
of the relations between divergent constants from them was,
however, incomplete because difficulties connected with overlaps
were not noticed.

737

which correctly describes the insertion of an external
photon line (with its energy-momentum set equal to
zero) in a meson line with momentum p. A second
differentiation with respect to » describes not only the
insertion of another photon 3-vertex on the same meson
line, but also the complication of the first 3-vertex into
a 4-vertex, with the proper weight factor.

To prove (16) we notice first that the sum of the
contributions to Au(p, ) from all (reducible or irre-
ducible) non-base-line vertex parts vanishes identically.
Let the momentum p be always associated with the
base line. If #; represent the momentum variables
associated with closed meson loops (connected to the
base line and to each other), then the sum of the
contributions to Au(p, ) from non-base-line vertex
parts is

= [ /st o, 1)t

which vanishes identically because F, is uniformly
small for large values of momenta ¢,.

Similarly, for a C part, if the photon » has its energy-
momentum zero, and does not belong to the base line,
the sum of the contributions for such graphs to
0.,(p, ¢’y p'—p) and 6,.(p, #’, 0) identically vanishes.

Thus, (a) the only vertex parts giving a contribution
to Au(p, p) are the base-line vertex parts,

(b) The only C parts contributing to 8,,(p, 9, '— )
+0,,(p, p’, 0) are those for which » belongs to the base
line.

If now we associate p with the base line for meson
self-energy graphs, a differentiation gives precisely all
the base-line vertex parts and no photon line is differ-
entiated. This establishes (16).

Similarly on associating p, p” with the base line in
vertex parts, the operator [9/8p+8/dp"] would give
all the C parts with » belonging to the base line and
these are the only ones contributing to the right-hand
side of (17), as shown. If p itself does not belong to the
base line, but to one of the closed meson loops, some
photon line joining this loop to the base line must
carry momentum (p— p’--4,), while a part of the loop
itself may have momentum variables (p— p'+1;). The
operator [3/0p+93/3p’] insures that neither this
photon line, nor any part of the closed loop is differ-
entiated. This establishes (17).

The foregoing proofs depend on a very particular
choice of momenta; p, " must be associated with the
base line. This choice can sometimes lead to difficulties
in isolating divergences. This question will be examined
further in Sec. V, when we deal with M parts.

We now show by an inductive application of the
identities (16) and (17) that these differential relations
give rise to relations between true divergences and also
hold for the convergent parts of the functions concerned
as well. These convergent parts are the same parts of
the divergent integrals as are obtained by our sub-
traction procedure.
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We treat the case of vertex parts in detail. It is
obvious that the C parts produced by applying the
operator 8/9p+9/9p’ to an irreducible vertex part are
themselves irreducible. (An extra external line always
improves the chances of irreducibility and reduces
overlaps.) Thus, from (2), for irreducible graphs,

218,54 (8/8p+9/0p" )M o(p, ')
=2R0u+0ue(p, P’y p'— )+ 0sue(p, p',0). (18)

Setting p=2p"=po shows that L=R and also that the
differential relation holds for convergent parts as well.

Consider now a reducible vertex part. The integral
corresponding to it is A,=A,.+the true divergence
. constant LX (p4 "), true divergent constants DX the
reduced integrals, where each reduced integral repre-
sents a vertex part of a lower order. Therefore
(8/0p+9/0p")oAu=(8/0p~+98/3p")sAuc+divergent con-
stants DX (8/dp4-0/9p"), applied to the reduced inte-
grals..

Consider now the C parts produced by this operator
from the given vertex part. We can show that for such
graphs 8+ 0y,= 04yt 0yuct26,,X the true divergence
constant R-the same true divergence constants D as
aboveXprecisely such C parts as are obtained by

Fic. 4.

applying the differentiation operator to the afore-
mentioned reduced vertex graphs.

A térm by term comparison would thus allow us to
write an equation of type (18), from which the equality
of L and R and a differential relation between A,. and
8,5 can be deduced.

The proof of this proceeds inductively. Since the
differentiation operator affects only the base line in the
given vertex part V, the true divergences for those parts
of this graph which do not contain portions of the base
line are the same as the true divergences for the relevant
C parts obtained by differentiating V, while the reduced
integrals in the two cases are themselves connected by
the differential relation. Thus it is only for those
subintegrations which extend over a part of the graph
containing portions of the base line that a proof is
needed. If, in the vertex part under consideration, such
subintegrations correspond to inserted self-energy,
vertex part or C part divergences, the differentiation
operator converts them into, respectively, vertex part,
or C part divergences, while the last type of divergence
becomes superficially convergent. To bring out the
points involved we consider, as an example, the case of
a vertex part V, with its base line containing as an
insertion the irreducible self-energy graph S (subinte-
gration ¢,) in Fig. 4.

SALAM

Disregarding the mass renormalizing constant 4 from
this self-energy graph S, the relevant divergent term is
B'XVgea where B’ is charge-renormalizing constant
from S, and Vgeq is obtained from V by removing this
self-energy insertion from the base line altogether.

Let us now suppose that the number of vertices on
the base line of V is %, of which % are 3-vertices. The
differentiation operator produces from the graph V,
precisely (n—1-4-2k) C parts. Of these 5 are such that
they represent the replacing of S in the base line of V,
by the 5 (irreducible) vertex parts which a differenti-
ation of .S yields, while in the remaining (»—6-+42k) C
parts, the insertion .S remains unchanged in the base
line. Therefore the divergence separated corresponding
to the subintegration ¢, from this class of (n—1+42k)
C parts is =B'XCred+ L' XCred’. Cred’ are the
(n—6-2k) reduced C parts obtained by omitting S
altogether from the base line, L’ is the sum of the true
divergent constants from the 5-vertex parts obtained
by differentiating .S, while Crea” is the reduced C part
(just one graph) obtained by omitting any of the
5-vertex parts, and replacing it by a 3-vertex. Two of
the graphs Cred” are identical with the graph Cged”,
ie., the reduced graphs from those two C graphs
obtained by inserting the external photon line », just
“before” and just “after’” S, on the base line of V.

Now from Eq. (2) and (16), B'=—L’ (all graphs
concerned in this relation are irreducible and the factor
1/27i is absorbed in the definition of the reduced
integral Cred’’); consequently, the term separated
corresponding to the subintegration f, is =B'XCRrea
where Crea represents (n+4-2k—7) (different) C graphs;
but these are precisely the graphs which we obtain by
applying the differentiation operator (8/dp-+9/8p’) to
the graph Vgeq, as can be checked by noticing that Vgea
has n—2 vertices on the base line, of which 2—2 are
3-vertices and therefore the number of C parts obtained
by differentiating Vgeq is #—3+2(k—2)=n+2k—1.

The proof is thus arranged, by considering each of
the true divergenceXthe reduced integral separated
from the vertex part V. It is shown that for the corre-
sponding C parts, the true divergencesXreduced inte-
grals can be grouped such that the true divergences are
equal by an inductive application of (16) and (17), and,
furthermore, that the reduced integrals from C parts
are precisely those which can be obtained by applying
the differentiation operator to the reduced graphs.
Since the argument proceeds by considering all sub-
integrations, overlaps are automatically taken care of.

The proof, therefore, of the required relations for a
vertex part of order ¢*»*? depends on establishing rela-
tions between true divergent constants of corresponding
S, V, and C parts up to order *». As the induction
starts with irreducible graphs for which such relations
are obviously true from the very definitions, the fore-
going result follows. Thus, finally (putting p=p=py),
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we have

(8/0p+9/99")shus(p, $')
=0uwe(p, 7', p'— )+ 0ue(p, #',0).  (19)

We shall now show that Z; can be chosen such that
Lu=(p+0")ut 8u(p, )= Z: L (p+ 1) it Aue(py s €1) ]
where by definition A,.(po, po)=0. Let

0u(D, 9', 2= P)+0uu(p, p', 0)=2G(p"+p, p'— ).
Then defining

= (p+p )\+2p(1-2),
we rewrite (17) as
3/3r,M A, M) =G, (1, s*)

= (=P

but

(8/ON)AU(rY, M) = (p+p'—2p0),Gu(r, 5*)
+(p’——p),6A,‘/as};

consequently,

An(?a ?’)—Au(PO: PU)
1
- f NP+ = 206),Go (1, $Y)
0

1
+ f NP~ 9),00,/5,%,  (20)
Also, from (19), ’

1
Ayo(p, Pl)':f AN(p+p'—20),Gure(r, V)
0
1 .
+ f AN(p'— $),0M4/ 35>, (21)
0

We have already shown, however, that Z; can be
chosen such that

GW(P’ P,7 Q) = 8#”(24—1—1)+Z4—10W0(P’ p,s q, 61).

Therefore, (20) can be rewritten as
[<ﬁ+p'>M+A“<p, - f Idk(P’—P)va/asy*(r,M-Au)]
~[CP+lpn p01=2 (042
+ f ld)\(p-l—p'—Zpo)“Guvc:l—ZF‘[@Po)u]- (22)

Since by definition, T'uyi=(p+ ")t Au(p, 9, €1), we
have, from (22) using (21)

1
T,(p, )~ f NP~ ), 0T/ 35,
0

1
=Z4"1[P"1(p, P')—f d)\(p’——p)yaI‘yl/as,*]. (23)
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This leads us to infer the required result, namely, that
P”=Z4_1F,,1(61).

Knowing the value of G,,. we cannot obtain that of
Aue(p, p") from Eq. (21), but that of A,.(p, p) can be
readily found by a simple integration. Since

Z@)=—2mi [ D= pdduh P 28

where p*=pA+po(1—X), it is not needful for the
derivation of 3_.*(p) to consider the meson self-energy
graphs any longer. The proof that Ar'=Z,Arp/(er)
follows from Eq. (16) in a similar manner to (23); in
this case 3_*(po) is canceled by combining it with the
contribution to the self-energy arising from the mass-
renormalization term —d&x%¢*¢ in. the Hamiltonian.
We have also incidentally shown that Z\=Z,=Z,,
which satisfies condition (d) of the introduction.

4. THE FUNCTION Dy’

For photon self-energy graphs, we extend a formal
technique introduced by Ward and define the functions,
A,(p) and &,,(p), by equations,

—1/27(38/9pu)IT*=A,(p) (25)
(a/aPn)Au(P) = ‘I’ux'(?) . (26)
Also, let
Wu(p)=2ip,+Au(p) @n
X,(p) =208, +3,.(p). (28)

The bar in §,, distinguishes it from the §,, for a 4
C-vertex. These functions W,(p), and X,, stand in
analogy to I', and C,, while A, and &,, are analogous
to A, and 6,,.

By integration we obtain from the foregoing

Ap)= f DB (ND)P» (29)

and
1

I (p) = — 2 f AN OD) P

0

(30)

Thus, in order to obtain IT*(p) we only need con-
struct the function ®,,(p) which is logarithmically
divergent. Dropping its divergent terms, the integra-
tions in (29) and (30) give the desired convergent patt
of IT*. In actual fact II* is not a scalar but a tensor's
and its correct form (for the case of a simple irreducible
photon self-energy part) is given by

I, *= (8pt*~ pp) (C+ D).

The terms — p,pr are omitted on account of charge
conservation.!®

16 Julian Schwinger, Phys. Rev. 76, 790 (1949), Appendix.
16 R, P. Feynman, Phys. Rev. 76, 781 (1949).
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Thus, the function ®,, is in fact of the form:

(I’fw. = [C+DC(P2)]|:2‘§IWBPK— 5,,#5,(,,— 5pv5xu]
+ (5pxP2—Ppr) (GZ/GPMGP,)Dc(pz).

However, if the terms — 6,6, —6,,0¢, and — p,p, are
dropped after the evaluation of ®,,, .., we have

DBy, o= 25,‘,,6“((:'—[—- D.(p?)
+ 59"(62/6?#61’V)DE(P2) =08,xPps.

In order to evaluate the function &,, we must
examine the implications of our formal differentiation
d/9p. In general a photon self-energy graph may have
both its external photon lines, u and », belonging either
to the same meson loop or to two distinct interconnected
meson loops. In the latter case the momentum p must
run along some photon lines joining the two distinct
loops. The differentiation 9/9p which applied to a
meson line carrying momentum p graphically signifies
" insertion of an external photon line (with energy-
momentum zero), when-applied to a photon line gives
a new type of ‘“vertex,” illustrated in Fig. 5 with the
vertex factor 2ip, since [—1/27i(9/3p,)Dr=Dr-2ip,
Dr]. Thus to obtain the graphs corresponding to ®,, we
first adopt some convention for the path of the variable
p through the photon self-energy graphs. After “differ-
entiating” all the photon self-energy graphs twice, we
obtain the graphs corresponding to &,, which contain
vertices of the type in Fig. 5(a) and (b). The number
and complexion of these graphs is governed by the
convention” we adopt for the path of p but as the
integrations (29) and (30) show, the choice of a con-
vention does not matter as far as the evaluation of
IT*(p) is concerned. After drawing all graphs ®,, we
select the irreducible ®,,, the criterion for irreducibility
being the same as in Sec. 1, with the obvious extension
that if a photon self-energy graph inside an internal
photon line is differentiated, in order to obtain the
irreducible skeleton, this is replaced by either of the
vertices in Fig. 5 as the case may be. The advantage,
as we shall see, in considering the function ®,, rather

Fic. 6.

17 The choice of a convention is arbitrary but it is absolutely
essential that once a convention is adopted it must be consistently
followed.
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than IT* itself is that the overlaps occurring for &,, are
relatively simple and it is easier to categorize the graphs
corresponding to ®,, rather than IT*. It may be empha-
sized that A, and ®,, are “fictitious” primitive diver-
gents, being entirely defined by Egs. (25) and (26) and
have no real place in the theory. The convention for
the path of p adopted here is illustrated in Fig. 6.
Single arrows give the direction of charge, while double
arrows follow p. In Fig. 6(a),  runs along the edge of
the diagram; in (b) the path of p is “complementary,”
in the sense that if in (a), a portion of a closed loop is
“differentiated,” (b) insures the “differentiation’” of the
remaining portion of this same closed loop. Thus

(—1/2m)0/0pul (@)+ (6)1=2A(p).

To illustrate the possible types of errors, let us
notice that the graph in Fig. 7 is not reducible, because
what appears as a C part with external photon lines p
and p is not in fact a C part comprised in the functions
Cy, so that this graph cannot be treated as reducible.
When selecting the irreducible graphs for ®,, from the
totality of graphs obtained, the following consideration
is helpful. We have shown in Sec. 2, that 6,,(p, ¢, 0)

A v

P> -

Fre. 7.

=0,,%(p, #',0), where 6,,® denotes the sum of the
integrals corresponding to C parts with the photon line
p (with energy-momentum zero) necessarily belonging
to the base line. Thus, if in a set of reducible ®,,, only
base-line C parts 6,,° appear, the irreducible skeleton
for such ®,, contains the factor §,, and to obtain &,,
this factor can be replaced by C,, (the function for all
and not merely base-line C parts) without incurring
any error. The foregoing choice of “complementary”
convention for p was designed, such that if a portion of
a closed meson loop acts as the base line for graphs 6,,,
(say) contained in a set of graphs ®,,, the convention
should insure (by differentiating the entire loop) that
all relevant base line 6,,° do appear. The entire set
0.,° can then be replaced by a 4-vertex §,, and a
(unique) skeleton thus defined.

By categorizing the relevant graphs and using our
inductive procedure, we shall establish the following
equations (which are completely analogous to the set

18 In this section (and subsequent sections) the distinction of
8;j and 8;; will be understood and the arguments will proceed in
terms of 4-vertices, invoking the “weight factors” if necessary.
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of Egs. (4)):
Xnv——" Za_levl(el)
Wu=Z5W ui(er)
DF',=Z3DF1/(61).

Except for the graphs in Fig. 8, it is possible to make
unambiguous insertions (4) and (31) in all the lines and
vertices of the irreducible ®,, (the vertices now in-
cluding those in Fig. 5), so as to obtain all derived
graphs and their corresponding integrals.

For the graphs in Fig. 8, however, insertion of certain
types of C parts causes overlaps. Barring these, and
considering all other irreducible graphs for ®,,, we can
express the sum of their integrals and of the reducible
graphs derived from them in the fundamental form.

In Appendix I we will show, by a procedure of
categorization, that the sum of the integrals from the
graphs in Fig. 8 and all graphs derived from them can
also be given in the fundamental form. Adding together
the contribution from these and 2i5#,, for the 4-vertex
in Fig. 5(b), we obtain

X =208, Z5[2iC(e1) 8+ Bureler) 1.

At this stage a choice of Z3=1—C(e,) establishes the
relation, X,,=Z51X,,1(e;). From this and (29) and
(30) we prove as in Sec. 2 that Dy'=Z;Dr(e1).

(31)

5. M PARTS

In this section the problem of M parts is dealt with.
We show that with a correct choice of 6\ in a term
dN¢p*?¢? in the Hamiltonian, we cannot only consistently
cancel all M divergences in the theory (whether they
arise inside the' graphs representing other primitive
divergents or from what would otherwise be non-
divergent graphs), we can also arrange that the graphs
with 4-M vertices introduced into the theory by this
term introduce no new infinities. It is easy to verify
that if the o\ term constituted the only interaction
term the number of primitive divergents in the theory
would be precisely two; namely, the graphs with two
external meson lines (meson self-energy graphs) and
those with four external meson lines (M parts).

The choice of 6\ is made in three steps.

(1) Consider all irreducible simple M parts. If Mq
represents the sum of their true divergences, a choice
of 6\ such that SA+Mys=0 cancels all divergences
arising from these graphs.

(2) For the case of irreducible nonsimple M parts,
unlike scalar meson-nucleon theories, joining two simple

M parts may lead to an M — M overlap. An example is
shown in Fig. 9. However, whether or not these over-
laps occur, our subtraction procedure gives the result
that the correct choice of 8\ is once again given
by 0A M 4=0, where 6\ is the sum of true divergences
arising from all irreducible M parts, whether simple or
otherwise. In spite of the overlap, the manner of proof
is exactly similar to that given in detail in I, Sec. A,
and is not repeated.

(3) To obtain all the original M parts from irre-
ducible M parts, we make the usual insertions in all
the lines and the vertices. Assuming (a) that the
relations (3) hold and (b) that an insertion does not
cause a further overlap, we immediately see by counting
up the number of lines and vertices (including M
vertices) that the correct final value for &\ is given by
732 M 4(er)+0N=0.-where M ;(e;) is the sum of the true
divergences from all M parts. Condition (b) is satisfied
for all except the three irreducible graphs in Fig. 10.

In these graphs, insertion of certain types of C parts
causes C— M overlaps. By a procedure of categorization
it is not difficult to prove that the contribution made
by such graphs to &\ is also found as —Zy2M 4, where
M, is the sum of their true divergences.

To prove (a) we remark that the foregoing proof for
the cancellation of M-divergences extends to the case
when M parts are contained inside other graphs. In
particular for photon self-energy graphs or C parts
there exist other graphs in the theory derived by
replacing the contained M parts by M vertices in all
possible ways. These graphs combine to cancel the M
divergences times the corresponding ‘reduced inte-
grals” so that neither need be considered at any stage
of our inductive procedure for the formation of the
functions IT* or C,,.

Since our procedure for deriving relations for oper-
ators > * and A, is not to follow the relevant graphs
but to obtain these analytically from 6,, we have to
show that the explicit neglect of M divergences and of
the corresponding graphs with 4-M vertices in 8,, does
not affect the proof of the identities (16) and (17); in
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other words that this neglect is justified for both sides
of the equations represented in (16) and (17).

The proof would be trivial if, for example, the differ-
entiation 9/8p which, from the graphs corresponding
to X_*(p), produces all graphs relevant to A.(p, p) (in
the manner of the proof in Sec. 3), also took all compen-
satory self-energy graphs with M vertices to corre-
sponding compensatory vertex graphs. Since the proof
of equality of —(1/2xi)(8/dp)>_* with A.(p, p), for
example, must depend on letting p run along the base
line we have to show that a choice of basic momentum
vectors which allows the path of p to lie along the base
line also allows us to isolate M divergences.

The entire problem is closely linked with the problem
of the general possibility of a “correct” choice of basic
variables. This was discussed in detail in a previous
paper® and only the results will be given here. For
vertex parts situations arise when the number of
divergences exceeds the number of subintegrations. In
such cases, however, the extra divergences are M
divergences which prove to be “final,” and need not be
separated. This happens, however, only on account of
the gauge-invariance of the theory.

For meson self-energy graphs there is (as in the
meson-nucleon case) another class of M divergences

which were also called “final”® in Sec. B, I. The
reduced integral corresponding to such “final” diver-
gences is, by definition, independent of the external
momentum p. Their effect is to leave just one type of
graph with a 4-M vertex (illustrated in Fig. 6, I) and
those derived from it by insertions in the meson line,
as ‘“‘odd” graphs which do not act as compensatory
graphs like all other graphs with 4-M vertices, and so
have to be considered separately. Here, as in the meson-
nucleon case, these graphs only contribute to the mass
renormalization constant, making it an explicit function
of 8\; a fact finding analytic expression in that a
differentiation 8/8p for such graphs gives the result
zero.

Similar considerations apply for IT*, A,, and ®,,. The
proof of the finiteness of the .S matrix now follows
precisely as in' D II Sec. VII.

6. CONCLUSION

The only new feature arising for the renormalization
of spin zero Bose particles interacting with the electro-

19 Abdus Salam, Phys. Rev. 83, 426 (1951).

20 Opening any one photon line in a meson self-energy graph
(or a meson line in a photon self-energy graphs) gives a C part
with a corresponding “final” C divergence. Their effect is precisely
similar to that of “final” M divergences.
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magnetic field is the introduction into the Hamiltonian
of the (infinite) direct interaction term SA¢*2¢2 In a
sense it is satisfactory that this same term can remove
the M divergences associated with the scattering of a
meson by a meson when these particles interact through
an exchange of virtual nucleons. The definition adopted
in Sec. V of the divergent part of an M integral,
however, makes M .(po, po, po)=0, so that no graph of
any order higher than the second in €% can contribute
to the scattering amplitude of two mesons of equal
initial and final momenta. Theoretically it is possible
to proceed slightly differently and to introduce into
the Hamiltonian, besides the compensatory oh\¢*2¢?,
another ‘real” direct-interaction term \¢*2¢%2. The
graphs involving 4-vertices with S\ as coefficient are
differentiated from those with \ as coefficient, the
definition of original graphs being extended to include,
besides the graphs involving 3-e-'and 4-¢?-vertices, also
the graphs containing 4-\-vertices. The renormalization
of the theory (not presented here in detail) proceeds as
before, except that the Z factors now appear as func-
tions of both ¢; and A\; (the renormalized value of \)
while the graphs with 6M-vertices compensate the
additional M divergences introduced by the graphs
containing these new A-vertices as well. Thus 8\ is to
-be chosen as oNZ;~2M y(e1, M)=0 while \;=Z,2\.
The entire theory, after renormalization, appears in
terms of two constants A; and e;. The retention of the
condition M .(po, po, po)=0 has the desirable feature,
however, that even with this new term, the additional
contribution to the Mgller scattering amplitude, for
mesons of equal initial and final momenta, is not given
as a power series in \; but consists merely of \; itself.
The scheme presented here sketches what is theo-
retically possible. On account of the new feature noted,
the physical validity of our renormalization scheme
cannot be extrapolated from the fact that a very close
agreement with experiment exists for the renormalized
theory of spinor electrodynamics. To determine whether
a constant \; exists (even if only to find that its value
is zero) and whether the answers to any physical
problems given by the foregoing scheme approximate
to the truth, we must turn again the pages of nature.
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APPENDIX I

Here we consider the graphs in Fig. 8 and all reducible graphs
which can be derived from them and prove that their contribution
to ®,, can be expressed in the fundamental form.

In the 4-vertices appearing in the graphs in Fig. 8 an insertion
of those C parts which have their two external photon lines be-
longing either to the same 4-vertex (class B) or to two consecutive
3-vertices on the same meson line (class C), causes an overlap.
These same C parts inserted at one end 4-vertex of the graphs in
Fig. 8, appear simultaneously as an insertion at the other end.
The situation is completely analogous to the insertion of vertéx
parts in end-vertices of photon (or electron) self-energy graphs in
spinor electrodynamics (the “b divergences” of D II Sec. VII).
Let the class of C parts B+C be called 4, while let 7" denote all
C parts other than those in class 4. From Sec. 2,

Tp,v= Z4‘1|:Td5“y+ T;u/c(el) :I

We now categorize the graphs derived from those in Fig. 8.
The categories obtained are similar to those in Sec. IV, (I). In
graphs (1), (2), (3), @ and b stand for the end 4-vertices. Graph
(1) has both its end-vertices as 4-vertices, (2) and (3) have either
the left- or the right-hand vertex (as drawn here) as a 4-vertex
while (4) has no 4-vertex at all. Let the graphs (1), (2), (3), and
(4) in Fig. 8 belong to category [17]. Insert all srreducible A at the
4-vertex apy in [1|1] and [1]2], thereby obtaining a set of
graphs belonging to category [2]. These graphs can once again
be distinguished as [2|1], [2]2], [2|3], and [2]4], according as
their end-vertices are 3-vertices or 4-vertices. Insertion of irre-
ducible 4 at the 4-vertices a(y in [2[1] and [2]2] then gives all
graphs in category [3] and so on. aps; and by, stand for the end
4-vertices appearing in [#|1], [#]2], and [#|3] at every stage.

Given a graph in [#]; let 44! denote the true divergent constant
arising from the irreducible 4 which was inserted at ap.—y to
obtain this particular graph in [#]; 4.2, the constant of true
divergence from the reducible graph 4 which could be inserted at
@[n_2 to obtain this graph in [#]. This last graph is reducible
because it contains as an insertion the irreducible graph with
true divergence 4,!. Similar definitions apply for 45!, 42, 4% - -,
etc. These definitions are analogous to those of Lg!, L2 ---,
Ly, L2, -+ in Sec. IV, I

With these definitions we have the following lemma.

Lemma 1

(n]=[n|1]+[n|2]+[n| 3]+ [ |4]
=AJn—1|11+A42[n—2|11+A4’3[n—3[1]4- -
+A[n—1]1]+ A2 [n—2|1]+ A3 [n—3|1]4 -+
~[4 43 [n—2{11+ A4 [n—3[1]+ -
+A2A n—3|1]+ - A4 [n—1]|2]4+42[n—2]2]
+- A~ 131+ A2 —2|3]+- -+ _
+27:Fda;w+F;wc~ (DA
2i0,,F4 gives the true divergence of [#], while F,. is the con-
vergent part. The proof of the lemma is given exactly on the lines
of the proof of Lemma 1 (Sec. IV, I) and is not repeated.

In any graph [#], we can insert self-energy and vertex parts
without causing any overlaps, while at all 4-vertices except a(n
and b(ny, all C parts can be inserted unambiguously. Correspond-
ingly, we replace Ar by Ar’'=ZAr\, Dr by ZsDr', (p+p")u by
Zy Ty in all the lines and 3-vertices of the graphs in these
categories; while for all 4-vertices except a(n; and b1, replace 8y,
by Z4'Cpuy1. For apmy and byn), however, only the replacement of
5;41' by 3uv+Tnv=Z4_l[(Z4+Td_ 1)5uv+(5uv+ T;wc)] is analyti'
cally valid.

In terms of graphs, we obtain unambiguously by the insertions
corresponding to these substitutions all graphs derived from the
irreducible graphs in Fig. 8, no graph appearing more than once.

Let Z[#J* represent the totality of graphs after these replace-
ments, [#]¥ represent graphs [#] with Ar/(e1), Dry/(e1), Tpa(er),
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and either Cyyi(er) or 8+ Tpso(er) appearing for their lines and
vertices, [#].* represent all graphs with the above factors
Ari'(e1), Dry'(er), etc., except at the 4-vertex ¢ where factor &,
remains. unchanged, and let similar definitions apply for [#]s*
and [#]ep*. Then precisely as in Lemma 2, the entire class of
graphs 2[#]* can be expressed compactly as

2T =Zy 2 {[(n]*+ (Za+Ta— 1) ([n ]+ [ 1<

+ZFTa— DI} 2)A
From Lemma 1, however, by summing up
ZnP=A2YZ([(n] [0~ dd[nav™)}
+21:F¢x(81)+vacx: (S)A

where AgX=A X4 A2XAA3XF -+ - = A IXF 42X A 35« + -,
Here 4,'%, etc., denote the true divergences with Ar,’, Dr//, etc.,
replacing Ar, Dr, etc. Fa*(e1) is the sum of the true divergences
of [n]*.

We have shown in Sec. 2 that Z;=1—T4— A4%. So substituting
(3)A in (2)A we obtain

Z[nT*=Zs Y 2iF X(er) St Fruvs®(er) ). @A

It still remains to consider the graph (5) in Fig. 8. The set
consisting of graphs (1), (2), (3), and (4) was completely sym-
metrical regarding the classes B and C (B+C=4) but the graph
(5) contains only one 4-vertex 8,,. This vertex will be called epy.
Inserting irreducible B at er;; we obtain graphs belonging to
[2]1] while insertion of irreducible C at epy gives [2]2]. These
(irreducible B and C) can be inserted again at epy in [2]1] to
obtain [3]=[3|1]+[3]2] and so on. The graph (5) in Fig. 8,"
itself constitutes the category [1]1], there being no graph in
[1]2]. When the divergence in such a graph [#] is being isolated,
the “reduced’” graph left after the true divergence corresponding
to the C part (which C part necessarily belongs to class C) has
been removed, will be denoted by [#|37]. A graph [#|3] does not
itself belong to the class of graphs [#], because for [#]3], px
must be a 4-vertex. This new 4-vertex will be called f. Similarly
let [#]4] denote the graph obtained by a simultaneous reduction
of [#] at both ends, so that in the graph [#|4] both e and f
appear as 4-vertices. Again a graph [#]4] does not itself belong
to the class of graphs [#].

To obtain all graphs that can be derived from the graph (5), we
construct the above categories [#] and then in their lines and ver-
tices make the replacements Ap=Z»Ar1’(ey), etc., except at the 4-
vertex e where 6y, is replaced by Zy1[(Zs+Te—1)8u+ (3
+Tpvele))]. If [n]*, [#]¥ are defined as those [#] in which, in-
stead of Ap, for example, appear, respectively, the factors Ar’” and
Ary, while [n]oX are [#| 17X except that at the 4-vertex e, 8, is left
completely unchanged, then by counting lines and vertices we
obtain, as in (2)A

I =Zy YZ([(n P+ (Zit Ta— D179} (®)A

Now considering the implications of the subtraction procedure
the result corresponding to Lemma 1 for [#] is as follows.

Lemma 2

(n]=[n|11+[n|2]=Ar—1|1]+An—2|1]+A3n—3|1]
4+ Cn—1|3]+C[n—2|3]4+C¥[n—3|3]
4. —(A‘C'[n—-2|4]+A1C‘[n—3|4]—{_-- ..
+A2C1[”_3 l4]+ . ')+21:Gd6#v+Gnvc- (6)A
By replacing Ar, by Ar/, etc., in [#] and summing up, we
obtain from the foregoing
Z[nT=Z{AX]*+CaX([n]*— A [n]es™)}
+2ide(el)aw+Gp.vcx(3l)- (NHA
[n],% are [#|3] with Ar/, etc., replacing Ar except that the
4-vertex f is completely unchanged, and [n]./X are similarly

obtained from [#]4] except that for both e and f, the factors §,,
and &y, are not changed. Substituting for Z[#]* in Eq. (5)A,
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and using Z,=1—T3— A X we obtain
Zn Tt =2y 1(2i8Ga(e) + G (er))

+Z ZCH{[n]*~ A (n]es™}).
We now prove the result:

(8A

Lemma 3
Zs“(EC,,X{ [n],X—AdX[n],/X}) =0. (9)A

For the proof consider the graph in Fig. 11. Construct various
categories from it, by inserting irreducible 4, successively, at the
vertex e only. The characteristic of these graphs then is that f is
necessarily a 4-vertex for all of them. After these categories are
constructed, make substitutions (4) in all lines and vertices,
except in vertex ¢ where 8y, is replaced by Zy[(Z44Ta—1)8u
+(8uy+Tuve)] and the 4-vertex f which is left completely un-
changed. The result is that we obtain as the sum of integrals
corresponding to all these graphs, precisely the expression,

ZZs 2 ([ (Zat-Ta—1)[n]es) (en),
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but this =(82/3p,p,) S F(p+i, IV, e)dtdt* which is identically
equal to zero, as can be seen by shifting p-+f—#. Since Zy=1—Tq
— A0 the proof is complete.

On account of Lemma 3, (8)A now gives

2 [n]*=Zf‘[QiS,‘,,de(el)+G,‘,c(e1)], (10)A

which is once again in the fundamental form. The required result
is thus established.

APPENDIX II

The graphs R mentioned in Sec. 2 are a set of chain graphs
“derived” from the 10 irreducible graphs in Fig. 12. Since C
parts have two external photon lines, a chain of meson loops
joined to each other by two photon lines can cause C—C and
C—M overlaps. The proof that all possible types of C—C overlaps
are comprised in the classes P, Q, R is not difficult to give from
very simple topological considerations. To show, further, that
the sum of integrals from graphs R can be expressed in the
fundamental form, a careful scheme of categorization needs to be
developed. The general principles on which the proof proceeds
is already illustrated in Sec. 2. The details are much more compli-
cated but, as no new principles are involved, we shall not reproduce
them here (Fig. 12).



