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A simultaneous phase shift analysis of #-d and p-d angular cross sections is shown to be consistent with
the charge-independence hypothesis. Disagreement is found with the theoretical phase shifts of Buckingham

and Massey.

1. INTRODUCTION

XPERIMENTAL angular cross sections for #-d

scattering at 4.5 and 5.5 Mev have been deter-
mined by Wantuch! at Brookhaven. The d-p cross
section at 10.4 Mev has been determined by Allred and
Rosen? at Los Alamos. Breit has considered these data
for consistency with charge-independence of nuclear
forces.? He assumed the p-d cross section to be the
square of the Coulomb plus nuclear scattering ampli-
tudes and the nuclear scattering amplitude to be the
square root of the #-d cross section. The difference
between p-d and #n-d cross sections, so calculated, he
found to be of the same order of magnitude as the
observed difference in the experimental curves.

We shall also treat the Wantuch and Allred-Rosen
data, but more quantitatively by means of a thorough
phase shift analysis. Our purpose is twofold, however;
not only to test the charge-independence hypothesis,
but also to make a direct comparison with the theo-
retical #-d phase shifts of Buckingham and Massey.*
Noncentral and velocity dependent forces are presumed
to be negligible throughout the present analysis.

A previous attempt has been made to check phase
shifts with the Buckingham and Massey theory by
Critchfield,® using the p-d angular cross sections at 1.5
to 3.5 Mev of Sherr, Blair, ¢t al.% In that analysis it is
supposed that p-d and #-d phase shifts should be
comparable on the basis of charge-independence.
Unfortunately, in order to reduce the cross sections to
unique phase shifts, Critchfield was forced to make
auxiliary assumptions using the Buckingham and
Massey theory itself. In particular, he assumed that the
quartet and doublet S-wave phase shifts are equal and
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negative.” His convention (which we shall also adopt)
is that phase shifts lie in the first and fourth quadrants
only.

In our analysis we want to avoid such auxiliary
assumptions. In fact, it is just this result of the Buck-
ingham and Massey theory, that the S-wave phase
shifts are equal and negative, that seems most inter-
esting to check against experiment. It is impossible,
however, to analyze #-d or p-d cross sections individually
in terms of phase shifts without some auxiliary assump-
tions. In the p-d case large uncertainties in small angle
measurements allow a fit of the data with a whole
spectrum of sets of nuclear phase shifts. In the »-d
case the matter is even worse because if, say, 2L phase
shifts are involved (including quartet and doublet), the
highest harmonic that can occur in the cross sectionisa
Pr_% which contains a Psyr_s. One derives one equation
on the phase shifts for each harmonic from Py to Pyr_,
a total of 2L—1, one less than the number of phase
shifts. Hence, the #n-d phase shifts are not even in
principle determinable from the cross section.

In our procedure we shall try to avoid the indetermi-
nacy of the individual phase shift analyses by consider-
ing the n-d and p-d cross sections conjointly. First we
shall analyze the #-d cross section into the whole spec-
trum of sets of phase shifts consistent with it, and then
see what portion, if any, of this spectrum is also con-
sistent with the p-d cross section (actually d-p) under
the assumption of charge-independence. In this way we
hope to avoid the need for auxiliary information.

The problem arises of inferring from charge-inde-
pendence a precise relationship between the p-d and n-d
phase shifts themselves. The usual statement is, of
course, that the p-d and n-d phase shifts ought to be
approximately equal. A theoretical study of this prob-
lem has been carried out by one of us,® with the result
that the phase shifts may be taken as equal (at the
energies being considered) provided a suitable compen-

‘sation is made for Coulomb effects. In particular, it is

shown that the usual device of comparing the cross

7 Buckingham and Massey found this to be true irrespective of
energy and the nature of exchange forces.

8 A. L. Latter, Ph.D. thesis, University of California, Los
Angeles, California, 1951.
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Fic. 1. Differential cross sections: 4.7-Mev #-d, 10.4-Mev d-p,
and 5.2-Mev Rutherford.

sections at different energies is a good approximation.
More precisely, the p-d energy should be about 0.5 Mev
(lab) higher than the n-d, corresponding roughly to
the p-d Coulomb barrier.

Since the d-p cross section is at 10.4 Mev, which is
equivalent to p-d at 5.2 Mev, the n-d cross section
should be taken at 4.7 Mev. The #-d at 4.7 Mev can
be found by interpolation from the 4.5- and 5.5-Mev
curves. Figure 1 shows the version of the data to be
used in the calculations below. Experimental uncer-
tainties in the #-d curve are indicated as usual by
cross-lines. The dashed portion of the curve isan
extrapolation made to fit the total cross section, 1.56
barns, known independently from the work of Nuckolls
et al® (No angular data were obtained in the Wantuch
experiment below about 60°.)

Also shown in Fig. 1 is the 10.4-Mev d-p cross section.
No errors are indicated because, for the most part, the
data are good to 3 percent, which for our purposes is
presumed to be exact. Dashed portions of the curve
represent regions of insufficient data filled in by
guesswork.

2. n-d PHASE SHIFTS
Six partial waves are expected to contribute to the

cross section: S, P and D, quartet and doublet. This
number may be-estimated on the basis of the 2R value

® Nuckolls, Bailey, Bennett, Bergstralh, Richards, and Williams,
Phys. Rev. 70, 805 (1946).
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for the interaction. For a neutron or proton scattered
by a deuteron at 5 Mev, with a radius R of, say,
4X10™ cm for the deuteron, the kR value is 1.3.
As usual,

k= (2u/M)E,

where u is the reduced mass (2 the mass of a nucleon)
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F16. 2(a). Quartet S and P, and doublet P, phase shifts corre-
sponding to assumed values of doublet S, for the 4.7-Mev #-d
cross section; (b). Quartet and doublet D-wave phase shifts.
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Taste L. Right side of Eq. (8) for §=>54.7°, to be compared with left side which equals —0.0262-0.012 (empirical value).

u 1++ 244 14— 24— 1—+ 22—+ 1—— 2——
0 —0.014* —0.029* —0.029* —0.013 +0.022 +0.007 +0.007 +0.022
0.2 —0.017* —0.030* —0.028* —0.008 +0.021 +0.002 +0.010 +0.023
0.4 —0.019* —0.031* —0.027* —0.004 +0.021 —0.002 +0.013 +0.024
0.6 —0.021* —0.027* —0.027* +0.001 +0.021 —0.008 +0.015 +0.021
0.7 —0.023* —0.023* —0.028* +-0.006 +0.022 —0.013 +0.017 +0.017
0.8 —0.022* —0.022* —0.029* +0.007 +0.022 —0.013 +0.015 +0.015
0.9 —0.017* —0.020* —0.027* -+0.006 +0.021 —0.013 +0.011 +0.014
0.95 —0.012 —0.020* —0.024* -+0.005 +0.017 —0.011 +0.005 -+0.013
1.00 —0.001 —0.020* —0.020* —0.001 +0.013 —0.005 —0.005 +0.013

and E is the relative energy in the center-of-mass
system.

A Fourier analysis of the #-d cross section confirms
the estimate that the D wave is the highest to enter.
The result is

6(9)=do+411P1(0)+(12P2(0)+03P3(0)+G4P4(0): (1)

where @,=0.1244-0.004, ¢,=0.0514-0.008, a,=0.118
+0.006, a3=—0.0574-0.004, and ,=0.0133-0.001.
Errors were estimated from the error lines on the n-d
curve in Fig. 1, except for a9, which was derived from
the total cross section of Nuckolls et al.

Let 6.2 and 8P denote the Lth quartet and doublet
phase shifts, respectively. In terms of these,

o(0)=(2/3%%)| g.°| 2+ (1/3k%) | g2 2, )
where
2.2=exp(16,9) sindo?+3 exp(#619) sind;°P1(6)
45 exp(4659) sind,?Py(6),
g2 =exp(i8,?) sind,P+3 exp(i8,) sindPP1(6)
=+ 5 exp(28:P) sind;P P2(6).

It is convenient to introduce the following notation:

©)

x=sinde?, #u=sind,?,
y=sind;?, v=sind;>, 4
2=sin8,¢, w=sing,’.

If we compare the expressions (1) and (2) for () and
equate coefficients of Py, Py, - - - P4, we obtain the five
equations which the six quantities in (4) must satisfy.

(a) 2224+u2+3(2y*+0%)=3.54+0.12
(b) 2[xy(1—a?)}(1—9%)H-a%"]

F[uv(1—22) (1 — %) 14 u2?]=0.444-0.04
(©) 2[xy(1—a?)}(1—2%) -a%"]

+uw(1— ) (1—w?) w1+ 3(2y°+0%)
=0.330.02 (5)
(d) 2[yz(1—y)}(1—2) %]
+[vw(1—12)}(1 —w?) 42207
= —0.0944-0.007

(e) 222+w?=0.0304-0.005.

We have set k=3.17X102 cm™! corresponding to
4.7-Mev n-d.

To solve Eq. (5) we ignore the uncertainties in the
constants and treat the equations as exact. The effect
of the uncertainties will be discussed later. Since there
are six unknowns but only five equations, we shall have
a one-parameter family of solutions; and because the
totality of solutions encompasses the entire permissible
range of # from —1 to 41, it is convenient to choose %
as the parameter. The equations can then be solved by
a simple perturbation technique. The quantities z and
w are expected to be small and are set equal to zero in
(c). Then (a), (b), and (c) become a set of three equa-
tions in three unknowns, with # regarded as a param-
eter. These equations can be easily solved and the
solution introduced into (d), and then (d) and (e)
solved for z and w. The values of z and w so obtained
are then applied to improving (c) and the whole
process iterated.

The solutions of Eq. (5) are plotted in Fig. 2. As
shown, both S-waves have positive phase shifts, but
this is not the only possibility since Eq. (5) is invariant
under a complete change of signs of the set #, ¥, z or
%, v, w, or both concomitantly. Hence, there are really
four sets of solutions implied by Fig. 2. Note that for a
given value of the 25 phase shift, there is only one
value for the quartet S-wave phase shift. (45) but two
possible P-wave phase shifts denoted by subscripts 1
and 2. For each set of P-wave phase shifts, there are
two possible D-wave phase shifts, denoted by 4 and B.
Error lines are not indicated for the D-wave phase
shifts because this part of the analysis was rather crude.
For the S and P waves, errors were estimated by
solving Eq. (5). with the constants varied over the
limits of the experimental certainty.

3. COMPARISON WITH d-p CROSS SECTION

Let 5(0) be the 10.4-Mev d-p angular cross section
(center-of-mass system). The wave number £ is given by

2= Qu/®E,

where E=2(5.2) Mev. Setting #-d and p-d nuclear
phase shifts equal, we have approximately

k5(0)=%| g+ g2+ get8:2 7, ©)
with g,2 and g,2 as defined by Eq. (3), and

go=—(n/1—cosf) exp[in In(2/1—cosb) ],
n=eu/ik. (7)
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TasiE II. Right side of Eq. (8) for 6=125.3° to be compared with left side which equals —0.0032£0.005 (empirical value).

“ 1++ 24+ 14— 24— 1—+ 2—+ 1—— 2——
0 +0.001** +0.004 +0.004 0 —0.004 0 0 —0.004
0.2 o** +0.003 +0.005 —0.001 —0.005 +0.001 0 —0.003
04 —0.002** +0.001** -+0.005 —0.001 —0.005 -+0.001 -+0.002 —0.001
0.6 —0.003** —0.001** +0.004 —0.003 —0.004 +0.003 -+0.003 -+0.001
0.7 —0.003** —0.003** +0.004 —0.005 —0.004 +0.005 +0.003 -4-0.003
0.8 —0.003** —0.003** +0.004 —0.005 —0.004 -+0.005 +0.003 -+0.003
0.9 —0.004** —0.003** +0.003 —0.006 —0.003 +0.006 +0.004 -+4-0.003
0.95 —0.004 —0.003** -+0.003 —0.006 —0.003 +0.006 +0.004 -+0.003
1.00 —0.006 —0.001** -+0.001** —0.006 +0.001 +0.006 -+0.006 +0.001

The approximation in Eq. (6) is in setting argl'(Z+1
+1i7n) equal to zero, which makes little difference in our
results because 7 is small (=0.069).

Subtracting Eq. (2) from (6), we find

70~ @/ B)o®)—0.0)
=(2/3k?) Re[g.*(2g.%+g:2)], (8)
where k20.(6)=|g.(0)|2 The left side of (8) is known

directly from experiment. The right side assumes

different values depending upon the choice of phase
shifts. Our procedure is to sample all the phase shifts
of Fig. 2 and see what sets give agreement with the left
side. In principle, this might be done at several angles
leading eventually to a unique determination of the
phase shifts. However, since the D-wave analysis of
Fig. 2(b) is very unreliable, and the (2L+1)-weighting
favors the imiportance of the D-wave in the cross section,
our procedure would lead to indefinite results at angles
where the D-wave makes a large contribution.

There are two angles where the D-wave does not
enter at all, 54.7° and 125.3° (the roots of P;). For the
reasons given above, we shall confine our attention to
these two angles. Table I shows the results for §=54.7°.
The tabulated values represent the right-hand side of
Eq. (8) for various possible choices of the phase shifts
given in Fig. 2(a). The phase shifts used were those
corresponding to the most probable experimental values
of the cross section, but the error incurred this way is
negligible for our purposes. Note that any value of
|#| from O to 1 is permitted. The P-wave solutions are
bifurcated, the forks being 1 and 2. Other solutions
are generated by sign changes of x, v, z and #, v, w,
independently. Thus for each |#| we have eight cases
to consider, of which (24 —) is typical. The symbols
mean: the second fork of the P-wave, the positive

solution for x, and the negative solution for #. The
values in the table are to be compared with the left-hand
side, which is —0.026. Actually the uncertainty in the
n-d data makes this comparison value —0.0264-0.012.
Those entries that are in agreement with these limits
have been marked by an asterisk.

The same procedure is followed for §=125.3°. The
right side of Eq. (8) is shown in Table II and is to be
compared this time with —0.0034-0.005. Those values
that are allowed at this angle as well as at 54.7° are
distinguished now by a double asterisk.

The most significant fact about Table IT is that there
are any double asterisks at all. Their occurrence may
be construed as evidence in favor of the charge-inde-
pendence hypothesis, since our comparison of p-d and
n-d cross sections has depended primarily on this feature
of nuclear forces. On the other hand, it is gratifying
that the possibilities can be so well delimited by using
data at two angles only.?

With improved #-d data the phase shifts could prob-
ably be determined uniquely. But from Table IT alone
we can already point out a sharp disagreement with the
theory of Buckingham and Massey. For ordinary forces
their values of 2S5 and 4S5 is about —64° at 4.7 Mev,
and —71° for “mixed exchange,” whereas according to
Table II the S-wave phase shifts are almost certainly
positive. To be sure, Buckingham and Massey have
considered only a few particular types of exchange, and
it is possible that a different choice of nuclear param-
eters would lead to better agreement.

We wish to thank Dr. R. J. Finkelstein and Dr. D. S.
Saxon for helpful discussion.

10 Other angles were considered but no further elimination
occurred.



