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Tomonaga's intermediate coupling theory for scalar mesons is extended to pseudoscalar mesons with
pseudoscalar coupling. The single free nucleon is discussed. Recoil is included nonrelativistically and the
divergences are removed arbitrarily by a cutoff at the nucleon rest mass. Effects involving one virtual pair
are allowed for, on the assumption that two or more virtual pairs may be neglected. The calculations are of
a preliminary nature and certain possibilities for refining them are discussed. As they stand, they indicate
that even for f'/47' —10, a renormalized weak coupling expansion should give a very slowly converging,
but not entirely distorted picture of the meson cloud surrounding a nucleon for pseudoscalar coupling.

INTRODUCTION

'HE interpretation of recent meson experiments,
based on general considerations such as parity

conservation and detailed balancing, shows that the
m-meson is pseudoscalar. ' On the other hand, purely
theoretical arguments have shown that only the theories
of scalar and pseudoscalar mesons with scalar coupling
can be made finite to any order in the coupling constant
by renorInalization, and of these the pseudoscalar is
preferable since it contains one less arbitrary constant. '
This much agreement between pure theory and the
experimental facts is encouraging. But it is still not
possible to make a detailed comparison of renormalized
pseudoscalar meson theory with experiment because
renormalization has been carried out in the general
framework of an expansion in the coupling constant.
Calculations made on the assumption that this constant,

f, is small lead to values of f, to give the required
orders of magnitude, (f'/47r~10), , which invalidate this
assumption. ' This paper attempts to develop methods
of calculation which do not depend on the smallness of
the coupling constant and thereby to check how much
can safely be deduced from the first orie or two terms
in the small coupling expansion. Preliminary calcula-
tions are presented, and the work is mainly of methodo-
logical interest.

The simplest system which one can consider is that
of a single free nucleon. By "free" we mean a real
physical particle capable of interaction with the meson
field. For the purpose of calculation it is usual to
analyze this state in a representation based on the bare
mesons and bare nucleons. By "bare" we mean fic-
titious mathematical particles which are eigenstates of
the bare Hamiltonians with no interaction term. The
free nucleon state has nonzero representatives, besides

* Now at Cavendish Laboratory, Cambridge, England.
t Now of Government College, Lahore, Pakistan, and St. John' s

College, Cambridge, England.' R. E. Marshak, Revs. Modern Phys. 23, 137 (1951).' P. T. Matthews and Abdus Salam, Revs. Modern Phys. 23, 311
i1951l.

'For nuclear forces f'/4m —4; H. Bethe, Phys. Rev, 76, 191
(1949). For photomeson production f'/47f —40; K. A. Brueckner,
Phys. Rev. 79, 645 (1950).While to give the right orders of mag-
nitude for the anomalous nucleon magnetic moments f'/4m~10;
K, M. Case, Phys. Rev. 76, 14 (1949).

that corresponding to a single bare nucleon, and for this
reason the free nucleon is sometimes pictured as a bare
nucleon surrounded by a cloud of bare mesons and bare
nucleon antinucleon pairs. Our purpose is to examine
the probability distribution of this cloud.

More explicitly if P is the state vector of the inter-
acting meson and nucleon fields, which represents a
single free nucleon, then we wish to calculate the
representatives (P~p, ; q, ; k, ) where p,
q, ; k is a state vector in Fock space, p, q, and k
being the moInenta of the bare nucleons, antinucleons,
and mesons, respectively.

These representatives are the solutions to a set of
Schrodinger equations which are derived in Sec. 2. For
comparison with the later work these equations are then
solved by successive approximation in f, according to
ordinary weak coupling theory. To first order, this
allows for, at most, one meson or one meson and one
pair in the cloud, and assumes that by far the largest
representative is that for which there are no particles
in the cloud at all, Q ~

p).
An alternative approach is Tomonaga's theory of

intermediate coupling, 4 which was applied by him to
the free nucleon in scalar meson theory with complete
neglect of recoil. In this approximation no pairs can
occur, but one allows for any number of mesons in the
cloud, with the simplifying assumption that they all
lie in the same state. An exact solution can be obtained
in this form for neutral scalar mesons, and indeed
Glauber and Luttinger' have developed a neat method
for deriving a complete set of exact solutions. These
show that if the coupling constants of the order here
considered are inserted in scalar theory the largest
representative corresponds to a state in which at least
one meson is present, and the small coupling approxi-
mation breaks down completely. '

In Sec. 3, this method is extended to the positive
energy subspace of pseudoscalar theory with recoil
included nonrelativistically. (That is to say pairs are

' S. Tomonaga, Prog. Theoret. Phys. 2, 6 (1947). Applications
with the same approximations have been made by K. M. Watson
and E. W. Hart, Phys. Rev. 79, 918 (1950).

'R. J. Glauber and J. M. Luttinger, unpublished. We are
deeply indebted to Dr. Glauber for showing us his work on this
subject.
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arbitrarily excluded, and it is assumed that the momenta
of the particles in the cloud are small compared with
the nucleon rest mass. ) It is shown in subsections 3
(a), (b), and (c) that for this model the Hamiltonian
can be split into two parts, the largest of which can be
treated exactly by the Glauber-I. uttinger method. The
remainder is then considered in subsection (d) as a
perturbation, using the complete set of exact solutions
as a basis.

In Sec. 4 the method is extended to the case in which
it is assumed that one pair, but not more, may appear
in the cloud. Unlike the model of Sec. 3, this may be
regarded as an approximation to the real problem. In
treating the pair, only large components of the inter-
action are considered. A solution similar to that ob-
tained above proves to be still possible, and is compared
with that given by weak coupling theory.

The energy, corresponding to the eigenstate con-
sidered, includes the self energy of the free nucleon and
is divergent. In this paper all divergent integrals are
cut oB at the nucleon rest mass. This is a questionable
assumption in pseudoscalar theory which aGects the
numerical conclusions. This is discussed in the last
section.

%e deal so far with a single stationary nucleon in
interaction with neutral mesons. This is a purely aca-
demic problem. In the appendix a method for extending
these considerations to charged mesons is indicated. If
the results were further generalized to describe a
nucleon of given momentum, the matrix elements of an
electromagnetic potential between two such states would
lead directly to an estimate of the nucleon magnetic
moments. It was felt that the method must be consider-
ably refined before it would be worthwhile carrying out
such a calculation, but we have this possibility in mind
in the final discussion.

1. STATE VECTORS IN FOCK SPACE

%e wish to find the representatives in Fock" space
of the state vector which represents a single free nucleon.
As a preliminary we consider an assembly of bare
bosons which may lie in any of an infinite set of states
determined by the momenta ki, k2, , k . . If the
assembly consists of particles in a particular set of
states represented by the upper suffices 1, , r, , n,
this can be represented by the ket

is the number of particles in the state c.' If we dis-
tinguish between the orderings of the factors in the
ket (1.1), the number of such kets which corresponds to
a single ket (1.2) is

n!II(n') '

Define the normalization of (1.1) by

(1.4)

~ n .)=(ni)&g(n i)—&k' k" k") (15)

where k', , k") is any particular ket satisfying (1.3).
Now since (1.2) is normalized we have the unit matrix

~ ~ 0 gg ~ ~ ~

~ ~ ~ )tg r ~ ~

~ ~ ~ 4t ~ ~ ~ ~ ~ ~ 4I ~ ~ ~

k', , k", , k")n! (1.6)

Xg(n. !)-'(k', " k k-

~ k' k' k"))
n

X (k', , k', , k" dk' dk"

and
q. l n. )=n.&l n. 1 ~ ~ ~ ). —

Combining (1.5) and (1.7)

(1 8)

q*(k) lk', , k")= (n+1)&l k', , k", k). (1.9)

Combining (1.5), (1.8), and (1.3),

q(k.) lk' . k" k")
=n-~ P, ~,.ll i, ",k, "k-, k.-i)

where the notation on the right-hand side means that
kr is dropped from the ket k', k" k~) if k"=k,.
It follows immediately that

g.f(k.)g(k.) l
k', , k")

=n-~gy(l )lki ".k-i k+2 . ",k.) (1.1O)

For a field of bare fermions' we can define a ket by
the relation

) =(—1)'(n~)'lp' ",p" "p"), (1 11)

by (1.5) and (1.4). We will have frequent occasion to
use the unit matrix in its latter form.

Now we have the relations

q.*l " n. ")= (n.+1)~l,n.+1, ), (1.7)

1i " 1 ." 1-~) ) ) ! ) ) )

or alternatively by the normalized ket

8]) ) Sg) )

~& V. Pock, Z. Physik 75, 622 (1932).
6 By B„we mean zero except when k"=k,.

(1 2)

(1 3)

where, n, ) is again normalized. From this it
follows that

pi . . . pr . . . pn) (n!)—kal&a42. . .o+r. . .a+&)0 (1 12)

7 The ket k') ~ ~, k") defined above is equal to (e!) ' Zp times
the ket k', ~, k") defined by Dirac. P. A. M. Dirac, Quantum
mechanics (Oxford University Press, London, 1947), Chapter X,
Eq. (3).' The notation is that of Dirac (see reference 7, Sec. 65) except
that a~=y, a=y ond our p', ~ ~, p") is equal to (e!) 'Zpp times
p' ~ ~ ~ p") defined by Dirac.
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It can then be deduced that

p1 . . . pn)(yl, ' . . yn dpi. . .dyj

(1.13)

With these relations it is a simple matter
equations for the representatives, Q ly,
k )

to derive the
' ~ ~ ~ ~ A ~ 0 ~

'%l

2. VfEAK COUPLING THEORY

(Here the upper suSxes also specify spin and the inte-
grals include sums over spins. ) and

o*(n) I
n', ",y")= (++1)'I n, y', , y"),

Z. f(p.)o(p.) ly' " n', ",y")

=~ '&.(—1)' 'f(n") ly', " , n" . ', y"", "n"). (1.14)

The state (P, which represents a single free nucleon,
reduces to a single bare nucleon as f tends to zero, and
the only nonzero representative would then be (fly).
We have inserted in (2.6) the typical ket which is related
to y) through the interaction (2.3). Our object is to
solve this equation as generally as possible by
Tomonaga's method of intermediate coupling. '

For comparison with later results we first solve this
equation by successive approximation in f to obtain
the familiar results of weak coupling theory. To 6rst
order in f (2.6) is

(Po—&)(4 I y.)

f' E—dko~+'(p —k~)Pvog+(n*)&o '(4 I y —4;k)

+Z ~dn'dk2'I+*(p. ')PVol-( —n' —»)..oJ J
The stationary Schrodinger equation for the inter-

action of nucleons:with pseudoscalar mesons, with
pseudoscalar coupling is, in the bra form,

&&4-~(elp.', y. ; -y'-»; k),
(p +o&o &)(—fly~' k)

(2 &)

(pleo+a, El =0, —
where E is an eigenvalue and (g an eigenstate;

(Po'+ po"+qo+&o —~)(4 I p.', y,";qo, k)

(2.1) = —f'2-&I+*(p'+k-)6"I+(n ')&o '(&lp'+k-), (2 8)

dp Z.{o.*(p)o.(p)+&.*(p)&.(p)}p.

+ dkq"(k)q(k)ko,

po=(lnI'+~')', &o=(lkl'+~')';
and

H, =f' dydy'dkP„b(momentum)(a„*(p')

(2.2)

+&.(p'))(o.(p)+&.'(p))(q*(k)+q(k))

&&oN.*(p')Pvog {y)&o-', (2.3)

f'= 2-&(2z)-&f. (2.4)

u*, e; b~, b; and q~, q are the creation and annihilation
operators for bare nucleons, antinucleons, and mesons,
respectively. P and yo are the usual Dirac matrices. '
8 (momentum) is a 8-function of the momentum transfer
produced by the operators. The bare Hamiltonian
dehnes a complete set of kets for the bare particles,

H —E'ly' ~ y z q' ~ q ~ k' k")=0 (25)

where the sures r and s denote spin. These can be
normalized as in Sec. j. and form the basis of a repre-
sentation in which (2.1) becomes

(|t I&o+&i—&lp.' "y"'+'
Xq,', q, z k' k")=0. (2.6)

9 We take A=a= i, Heaviside units and 8-function normaliza-
tion. r, s, t (=1, 2) denote spin states.

f'2 '—Lo~ '{ y'-k—o)PV—oN+(n')4

&&6(p"-y)(4 I y.")-'I-'(-p"-ko)
Xylol, (p.")ko-'&(y' —y)(4 I y.')3. (2.9)

These equations are obtmned by (1.7), (1.8), (1.13),
and (1.14), the bra (f, being brought through to the
left after the operation of the operators. The 8-functions
appear because all representatives have the same
momentum. To zero order in f'

E=po, (ply, )=2-&. (2.10)

(The factor 2 & is a normalization to allow for the two
possible spin states. ) Substituting (2.10) into (2.8) and
(2.9), determines (Pl p, k) and g ly', p"; q; It) to this
order. Substituting these expressions back into (2.8)
gives the usual expression for the self-energy,

Qg= g—po

The terms arising from (Pl y', y"; q; k) are

(f')' Z dn dkg+( 'n)Pool-( y' ko)— —

X&o '(po'+qo+&o) 'LN- ( p' ko)Pvog+(p. ')&(0)

—I-*(—y —ko)Pvog+(p. )~{p'—p)j (2 11)

The first term is a vacuum effect due to unrestricted
creation of the pair (y', q, k) for any values of y'. The
second term is the restriction on this because of the
presence of the electron p. The state (P represents a
free nucleon plus the vacuum. Only the second term
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contributes to the nucleon energy. One thus obtains the
usual expression for the self-energy of the nucleon itself.

A similar separation of vacuum terms is required
when considering the probability of finding a pair in
the nucleon cloud. Thus the squaring of (2.9) gives the
probability of a pair and a meson in the vacuum and in
the nucleon cloud. The probability for the nucleon
cloud alone is given by the cross terms only, namely,

~

—(f')' I+*(y.)PVoN-(ufo)&-(11o)Pro&+*(P.)
R

ko(po+go+ ko) '
where

where

V(p+I „y,)=11,*(y+k)p»~, (p)(k,)--:. (3.4)

The energy for the state Q is

W= g I
IIo+a,

I y)

(dk)" 2 Q I &o+II
I p ";k', ",k")

ri

X(p,-;k, ",k-ly), (3.3)
where

Note that this separation of vacuum eR'ects is exact
in weak coupling theory because the analogous calcula-
tions for the vacuum state alone lead to precisely the
expressions which have been dropped. (The separation
of vacuum effects is dealt with particularly neatly in
Feynman's formulation. ")

3. INTERMEDIATE COUPLING —NO PAIRS

(a) The Energy
We now develop Tomonaga's solution which is inde-

pendent of the size of f, but with the quite arbitrary
restriction that all representatives involving pairs are
neglected, (projection on the positive energy subspace).
For pseudoscalar theory this cannot be regarded as an
approximation to the complete system since we are
actually neglecting the large components of the inter-
action. The typical equation is

O'I&o+&1—&lysin' k', , k")=0, (3.1)
where

pn —P P km (3.2)

P is the total momentum of the cloud, which will be
taken to be zero in the rest of this work. It is legitimate
to put in the restriction on the form of the representa-
tives, since, as will be seen immediately below, the
Eqs. (3.3) only relate representatives of the same
momentum.

I
Alternatively, one could insert a 8-func-

tion in the form for g I
pl"; k', , k").j Substituting

for H and Hl from (2.2) and (2.3) and using (1.7) and
(1.8), one obtains an equation in which all operators
have been replaced by c-numbers. The bra (P can then
be brought through to give directly the (stationary
Schrodinger) equation for the representatives (wave
function);

(g p n+pn k r)(alp n kl . . . kn)

=fL(~+1)'Z. ' ~*(y, p."")
X Q,

I p n+1 ~ kl . . . kn+1)dkn+1

+~ 'Z Z ~(y"+k." yl")

X(P(y"+k," k' k"-' k'+', , k )], (3.3)
"R.P. Feynman, Phys. Rev. 76, 649, 669 |,'1949).

This can be derived immediately from (3.3), glvlng

t (dk)n Q (p n+, ilk n)(pip n kl . . . kn)o
n t

+f' (~+1)'J"2 ~*(y" p "+')

X (lpl p n+1 ~ kl . . . kn+1)

X(p n. kl . . . kn)
I
p)dkn+1

+:2 U(p-- p-)(~lp.-'k

X(p" k', k"Ilp) (36)

Here we have also replaced

Z f(k")

by nf(k") in the integrands (where f is any function).
If we now change the variable of summation in the
second term from n to I+1, the last two terms are the
complex conjugates of each other. Thus

lF=Q t (dk)" p,{(p"+ek,")ply," k' ' k")'
n

(p"; k, , k-l~) =2-~.IIf(k), (3 8)

where J'f'(k)dk=1, and thus

P c„'=l. (3.9)

f(k) is the wave function in momentum space for a

+2m&R[f' g, U(y, "-', pl")

XQ, ly
n—1 ~ kl . . . kn —1)

X(y";k', ",k" lk)]). (3.7)

We now introduce the Tomonaga approximation
which is that
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single meson, giving its momentum distribution. f(k) is
interpreted as the lowest state for a meson bound to the
nucleon and the assumption is that all the mesons in
the cloud go independently into this single state. [Note
that the wave function is assumed to be independent of
the spin direction of the nucleon. However, for a given
set of k" the nucleon momentum is fixed by (3.2). The
factor 2 ' is a normalization caused by the two possible
spin states of the nucleon for a given set k".] Substi-
tuting (3.8) into (3.7), we have

By inserting the explicit values" for u(p) we find

s)t

O(p")O(p"-')(ko")-', (3.»)
«+p e 1-«+p p

where
(3.19)g(p) = [1+p'/(«+pp)'j —'*.

W =Q {Nn„c„'+2e'P„c„ ic„},

By expanding the integrand of P„ in the same way as
was done for a„and dropping odd terms which will not

(3 10) contribute,

where

and

n

«k)"(& 'po+kp")& f'(k")
r

(3.11)
p.=f' " (dk)"'k*( +po")-'(ko")-'S(p")

n—1

Xg(p" ')f(k") p f'(k"). (3.20)

n —1

p f~ t (dk)—m p 2—1p(p~n. —I li n)f(kn) g f2(kr) (3 ]2)
s, t r

n =)s-'
(~ k'+ +k"

~

'+«')i g f'(k")(dk)"
r

K

+)" (k'+ p')'f'(k)dk (3 13)

where rc and p are the nucleon and meson masses, respec-
tively. Make the assumption that

ik'+ +k"
i
(« (3.14)

and expand in terms of the ratio. Then the first term of
o.„is approximately

n
)s-' {«+ [(k')'+ + (k")']/(2«) }gf'(k") (dk)".

and we thus have

It is now our main purpose to find f(k) and c„which
make W a minimum, subject to the condition (3.9). The
momentum distribution of each meson is given by f(k)
and c gives directly the probability distribution of the
numbers of mesons in the cloud. The first step is to
reduce the expressions n„and P„ to integrals over a
single variable.

We have (introducing the cutoff at «)

Putting ))=1 (and. dropping the suffix on Pi),

p=f'„2 U(p. ', p ')f(k)dk,
s, t

(3.21a)

=f' sk, («+pp ) kp 'b(p )f(k)dk

=f' t g(k)f(k)dk, (3.21)

k'= )' f'(k) k'dk. (3.22)

This is reasonable since the directions of the vectors h."

are assumed to be at random. The k" dependence of the
integrand is made to be the same as in P by the insertion
of the required factors. In the compensating factors k"
is replaced by k. Then,

p p[«+(k2+«2)I][«+())k2+«2))]—1

XS(&)S(.—:k)O[( -1)-:kl
=p[1—(I—1)(k'/2«')] n=2 3 (3 23)

the last equation following from an expansion in (k'/«').

(b) Evaluation of C„

where g(k) is defined by the final equality. Returning to
p„we replace (p")' by )sk' (not n'Ip'), where k is defined
as the average value of k,

n„=)s '«+n, (3.15) Wp ——+{Inc„'+2))&Pc„ ic„}, (3.24)

where

n= Jt k 'f'(k)dk (3.16)
W'=Q 2n~p 'c„ ic„, (3.25)

kp'= kp+ (k'/2«).
"W. Heitler, Qgmfum Theory of Radiatiorl, (Oxford University

Press, London, 1944), Chapter III, Sec. 9.
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where

so that
p'= p p—

W —x= IVp+ W'. (3.27) (3.35)

~ (m!)&(rs!)&(—1)" "+'
(3.26) (I

~
c")=exp) —-'b'jp b" "+'.

r=p l!(m—1)!(rc—m+l)!

The significance of this splitting of W is that cr and P
are independent of n. This a11ows us to employ methods
previously applied to the no recoil approximation to
derive a complete set of exact solutions for the mini-

mizing of 8'0. 8"' wi11 then be treated as a perturbation
using this set of solutions as a basis for the expansion.

The minimal equations for W() subject to the con-
dition (3.9) are

(rscr —E)c„+P(m&c„r+(n+ 1)bc„~i)=0, (3.28)

where 8 is the eigenvalue of the energy. This can be
written

The solution belonging to the lowest level is thus

(e I
cs) =expL —tbsl(-b). (rc i)-b,

with corresponding energy

E'= —Ps/cr

(3.36)

(3.37)

Both (rs~cs) and E' are here given as functions of f(k)
which has now to be chosen to make E' a minimum. .

This can also be done exactly using Schwarz' inequality"
and gives

f(k) =l. '*g(k)(kp') ' (3.38)

where g(k) and kp' are defined in (3.21) and (3.17) and
) "+ ( "—'+( + ) "+')= ~ ( ) I. is a normalizing factor.

where

c=E/cr and b =P/n. (3.30)
(y K

1.=4z. )I f'(k)ksdk= 4rrA. (3.39)

We now introduce the notation

c.=(Nic), (3.31)
Substituting for f(k) into (3.17) and (3.21), we obtain
from (3.30)

b =f"(A/rr) &, (3.40)where the bras (I can be interpreted as the eigenbras
of a family of bosons with only one available energy
level (or, equivalently, to the eigenbras of a
harmonic oscillator). Now,

where

c) =g„rs)(a~c).

single f"= (J/27rf) (3.41)

A has been evaluated graphically (with cutoff at x)
anci leads to

so that, if q and q* are the annihilation and creation
operators associated with rs), the Eq. (3.29) can be
written

~
q*q+b(q+qe) (c)=pc) .(3.33)

b =f"(2/25). (3.42)

The plot of f(k) is given in Fig. 1. (n~Ics) =c„s can
readily be evaluated for particular values of f". For
fs/4rr=10 we have

A complete set of solutions to this equation has been
given" by Glauber and Luttinger, namely,

co =0.95 cg'= 0.05, c2'= 0.00.

For fs/4rr=40 we have

(3.43)

em m —b' (3.34)
cps =0.79, cts =0.18, css =0.02. (3.44)

"On (3.$3) make the unitary transformation

c)=exp! —b(q' —q) jc').
The equation reduces to !q*q bs !c')e—0 —But th=is . is the
standard oscillator equation so that we have a set of solutions

c')=m), m=1 2

giving the spectrum for e, e =m —b~. From (5.14}and (5.16)
c~}=expI —b(q*—q}$m}.

Since Lq*, qj(=1) is a c-number, t see R. J. Glauber, Phys. Rev.
84, 395 (1951)g

exp[ b(q* q) $= exp/ ——',bsj—exp L
——bq~ j expLbq].

After substitution in (5.18) we have the equation for the ket

By substituting (3.40), (3.38), (3.36), [with g(k)
defined by (3.21a)] into (3.8), it will be found that,
apart from the normalizing factor exp[ sb'j, the-
intermediate coupling gives exactly the same expression
for P~(ib~ p„k) as small coupling theory. Thus one goes
into the other as the coupling becomes small.

"This is also due to Dr. Glauber and Dr. Luttinger. The lowest
energy Z'= —is'/a. By (5.1) and (5.2)

80 — f(k)g(k)A P(k}k0'dk

f(k) =k(kp')&f(k), g(k) = k(kp') &g(k).

Z' — (k}g(k}dk

Let

Then

which, by Schwarz' inequality, is a minimum if f(k) fl(k). We
thus have (3.38}.

(m!)~(m —~+i!)»
=exp[——,'b'j Z Z ( 1)~b~+' —

I
m '1+j), —

j 0 l 0 jI!m—E!

which follows from repeated use of (1.7) and (f.8). Equation (3.35)
is direct consequence of this relation.
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(c) The Perturbation

With the notation introduced in (3.31), (3.24) can be
written as

Wp ——(clwlc) =Q„, (cln)(nlwln')(n'lc), (3.45)

where
Ã R' S =Rex) (3.46)

(n —1l~ln) =(nl~ln —1)=n'P.

The operator w has the eigenkets and eigenvalues c )
and E derived in the last section;

Similarly,

,%lcm) —@mews)

W'=P, (cln)(nlw'In')(n'Ic),

(3.48)

(3.49)

where

(n —11K' In)=(nlm' In—1)=n&P„' (n=2, 3, ). (3..50)

Suppose that the eigenkets for w+w' are c")+d")
where d") is of the same order as w'. Then by general
perturbation theory

(c"ld') =(c Iw'Ic')/(E —8'). (3.51)

The modification of (n, lco) due to w' is thus

(nld') = P (nlc")(c"Id')

Pre. 1. Plot of f(k).

and
(PIp, ",k'. k")=(&11,n),

(~ I p.', p»"; q.";k' "k")=(413,n),

(4.1)

(4.2)

involve more than one pair are negligible. (The energy
contained in the rest mass alone of these neglected com-
ponents is so large that it is unlikely that they are
appreciable, unless the average energy of the mesons in
the cloud is comparable with that of a pair. ) The typical
representatives are

(4.3)= p Q(nlc'")(c" Il)(llw'I j)(jlc')(nm)
m-1 l, g'

= 2 2 —(nlc-)(c"
I j)(j—1Ic')j'

~n=1 j=2

The 6nal equality follows from (3.23). The only term
which is nonzero is j=2, since (j—11c') is negligible
for j&~3. Thus

where
H= HO+Hi.

1=(4I4)=(411,n)'+(413, n)'
00 Also

(nld')= P —(nlc~)(c 12)(11c')(k'/2a')(P/nm) (353) (4 6)
Now

qe (p~+p»~gnkn)

The representatives satisfy the equations

g IH —ZI3, n) =0, (4 4)

and the energy is given by'4

(j-')("'/'")( /. -) ('")
(4, IHIP', ) =(4, IHI 1,.)(1,.14,)+(~IHI3,.)(3,.14,)

=(41HI1 n)(1 'nil)+&(413 n)' (45)

Now, by (5.21),

(nlc")=(—1)"- (mlc"),

so that the largest component of d') is

(Old)= —(0lc')(c'12)(1lc')(8/2~')(P/a) (355)

This is readily evaluated and leads to a negligible
reduction (less than 0.01 for f!/4m = 10) in the prob-
ability for the single bare nucleon state.

4. ONE PAIR APPROXIMATION

~((~IHI~)-~(~l ~))=0.

Substituting from (4.5) and (4.6),

~X=a(V-Zg I1, ) )=0
where (4.8) defines X and

~= g IHI 1, n)(1, nlrb).

(4 &)

(4.8)

(4.9)

We will minimize X, ,subject to the Tomonaga approxi-
mation for (PI 1, n) Note tha. t F depends on ($13, n)
through the operation of Hi on11, n). This can be deter-
mined in terms of (f1 1, n) through the Schrodinger

We now attempt to solve the problem under the less
~ ~ ~ '41, n) (1, n implies summation over all such states. 1, n)restrictive assumPtion that one nucleon Pair may be (j n+3 n) {3 nis theunit operator, if representativeswith more

present in the cloud, but that the representatives which than one pair can be neglected.
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f' (n—+&)'2 'f(& (n 'a."',,&"")

X(0 ly(", k' "k"")~(y"-y"+')

Vn(p ii
q

n kn+I)Q,
l p

i kl. . .kn+I)

Xg(pi pn+I) }dkn+I+ (2n) —',

n

X+{V*(p'q-1 )(Plp,",kl" I -l, k+I" k-)

X8(y"+ P k"')—V*(p,",q.", k")
r'H r

X(&l p ', k' k"-' k"+' k")

where

n

X~l y~P k" l, (4.10)
E.

V(p„q„, k) =III*(p)py, u„(q)k() l (—4..11)

LN(g) is a negative energy state]. This expression for
the representative (wave function) Q l

p', p"; q";
k' .k") is antisymmetrical in p', p", as it should be for
Fermi statistics.

I' can also be evaluated with the use of the equations
of Sec. 1. We have

F=Q
g

(dk)" p, (ppn+nkp")Qlpln, k' k")'

Eq. (4.4) provided we approximate by taking only large
components (that is, for pseudoscalar interaction, the
pair creation or annihilation parts) of the interaction.
This equation, derived just like (3.3) with the help of
(1.11-13) is

(pp'+pp"+v:+2" ko"—~)(kl p. ', p ";q.";k' "k")

The four terms of (4.10) are referred to as (a), (b), (c),
and (d). These are substituted into the fourth term of
(4.12) to give A, 8, C, and D, and into the third term
to give A' 8', C', and D'.

When these substitutions are made the terms appear
consistently in a certain pattern. Some terms (D, A,
CI, and Al) come from unrestricted pair creation, as
though no other Fermi particles were present. The
other terms D, 8, D', and 8' represent the restrictions
on these terms, because of the presence of a Fermi
particle, through the operation of the Pauli principle.
As is done in perturbation theory (see (2.12) and fol-
lowing discussion), we treat the first type of term as a
vacuum effect and consider only the second (or restrict-
ing) terms as genuine contributions to the energy of
the free particle under consideration. In this way one
obtains an expression for I', similar to that for 8', with
the addition of an extra term coming from D and 8',
which represent either the annihilation or creation of
two mesons in the cloud. These two terms are the
complex conjugates of each other. There are also the
terms D' and 8, which modify a, the coefficient of c„'.
Of these, D' corresponds to the positron part of the
nucleon self energy in which a meson is created and
annihilated again with virtual pair creation; 8 is the
absorption of one meson and the creation of another,
with, again, pair creation in the intermediate state.
These two terms are small compared with o. and will
not be considered further. We thus have, 6nally, the
expression,

V=+„[nn„c„2+2n'*P„c lc„
+2n'(n —1)'y c 2c j, (4.15)

where c2„and P„are the same as in the no-pair ex-
pression, (3.11 and 3.12), and y„, after putting in the
Tomonaga assumption for ()Pl P", k' k"), (3.8), is

~ =-(f')22-1 (dk). 2 V(p--2 q k-)
v, s, t

+fi p niqp(y n—I
y n)(ply n I kl. . .kn I)——

V*(yl", q. , k" ')(Po" '+Pp"+op

x(pin k'. k"
l p)+Ic c +2*( .+.n1)*

+ tdpidkn+I P V(p
i

q
iin+I kn+I)

s, v

(4.12)

where

+ g ko"—E)f(k" ')f(k") g f'(k"), (4.16)

p
n.

q
iin+I. ki. . .kn+1)(p n kl. . .knl y)

+2ln- t dp'P V(y
'

q ™—I k")

n+kn —pn —2 kn —I

p„can be reduced by the methods applied to P„ to
the approximate expression

s, v

X()ply, ' pin q'" 'k' k" I)(yI", k' k"l)p)

-2
y„=(f')24-Ix-2 )t k.kp if(k)dk (4.1'I)

where

«""=q"(p"=p" ') = —(p'+k")
qin qn(pii —pn I) — (yi kn+I)

(4.13)

(4 14) F'—x= Vp+ V', (4.18)

To this approximation y„ is independent of e and the
sufhx will be dropped.

We can proceed by the same method as before.
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where

then

(xl c)=exp[ —i2ib](xl c'),

~=b(1+2g) ',

(4.26)

(4.27)

{(1+2g) (d'/dx' —2e)+r'(1 —2g)+1+2b2) (x l
c') =0.

(4.28)

where

F0=+ (nnc„'+2n&Pc„&c +2n&(n —1)'c c g), (4.19)

and

2P 'n'*c„ ic„. (4.2o)

The minimal Eq. (4.8) for Fo can again be solved
exactly, giving a complete spectrum for E and the
corresponding solutions c„), which again form the
basis for treating I" as a perturbation. Ke proceed to
the exact solution;

The minimal Eq. (4.8) for Fo is

(n c)—c„+b(n&c„,+(n+ 1)lc„~,)+g(nl(n 1)—lc„,
+(n+ 2) *'(n+1) '*c„+2)=0, (4.21)

where

.=Z/n, b =P/n, g= y/n. (4.22)

Introducing the notation of (3.31) this can be written

l q q 6+b(q+q*)+ g(qq+q*q*)
l c)=0. (423)

Instead of solving this equation in operator form, we
use the more general method of transforming to the
Schrodinger representation of the q-operators. "

Multiplying (4.23) by (x, we have

q*= i2 '*(d/d—x x), q=—i2 '(d/dx+x), (4.2—4)

and the equation becomes

f —',[(1+2g)d'/dx' —x'(1—2g)+ 1]
+i2~bd/dx+e) (x l c) =0. (4.25)

To eliminate the term in d/dx, make the transformation

where IJ is the Hermite polynomials, satisfying

H *"—2yH ~'+2«nH„*=O. (4.35)

(nl c")=)" (nl x) (x I
c")dx, (4.37)

where (n l x) are the solutions of the standard oscillator
equation, (4.32), with «n replaced by n. (We are here
repeating in representative form the argument of
reference 12.) Thus

(nl c )=E" H„*(x)H„*(r&x)

)&exp[—~~(1+r)x'—ib2'x]dx, (4.38)

where E is a normalizing factor. This is a complete set
of exact solutions to the Eq. (4.32).

The corresponding spectrum 8" is given by (4.33).
We are primarily interested in the lowest level

&'= —P'/L (1+2g)]—l L1—(1—4g')'] (4.39)

This is a function of f(k) and f(k) must be chosen to
make a minimum. Expanding (4.39) in powers of g,

&'= —(P'/ ) (1—2g)+o(g'). (4.40)

If g is small we can take f(k) to be the same as in the
no-pair approximation, (3.38).

The values of (n l
c') or c„' are determined by

c„'=E H„*(x)exp[ —~~(1+r)x'—Q2&x]dx, (4.41)

which can be evaluated exactly by substituting the
explicit expressions for H„*(x),

Thus, by (4.26) and (4.30)

(xl c ) =H *(r~x) exp[ —2rx —i218x]. (4.36)

The components

Define r, y, and P) by the equations,

«'=(1—2g)(1+2g) ', (4.29)
Ho*(x) = 1, H *(x)=2x,
H2*(x) =4x' —2 H *(x)=8x' —12x. (4.42)

Then,

r'@=y,

(xlc') =(yl4)

~d/dy+! —y)big)=o,

(4.30)

(4.31)

(4.32)
where

X= (2«n+ 1)= (1—4g') [1+2b'(1+ 2g)j2~]. (4.33)

Hut (4.32) is the representative form of the standard
oscillator equation. ' This has solutions of the form

bit") =H-*b) expL —ly']

'5 P. A. M. Dirac, (see reference 7) Sec. 34 and 60. Our q is
Dirac's q.

'6 L. I. Schi8, QNuefum Mechanics (McGraw-Hill Book CoIn-
pany, Inc. , New York, 1949), Chapter IV.

One thus Ands after some elementary integration

cpp=E,

)28q
ci'= El-

&1+r)
'

~1i& ~ » q' »(r-1)-
l+

k3) (1+«& (r+1)'
(4.43)

where E is determined by the normalization of the state
function.
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Z (.)+Z 'dy'dy"(dl).

X(QI y
~

y
~1 ~

q a lrl . . . lie) 1 (4 45)

The second term of the left-hand side has to be evaluated
using (4.10) with the Tomonaga assumption for
(/~ 1, e) and f(k) given by (3.38). In general this is.a
calculation very similar to that for I' which involves
the separation of vacuum terms For. the values of f
we are considering only ($~3, 1)' is significant, which
reduces 'to just tile sillall coupling expression (2.13}
multiplied by (co')'= E'. Expanding in (k/ii}

Q i 3, 1)'=dP (say) =K'(f')')t (1—k'/4a')ko-'

y (2'+ k'/2~+ kg)
—'dlr. (4.46)

This has been evaluated graphically, giving

di2= E'(f"/4n)(1/60). (4.47)

Combining tl1ls with the VRhlcs fol c foI' paI'tlculRl'

values of f, Z can be chosen to satisfy (4.45). The
results are, for f'/4m =10,

co'=0.83, ci2=0.04, din=0. 13. (4.48)

For f'/4s =40,

co' ——0.57, ci2= 0.05, di2= 038. (4.49)

These are exact solutions for the expression Vo for
the lowest energy level. The expression (4.38) for the
complete set of solutions for I'0 couM now be used to
treat F' as a perturbation, as was done in Sec. 3(c).
These are negligible to the degree of accuracy to which
we are working and wiB not be treated here.

Using (4.40) one can also evaluate E'. The result is

E'= —(f'/4n) (1/500).

Thus for f'/4s. = 10,
Zo= —(./50).

5. DISCUSSION

(4.50)

(4.51)

The approximations made in the above calculations,
are certainly crude. (To the order of magnitude con-
sidered electromagnetic effects are entirely negligible. )

Since we are using the same form for f(k), ~ and P
are the same functions as before. The values of a and

y are obtained by substituting for f(k) in (3.16) and
(8.1) and by graphical integration. Then

g= (f'/4s. ) (1/350) (4 44)

c„' can now be evaluated for diferent values of f To.

determine E we must satisfy the equation

(&~1, I)'+(&~3, e)'=1,
Ol

However, if the reasonableness of the cutoG at ~ is
accepted provisionally, they are at least self con-
sistent. The technique would have to be considerably
lc6ncd bcfolc lt couM bc n1Rdc thc bRsls for R reliable
calculation (of the nuclear magnetic moments for
instance), but even in its present form there are certain
1Qtel'cstlQg lndlcRtloQS.

01M stI7king fcRtulc 1s the wRy ln which thc 1'cprc-
sentatives get smaller with increasing numbers of
mesoIls, and the fact that for a, coupling constant
(f'/4~) as large as ten, the representative (f~y)' is
still the largest by a factor of six. Even for a coupling
constant of forty, the representatives fall OG in the
same order, but not nearly as rapidly as is assumed in
small coupling theory. A quite di8erent result is ob-
tained for scalar mesons, where already for a coupling
constant of two the free nucleon is just as likely to be
in the bare nucleon plus bare meson state as in the
single bare nucleon state, and the small coupling ap-
proximation breaks down altogeth'er. 4 This is because
the significant parameter in intermediate coupling
theory (and to a rough approximation in weak coupling
theory also) is not f' but f'A )see (3.40)], and A is
particularly small for pseudoscalar mesons. (It is this
which leads one to consider large values of thc coupling
constant in the first place!) In fact the only difference
between the values (4.49) quoted for f /4s. =10 and
those given by weak coupling theory lies in the wave
function renormalization, which is treated as negligible
to lowest order in a genuine expansion in f This is.
ccI'tRlQly Ilot colI'cct Rnd ls pRI'tlculRrly important ln
magnetic moment calculations, where a large part of
the effect comes from the (P~ p) term. (The concept of
aeoesaEONs magnetic moments ceases to have much
meaning as soon as the normalization factor is appre-
ciably different from one. )

The rate at which successive terms in the weak
coupling expansion wiB fall OG is very roughly indicated
by b. For f'/4s. = 10 we have b= 4. Judging by particular
calculations which have been made, '~ this is a very
optimistic estimate and it is more probable that suc-
cessive terms in the 5-matrix will diminish in the ratio
of about one-half. The great advantage of a renor-
malized weak coupling theory is that it deals exactly
with the fundamental problems of divergences, virtual
pair creation, and the separation of vacuum CEects. The
calculations presented here indicate that, although the
weak coupling method yields a very slow convergence
for thc slzc of coupling w111ch ls required, tl1c ln1pllclt
assumption of the relative importance of the diferent

'~E. Corinaldesi and G. Field, Phil. Mag. 40, 1159 (1949);
K. A. Brueckner, Phys. Rev. 79, 641 (1950);K. Nakabayasi and
I. Sato, Prog. Theoret. Phys. 6, 252 (1951).These general remarks,
based as they are on the consideration of the self-energy problem
only, should not be taken too seriously. It may vrell be that the
weak coupHng expansion for a particular 5-matrix element starts
to diverge at about the third term. H this is so, the only line of
progress seems to lie in a refinement of some intermediate coupling
theory.



representatives is correct, and. that the 6rst tvro terms
of the expansion should give corxectly the general
features of the theory. More reliance couM be placed on
an equation such as that of Bethe and Salpeter'8 for the
deuteron ln which thc lIQpoltant tclIQs RI'c ltclRtcd to
all orders in the coupling constant.

All the quantitative conclusions given above depend
on the cutoG at x. This was inserted because it was felt
that the problem of the divergences was solved in
principal for pseudoscalar couphng by renormallzatlon,
which would, in general, cut down the integx'als at about
this value. The qualitative conclusions just reached. are
much less sensitive to the cuto6', since to a,lter them the
estimate of (pi3, 1)' wouM have to be wrong by a
factor of three, which we consider unlikely.

A mathematically rigorous method for incorporating
renormalization into such a calculation has been given

by Dyson. IQ his theory R IQod16cd Schrodingcl
equation is obtained in the Schrodinger representation

Eq (99)l in which the Hamiltonian itself is an
expansion in the charge. Each term in this expansion is
finite after rcnormahzation and also contains a con-.

vergence factor LIV, Eq. (102)] which may be made
powerful enough to render finite any integral in which
it occurs (for example the expressions for n, P, and y
above). The idea is (III) that only the first few terms
in the Hamiltonlan are important. The point at which
the convergence factors cut down the integrands
depends on ccx'tRln arbitrary constants~ I . Thc gx'CRt

advantage of Dyson's theory over a simple cutoG is
that the convergence factors are introduced by a
unitary transformation. Thus, if one approximates by
considering only a certain number of terms in the
HamiltoniaQ lt ls always posslblc to wl ltc down Rn

expression for what has been neglected, and, in prin-

ciple at least, the validity of the approximation for
particular values of I' can be tested.

The other main source of error in the above calcula-
tions is in the reduction of the multiple integrals for
cr„, P„, and y„, LSec. 3(g) and (4.15)j. These were
complicated by the fact that any number of mcsons
was allowed for. On the basis of the above conclusion,
that only representatives with a limited number of
mesons are signi6cant, a more accurate, evaluation
should be possible. If only two representatives were
considered. the method would reduce to that suggested.
by Tamm and. Banco' for the deuteron. '0 Rehnements
along these and. other lines are being considered.

's H. A. Bethe and E. K. Salpeter, Phys. Rev. 82, 309 (195k);
F. Low and M. Gell-Mann, Phys. Rev. 84, 350 (1951).

'9P. J. Dyson, Phys. Rev. 82, 428 (195I); 83, 608 (195I);
Proc. Roy. Soc. (London) A207, 395 (1951);Phys. Rev. 83„1207
(1951);to be referxed to as I, II, III, and IV, respectively, See in
particular the 6rst and last sections of IV for the modi6ed
Schrodinger equation. In I methods are developed for obtaining
the terms of the Hamiltonian from generalized I"eynman graphs.
In II the machinery for renoxmalizing such a term is set up.

20 I. G. Tamm, J.Phys. (U.S.S.R.) 9, 449 (1945);S, M, DancoG,
Phys. Rev. 78, 382 (1950).

APPENDIX

The Charged No-Pair Model

H we consider a charged meson Acid, then the Hamil-
tonian of the Schrodinger equation is the same as (2.3)
except that the factor (q*(k)+q(k)) is replaced by

where the suSxes + and —denote operators associated
with posltlvc RIld Qcgatlvc Incsons& lcspcctlvcly. 0 I
and Ã denote protons and neutrons and I'@ and Ãg
antiprotons and antincutrons, then

7Ã= I' 7-I'=0 v~E=O a~I'= X
rI'g =Ng, re =0; r*P~——0 r*Xg=I'g,. (A.2)

which simply states that 7 creates charge and v*

annihilates.
If wc consider a state which represents R single free

stationary proton in the no-pair approximation, the.
vRrlous representatives Rll have zcx'0 momentum Rnd
unit positive charge, and. are thus of the typical forms,
(i),

(Pip'" P I" m' ~ m")=Qii tt e) (A.3)

%herc L Rnd. sf 1'cfcx' to positive Rnd ncgRtlvc mcsonsq

respectively, and

pen, — (p ir+ p ms) (A.4)

represents a bare proton; or (ii),

g, ips~+r. p . . . ]n+r mr . . . ma)

= (p i 1, tr+1, I), (A.5)

%'herc pg
+ ls R lmutx'on.
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sions with Dr. F. J. Dyson and with Professor R. E.
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Note added da proof: The caic—niations of Koba, Kotani, and
Nahai LProg. Theoret. Phys. 6, 849 (1951)g, which have appeared
recently, of the higher order c corrections to photomeson produc-
tion, indicate that the optimistic view& of renormalized perturba-
tion theory for nuclear phenomena taken above is not justi6ed,
but the assumption in reference j.j is much more likely to be
correct.
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The energy of the state 1P is This expression can be considerably simplified if we
introduce the notation

llr=Z (d&)"(&m)"2 (01III1,~, ~)(1, ~, ~14)
t

in which case
tn= k2n-' m"=

7 (A.9)

+ tjfn+1(F1 jf
1
1 I+ 1 22)(1 I+ 1 2211') (A.6) W=pn[ Sync'n +222 (p2n lc2—n 2c—2n 1+—p2nc2n —lc2n)]y

(A.10)

This can be evaluated just as in Sec. 3, and we make
where

the Tomonaga approximation,
22

—1p n+k n (A. 11)

(~1 1 „„) 2 ), IIf ((,)IIf ( ,) (A 7)
-=f' ' E ( )" (12

" '
12 ")f( ")II f'( ") ( . )

We thus obtain where f(k") is f+(k) or f (k) according to whether r is
odd or even. If we make the further assumption that

lF=Q J"(dl)"(1Em)n (p22n+ 2212n+ 222122n) c f+(k) =f-(k) =f(k), (A. 13)

n+1 n

+ (22+ 1)fan+22222& )c2 2II f 2([r)IIf 2(222s)d'{n+1

+ f'2 —'Q 222U(p, 2"+' p, '")c,„,*c„
s, t „

&&IIf,'(1 )II f '(m )f (m.)+c.c.

+(22+1)'
1

~(p'" p'"+')c2-c2- 1*f+(~"+')

la n

&IIf '(1")IIf-'( ')+" ld&"" (A g)
r s )

thus neglecting the correlation due to charge, "we can
write

W= Qn[tlCn An+2{ (22 2) 'C2n —2C2n —1P2n—1

+22&c2n 1c2np2n)+2(22' (22———',)&)

XC2n —2C2n —1P2n—1]

=g„fmn„c„2+222lc„1c„(p„2 '*)—
+2(22 —(22 ', ) )c2—n —2c2n 1p—2n 1—] (—A.14)

The Anal expression is obtained by summing over
2n = 22' in the bracket { . ), in which case the two terms
can be combined into a single sum over all values of n'.
We can obtain an exact solution for the e independent
parts of the first two terms and treat the remainder as
a perturbation.

~'Investigations of R. H. Dalitz and D. G. Ravenhall show
that this is not a bad approximation. Phil. Mag. 42, 1378 t', 1951).


